
VS-UFB310CB40

Vishay Semiconductors

Not Insulated SOT-227 Power Module **Ultrafast Rectifier, 310 A**

Base common cathode

PRIMARY CHARACTERISTICS							
V _R	400 V						
$I_{F(AV)}$ at T_{C} = 119 °C per module $^{(1)}$	310 A						
t _{rr}	39 ns						
at T _C	135 °C						
Туре	Modules - diode, FRED Pt®						
Package	SOT-227						

Note

(1) All 4 anode terminals connected

FEATURES

- Not insulated package
- Ultrafast reverse recovery
- · Ultrasoft reverse recovery current shape
- Optimized for power conversion: welding and industrial SMPS applications
- · Plug-in compatible with other SOT-227 packages
- · Easy to assemble
- Direct mounting to heatsink
- Designed and gualified for industrial level
- UL approved file E78996
- · Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

The VS-UFB310CB40 not insulated modules integrate two state of the art ultrafast recovery rectifiers in the compact. industry standard SOT-227 package. The planar structure of the diodes, and the platinum doping life time control, provide a ultrasoft recovery current shape, together with the best overall performance, ruggedness and reliability characteristics.

These devices are thus intended for high frequency applications in which the switching energy is designed not to be predominant portion of the total energy, such as in the output rectification stage of welding machines, SMPS, DC/DC converters. Their extremely optimized stored charge and low recovery current reduce both over dissipation in the switching elements (and snubbers) and EMI/RFI.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS			
Cathode to anode voltage	V _R		400	V			
Continuous forward current per diode	I _F	T _C = 135 °C	155	А			
Single pulse forward current per diode	I _{FSM} ⁽¹⁾	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	1300	A			
Maximum power dissipation per module	PD	T _C = 135 °C	421	W			
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C			

Note

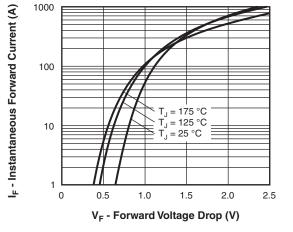
(1) 10 ms sine or 6 ms rectangular pulse

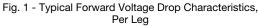
COMPLIANT

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS PER DIODE ($T_J = 25 \text{ °C}$ unless otherwise specified)							
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS		TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	400	-	-		
		I _F = 100 A	-	1.11	1.34		
		$I_F = 100 \text{ A}, T_J = 125 ^\circ\text{C}$	-	0.99	1.1		
Forward voltage, per leg	V_{FM}	$I_F = 100 \text{ A}, T_J = 175 \text{ °C}$	-	0.97	-	V	
		I _F = 200 A	-	1.3	1.6		
		I _F = 200 A, T _J = 125 °C	-	1.22	1.4		
		I _F = 200 A, T _J = 175 °C	-	1.25	-		
		$V_{R} = V_{R}$ rated	-	1.3	50		
Reverse leakage current, per leg	I _{RM}	$V_R = V_R$ rated, $T_J = 125 \ ^\circ C$	-	100	-	μA	
		$V_R = V_R$ rated, $T_J = 175 \ ^\circ C$	-	1	4	mA	
Junction capacitance, per leg	CT	V _R = 400 V	-	100	-	pF	


DYNAMIC RECOVERY CHARACTERISTICS PER DIODE (T_J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CC	MIN.	TYP.	MAX.	UNITS		
		I _F = 1.0 A, dI _F /dt = 400 A/µs, V _F		-	39	-		
Reverse recovery time, per leg	t _{rr}	T _J = 25 °C		-	89	-	ns	
		T _J = 125 °C		-	184	-		
Poole recovery ourrent per leg	r recovery current, per leg I _{RRM}	T _J = 25 °C	I _F = 50 A dI _F /dt = 200 A/μs V _R = 200 V	-	9	-	٨	
Peak recovery current, per leg		T _J = 125 °C		-	20	-	A	
	Q _{rr}	T _J = 25 °C		-	400	-		
Reverse recovery charge, per leg		T _J = 125 °C		-	1840	-	nC	


THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C	
Junction to case, single leg conducting	Р		-	-	0.19		
Junction to case, both leg conducting	R _{thJC}		-	-	0.095	°C/W	
Case to heatsink	R _{thCS}	Flat, greased surface	-	0.07	-		
Weight			-	30	-	g	
Mounting torque		Torque to terminal	-	-	1.1 (9.7)	Nm (lbf.in)	
Mounting torque		Torque to heatsink	-	-	1.8 (15.9)	Nm (lbf.in)	
Case style				SOT-227	' not insulate	ed	

