
Vishay Semiconductors

High Performance Schottky Rectifier, 2 x 20 A

PRIMARY CHARACTERISTICS								
I _{F(AV)}	2 x 20 A							
V _R	15 V							
V _F at I _F	See Electrical table							
I _{RM} max.	600 mA at 100 °C							
T _J max.	125 °C							
E _{AS}	10 mJ							
Package	TO-247AC 3L							
Circuit configuration	Common cathode							

FEATURES

- 125 °C T_J operation ($V_R < 5 V$)
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy **FREE** encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified according to JEDEC®-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The VS-STPS40L15CW... center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES	UNITS					
I _{F(AV)}	Rectangular waveform	40	А					
V _{RRM}		15	V					
I _{FSM}	t _p = 5 μs sine	700	А					
V _F	19 A_{pk} , T_J = 125 °C (per leg, typical)	0.25	V					
Тј		-55 to +125	°C					

VOLTAGE RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VS-STPS40L15CW-N3	UNITS			
Maximum DC reverse voltage	V _R	T₁ = 100 °C	15	V			
Maximum working peak reverse voltage	V _{RWM}	IJ= 100 C	15	v			

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDI	TEST CONDITIONS							
Maximum average forward per leg		50 % duty cycle at T _C = 86 °C	rootongular wavoform	20						
current, see fig. 5 per device	I _{F(AV)}	30% duty cycle at $10 = 60%$	40							
Maximum peak one cycle non-repetitive surge	1	5 μs sine or 3 μs rect. pulse	Following any rated load condition and	700	А					
current per leg, see fig. 7	IFSM	10 ms sine or 6 ms rect. pulse	with rated V _{RRM}	330						
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 2 A, L = 5 m⊦	10	mJ						
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to ze Frequency limited by T _J maxim	2	А						

Revision: 04-Jan-18

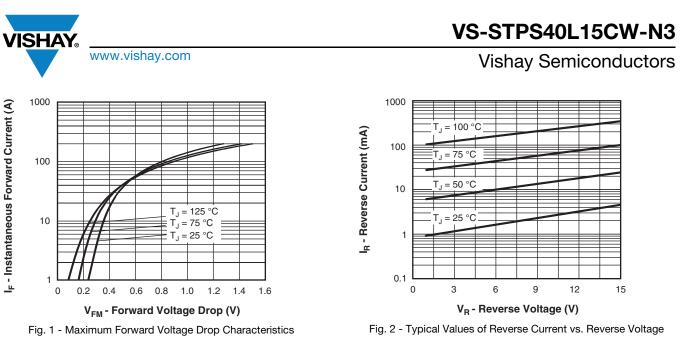
1

COMPLIANT

HALOGEN

VS-STPS40L15CW-N3

www.vishay.com


Vishay Semiconductors

ELECTRICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CO	TYP.	MAX.	UNITS					
		19 A	T ₁ = 25 °C	-	0.41					
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	40 A	1j=25 0	-	0.52	v				
	V FM (1)	19 A	T, = 125 °C	0.25	0.33					
		40 A	1j=125 C	0.37	0.50					
Reverse leakage current per leg	I _{BM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	-	10	mA				
See fig. 2	IRM \''	T _J = 100 °C	VR - Haleu VR	-	600	IIIA				
Threshold voltage	V _{F(TO)} 0.182		82	V						
Forward slope resistance	r _t	$T_J = T_J maximum$ 7.6		.6	mΩ					
Maximum junction capacitance per leg	C _T	$V_R = 5 V_{DC}$ (test signal ran	-	2000	pF					
Typical series inductance per leg	L _S	Measured lead to lead 5 r	8	-	nH					
Maximum voltage rate of change	dV/dt	Rated V _R	10	000	V/µs					

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Maximum junction temperature range	TJ		- 55 to 125	°C						
Maximum storage temperature range	T _{Stg}		- 55 to 150							
Maximum thermal resistance, junction to case per leg	P	DC operation See fig. 4	1.4							
Maximum thermal resistance, junction to case per package	- R _{thJC}	DC operation	0.7	°C/W						
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.24							
Approvimate weight			6	g						
Approximate weight			0.21	oz.						
Mounting torque		Non-lubricated threads	6 (5)	kgf ⋅ cm						
Mounting torque maximum]			(lbf · in)						
Marking device		Case style TO-247AC 3L	STPS40	L15CW						

