

www.vishay.com

Vishay Semiconductors

AAP Gen 7 (TO-240AA) Power Modules Standard Diodes, 80 A

AAP Gen 7 (TO-240AA)

PRIMARY CHARACTERISTICS					
I _{F(AV)}	80 A				
Туре	Modules - Diode, High Voltage				
Package	AAP Gen 7 (TO-240AA)				
Circuit configuration	Two diodes doubler circuit, two diodes common cathode, two diodes common anode, single diode				

MECHANICAL DESCRIPTION

The AAP Gen 7 (TO-240AA), new generation of AAP module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- Industrial standard package
- Low thermal resistance

- UL approved file E78996
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- High surge capability
- Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
1		80	A		
IF(AV)	T _C	110	°C		
I _{F(RMS)}		126			
1	50 Hz	1500	A		
IFSM	60 Hz	1570			
l ² t	50 Hz	11.25	kA ² s		
1-1	60 Hz	10.26	KA-S		
l²√t		112.5	kA ² √s		
V _{RRM}	Range	400 to 1600	V		
T _{Stg} , T _J		-40 to +150	°C		

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA			
	04	400	500				
	06	600	700				
	08	800	900				
VS-VSK.71	10	1000	1100	10			
	12	1200	1300				
	14	1400	1500				
	16	1600	1700				

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current at case temperature	I _{F(AV)}	180° condu	180° conduction, half sine wave			A °C
Maximum RMS forward current	I _{F(RMS)}				126	
		t = 10 ms	No voltage		1500	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		1570	А
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		1260	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1320	
	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	11.25	
Maximum I ² t for fusing		t = 8.3 ms	reapplied		10.26	kA ² s
Maximum 1-t for fusing		t = 10 ms	100 % V _{RRM}		7.95	KA-S
		t = 8.3 ms	reapplied		7.23	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms t	o 10 ms, no vol	tage reapplied	112.5	kA ^{2√} s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π	$x I_{F(AV)} < I < \pi x$	I _{F(AV)}), T _J = T _J maximum	0.73	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			v
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)} < I < \pi$ x $I_{F(AV)}$), $T_J = T_J$ maximum			3.22	mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi x I_{F(AV)}), T_J = T_J maximum$			2.89	11152
Maximum forward voltage drop	V _{FM}	$I_{FM} = \pi \times I_{F(r)}$	_{AV)} , T _J = 25 °C, 1	t _p = 400 μs square wave	1.6	V

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	10	mA		
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V		

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	BOL TEST CONDITIONS		UNITS	
Junction and storage temp	erature range	T _J , T _{Stg}		-40 to +150	°C	
Maximum internal thermal junction to case per leg	resistance,	R _{thJC}	DC operation	0.28		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	°C/W	
	to heatsink		A mounting compound is recommended and the	4		
Mounting torque ± 10 % busbar			torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm	
Approximate weight				75	g	
Approximate weight				2.7	oz.	
Case style			JEDEC®	AAP Gen 7	(TO-240AA)	

DEVICES	SINE HALF WAVE CONDUCTION					RECTANGULAR WAVE CONDUCTION					
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.71	0.075	0.088	0.113	0.155	0.228	0.06	0.094	0.12	0.158	0.23	°C/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Maximum average forward power loss (W)

160

140

120

100

80

60

40

20

0

1400

1200

1000

800

600

0

1^{80°} 120

90

60 30°

RMS limi

20

40 60 80

Vishay Semiconductors

DC

Ø

Conduction Period

100 120

_Initial Tj = Tj max

@ 60 Hz 0.0083 s @ 50 Hz 0.0100s

140

100

Per leg, Tj = 150°C

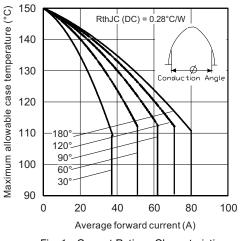
Average forward current (A)

Fig. 4 - Foward Power Loss Characteristics

At any rated load condition and with

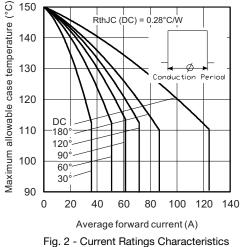
rated Vrrm applied following surge

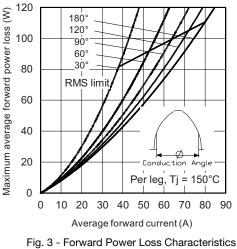
10


Versus Pulse Train Duration

Initial Tj = 150°C

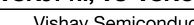
No Voltage Reapplied

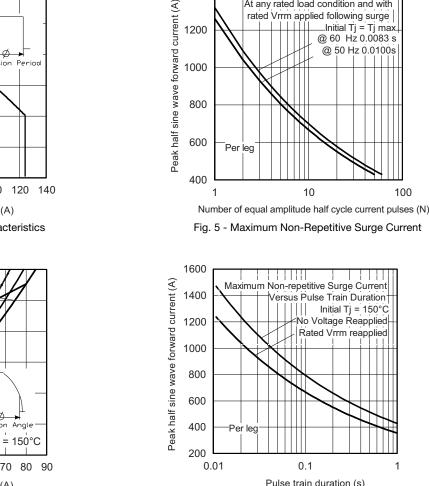

Rated Vrrm reapplied


.