VS-UFB310CB40

Vishay Semiconductors

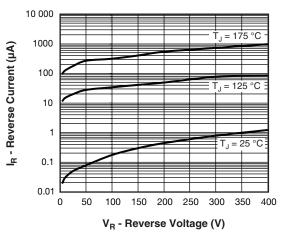
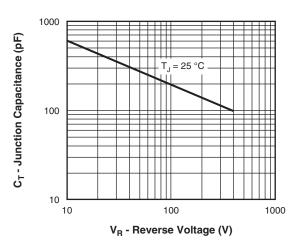
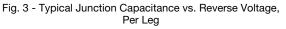
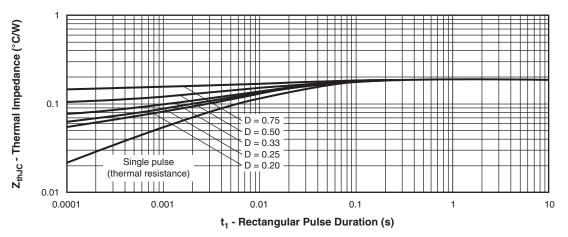
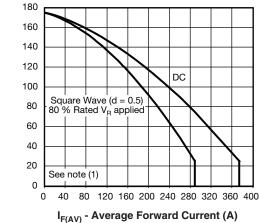
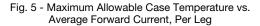




Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage, Per Leg


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics, Per Leg

 Revision: 10-Sep-2019
 3
 Document Number: 93608

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

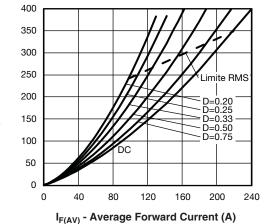


Fig. 6 - Forward Power Loss Characteristics, Per Leg

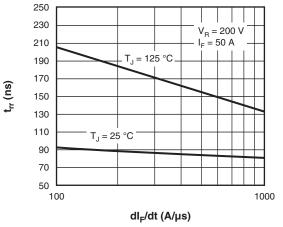
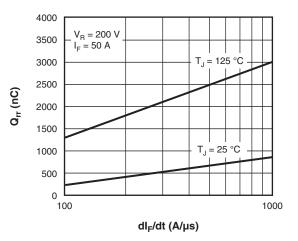
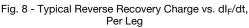




Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt, Per Leg

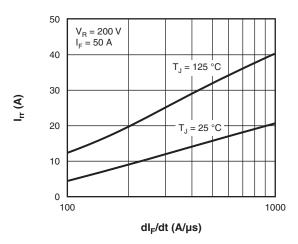


Fig. 9 - Typical Reverse Recovery Current vs. dl_F/dt, Per Leg

Average Power Loss (W)

Allowable Case Temperature (°C)

Vishay Semiconductors

Vishay Semiconductors

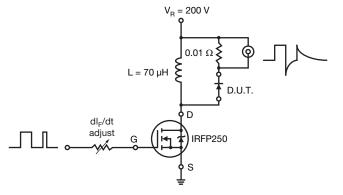


Fig. 10 - Reverse Recovery Parameter Test Circuit

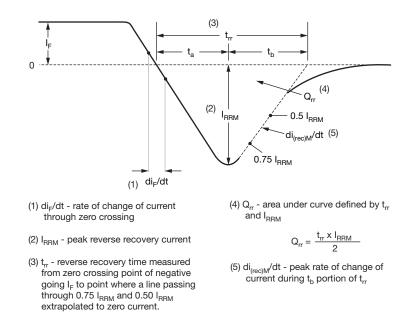


Fig. 11 - Reverse Recovery Waveform and Definitions

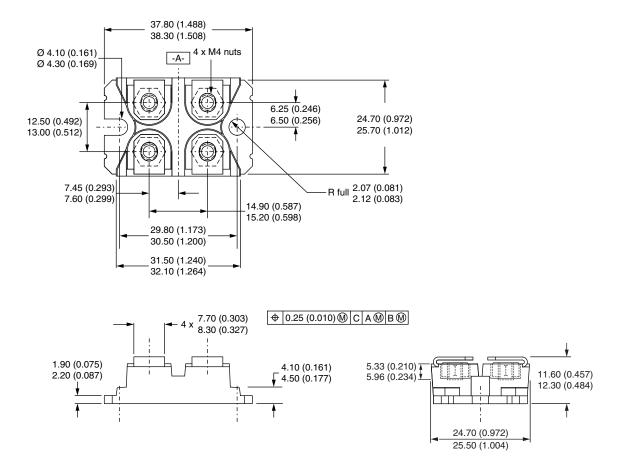
Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	UF	В	310	С	В	40	
		2	3	4	5	6	(7)	
	1 - 2 - 3 - 4 - 5 - 6 -	Ultra Ultra Cur Circ	afast rec afast Pt rent rationalise	diffused ng (310 iguratior	= 310 A n (two di	() Jodes co		cathode) insulated)

Quantity per tube is 10 pcs, M4 screw and washer included

CIRCUIT CONFIGURATION						
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Two diodes common cathode	С	Lead Assignment				


LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95423				
Packaging Information	www.vishay.com/doc?95425				

Vishay Semiconductors

SOT-227 Generation 2

DIMENSIONS in millimeters (inches)

Note

• Controlling dimension: millimeter

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.