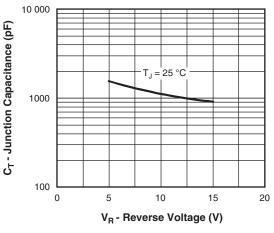


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

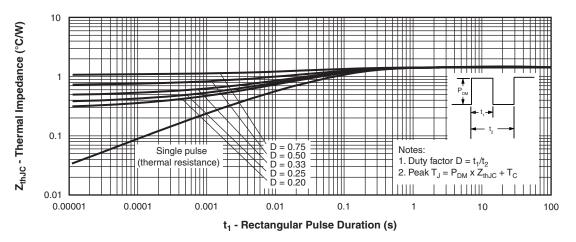
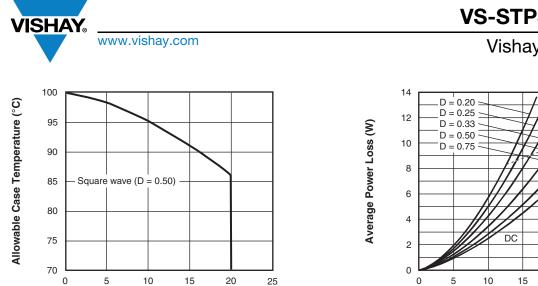
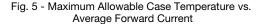
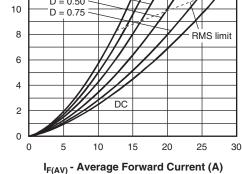






Fig. 4 - Maximum Thermal Impedance Zth,JC Characteristics

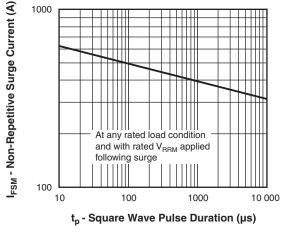


Fig. 7 - Maximum Non-Repetitive Surge Current

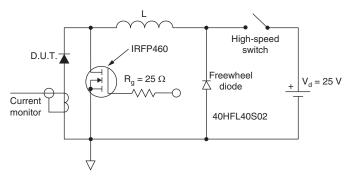


Fig. 8 - Unclamped Inductive Test Circuit

VS-STPS40L15CW-N3

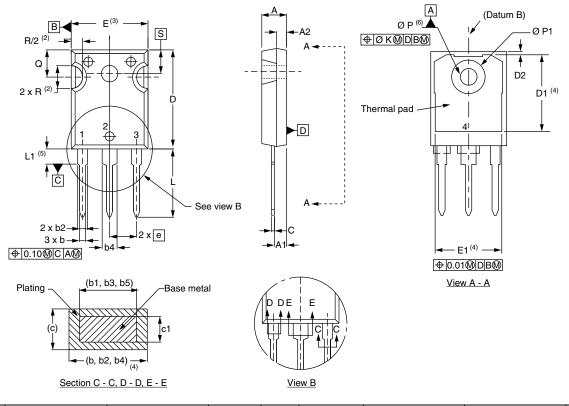
Vishay Semiconductors

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	STPS	40	L	15	CW	-N3
		2	3	4	5	6	7
	1 2 3 4 5 6	- Sch - Cur - L = - Vol - Pac CW	nottky S rent rati low forv tage coo ckage: r = TO-2	niconduo TPS ser ngs (40 vard vol de (15 = '47 ntal digit	ies = 40 A) tage 15 V)		_
				gen-free		-complia	ant, and

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-STPS40L15CW-N3	25	500	Antistatic plastic tube						


LINKS TO RELATED DOCUMENTS							
Dimensions www.vishay.com/doc?96138							
Part marking information	www.vishay.com/doc?95007						

Vishay Semiconductors

TO-247AC 3L

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INC	HES	NOTES	NOTES	SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES		STWDOL	MIN.	MAX.	MIN.	MAX.	NOTES
A	4.65	5.31	0.183	0.209			D2	0.51	1.35	0.020	0.053	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.17	1.37	0.046	0.054			E1	13.46	-	0.53	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	5 BSC	
b1	0.99	1.35	0.039	0.053			ØК	0.2	254	0.0)10	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.34	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			ØΡ	3.56	3.66	0.14	0.144	
b5	2.59	3.38	0.102	0.133			Ø P1	-	7.39	-	0.291	
С	0.38	0.89	0.015	0.035			Q	5.31	5.69	0.209	0.224	
c1	0.38	0.84	0.015	0.033			R	4.52	5.49	0.178	0.216	
D	19.71	20.70	0.776	0.815	3		S	5.51	BSC	0.217	' BSC	
D1	13.08	-	0.515	-	4							

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

(4) Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-247 with exception of dimension Q

Revision: 20-Jun-17

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.