www.vishay.com

Fig. 1 - Current Ratings Characteristics

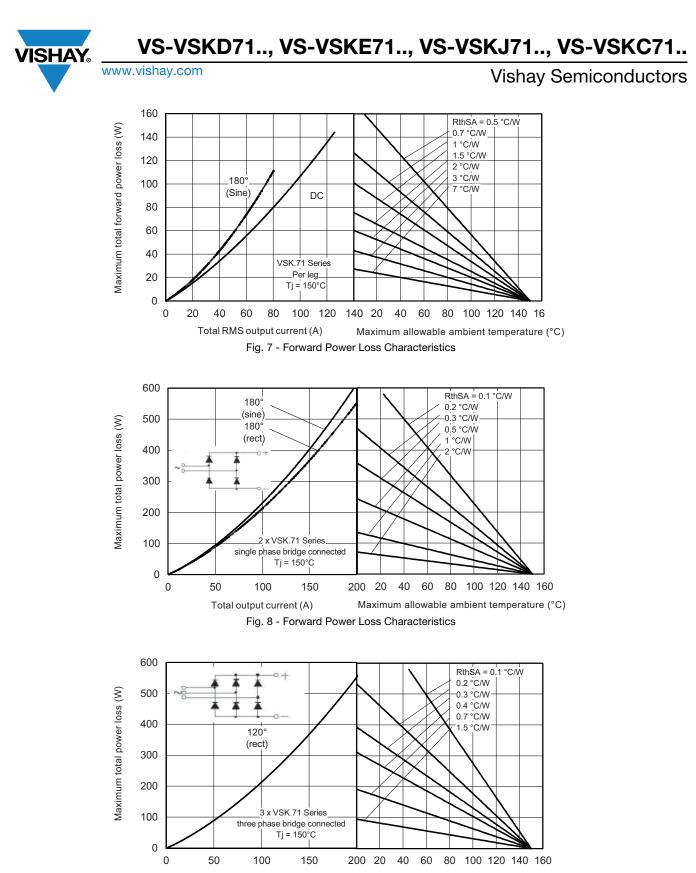




1000 800 600 400 Per lec 200 0.1 0.01

Pulse train duration (s)

Fig. 6 - Maximum Non-Repetitive Surge Current



4

Document Number: 94626

1

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Total output current (A) Maximum allowable ambient temperature (°C)

Fig. 9 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

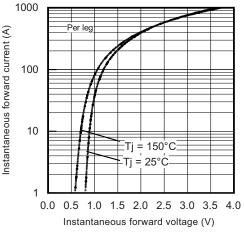


Fig. 10 - Forward Voltage Characteristics

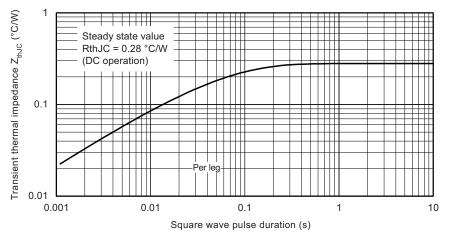


Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

VS-VS **Device code** Κ D 71 1 16 2 (3) (4) 1 5 Vishay Semiconductors product 2 Module type 3 Circuit configuration (see Circuit Configuration table) 4 Current code (80 A) 5 Voltage code (see Voltage Ratings table)

Note

• To order the optional hardware go to www.vishay.com/doc?95172

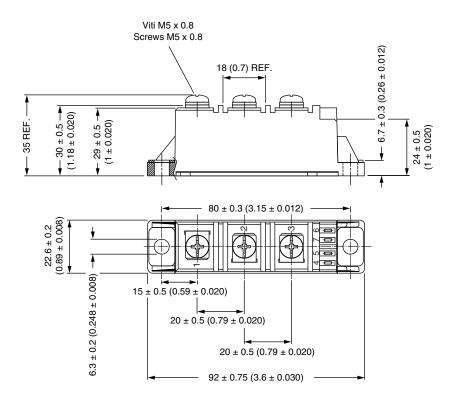
 Revision: 05-Jan-18
 6
 Document Number: 94626

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Semiconductors

CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Two diodes doubler circuit	D				
Two diodes common cathode	С				
Two diodes common anode	J				
Single diode	E				


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95369			

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.