
VS-HFA30PA60C-N3

Vishay Semiconductors

HEXFRED[®] Ultrafast Soft Recovery Diode, 2 x 15 A

www.vishay.com

PRIMARY CHARACTERISTICS								
I _{F(AV)}	2 x 15 A							
V _R	600 V							
V _F at I _F	1.2 V							
t _{rr} typ.	19 ns							
T _J max.	150 °C							
Package	TO-247AC 3L							
Circuit configuration	Common cathode							

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- · Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

VS-HFA30PA60C... is a state of the art center tap ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 15 A per leg continuous current, the VS-HFA30PA60C... is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{BBM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED VS-HFA30PA60C... is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Cathode to anode voltage	V _R		600	V						
Maximum continuous forward currentper leg	I_	T _C = 100 °C	15							
per device	- I _F	1 _C = 100 0	30	А						
Single pulse forward current	I _{FSM}	t _p = 10 ms	150	A						
Maximum repetitive forward current	I _{FRM}		60							
Maximum power dissipation	р	T _C = 25 °C	74	W						
Maximum power dissipation	PD	T _C = 100 °C	29	vv						
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C						

Revision: 11-Oct-2019

1

Document Number: 94068

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

RoHS COMPLIANT HALOGEN www.vishay.com

SHAY

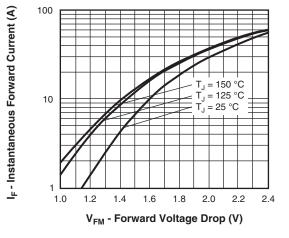
Vishay Semiconductors

ELECTRICAL SPECIFICATIONS PER LEG ($T_J = 25 \text{ °C}$ unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS		
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA	600	-	-				
Maximum forward voltage	V _{FM}	I _F = 15 A		-	1.3	1.7	V		
		I _F = 30 A	See fig. 1	-	1.5	2.0			
		I _F = 15 A, T _J = 125 °C		-	1.2	1.6			
Maximum reverse		$V_R = V_R$ rated	Coofig 0	-	1.0	10			
leakage current	I _{RM}	T_J = 125 °C, V_R = 0.8 x V_R rated	See fig. 2	-	400	1000	μA		
Junction capacitance	CT	V _R = 200 V See fig. 3		-	25	50	pF		
Series inductance	L _S	Measured lead to lead 5 mm from p	ackage body	-	12	-	nH		

DYNAMIC RECOVERY CHARACTERISTICS PER LEG ($T_J = 25 \text{ °C}$ unless otherwise specified)										
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS				
Reverse recovery time See fig. 5, 10	t _{rr}	$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = 200$	A/μs, V _R = 30 V	-	19	-				
	t _{rr1}	T _J = 25 °C	I _F = 15 A dI _F /dt = 200 A/μs V _R = 200 V	-	42	60	ns			
	t _{rr2}	T _J = 125 °C		-	70	120				
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	4.0	6.0	A			
See fig. 6	I _{RRM2}	T _J = 125 °C		-	6.5	10				
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	80	180				
See fig. 7	Q _{rr2}	T _J = 125 °C		-	220	600	no			
Peak rate of fall of	dl _{(rec)M} /dt1	T _J = 25 °C		-	250	-	A /u.a			
recovery current during t _b See fig. 8	dl _{(rec)M} /dt2	T _J = 125 °C		-	160	-	A/µs			

THERMAL-MECHANICAL SPECIFICATIONS PER LEG										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C				
Junction to case, single leg conduction	- R _{thJC}		-	-	1.7					
Junction to case, both legs conducting	nthJC		-	-	0.85	к/W				
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	40	r∨ vv				
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.25	-					
Waight			-	6.0	-	g				
Weight			-	0.21	-	oz.				
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)				
Marking device		Case style TO-247AC 3L		HFA30PA60C						

Revision: 11-Oct-2019


Document Number: 94068


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-HFA30PA60C-N3

Vishay Semiconductors

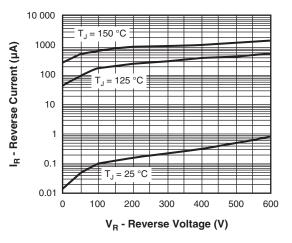


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

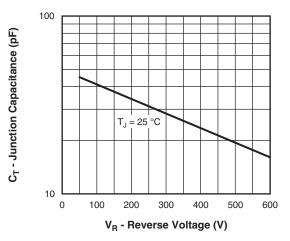


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

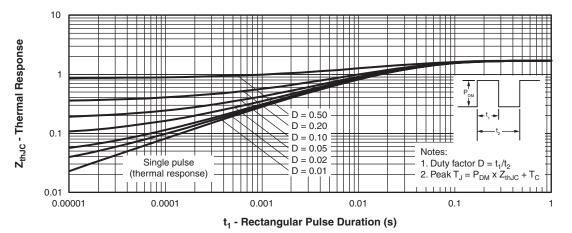


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

 Revision: 11-Oct-2019
 3
 Document Number: 94068

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

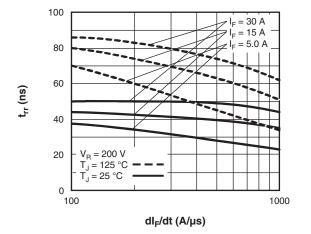


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt (Per Leg)

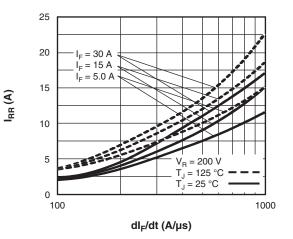


Fig. 6 - Typical Recovery Current vs. dl_F/dt (Per Leg)

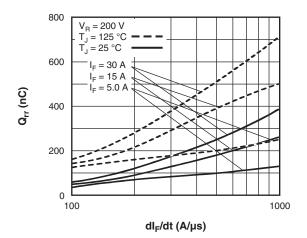


Fig. 7 - Typical Stored Charge vs. dl_F/dt (Per Leg)

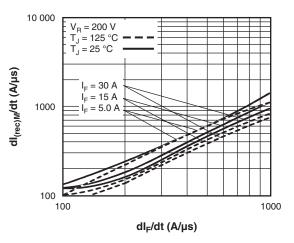


Fig. 8 - Typical dl_{(rec)M}/dt vs. dl_F/dt (Per Leg)

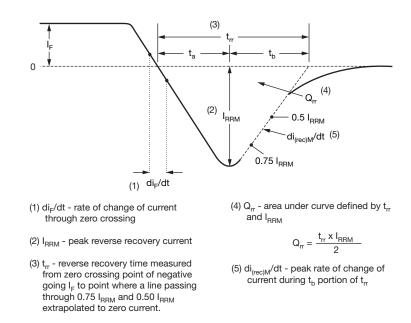


Fig. 9 - Reverse Recovery Waveform and Definitions

Revision: 11-Oct-2019 **4** Document Number: 94068 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-HFA30PA60C-N3

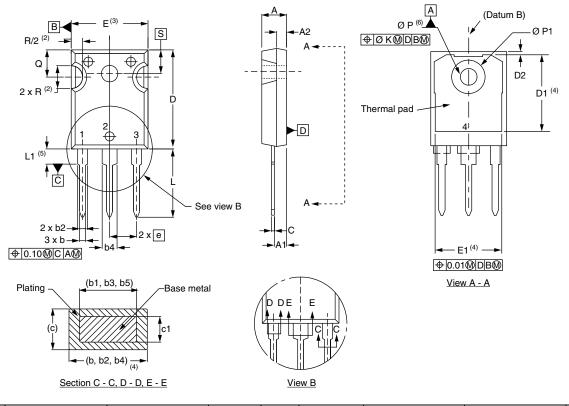
Vishay Semiconductors

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	HF	Α	30	PA	60	С	-N3
	1	2	3	4	5	6	7	8
	1 -	Visl	nay Sen	niconduo	ctors pro	oduct		
	2 -	HE	XFRED [©]	[®] family				
	3 -	Ele	ctron irra	adiated				
	4	Cur	rent rati	ng (30 =	= 30 A)			
	5 -	PA	= TO-24	47AC, 3	pins			
	6 -	Volt	age rati	ng: (60	= 600 V)		
	7 -	Circ	uit conf	iguratior	า			
		C =	commo	n catho	de			
	8 -	Env	ironmer	ntal digit	:			
		-N3	= halog	en-free,	RoHS-	complia	int, and	totally I

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-HFA30PA60C-N3	25	500	Antistatic plastic tube						


LINKS TO RELATED DOCUMENTS							
Dimensions www.vishay.com/doc?96138							
Part marking information	www.vishay.com/doc?95007						

Vishay Semiconductors

TO-247AC 3L

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	IETERS	INC	HES	NOTES	NOTES		MILLIN	IETERS	INC	HES	NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTED	SYMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
A	4.65	5.31	0.183	0.209			D2	0.51	1.35	0.020	0.053	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.17	1.37	0.046	0.054			E1	13.46	-	0.53	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	5 BSC	
b1	0.99	1.35	0.039	0.053			ØК	0.2	254	0.0)10	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.34	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			ØΡ	3.56	3.66	0.14	0.144	
b5	2.59	3.38	0.102	0.133			Ø P1	-	7.39	-	0.291	
С	0.38	0.89	0.015	0.035			Q	5.31	5.69	0.209	0.224	
c1	0.38	0.84	0.015	0.033			R	4.52	5.49	0.178	0.216	
D	19.71	20.70	0.776	0.815	3		S	5.51	BSC	0.217	' BSC	
D1	13.08	-	0.515	-	4							

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

(4) Thermal pad contour optional with dimensions D1 and E1

⁽⁵⁾ Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-247 with exception of dimension Q

Revision: 20-Jun-17

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.