www.vishay.com

VS-VSK.170PbF, VS-VSK.250PbF Series

Vishay Semiconductors

SCR/SCR and SCR/Diode (MAGN-A-PAK Power Modules), 170 A, 250 A

MAGN-A-PAK

PRIMARY CHARACTERISTICS				
I _{T(AV)}	170 A, 250 A			
Туре	Modules - thyristor, standard			
Package	MAGN-A-PAK			

FEATURES

- High voltage
- Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- Industrial standard package
- · Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

This VSK series of MAGN-A-PAK modules uses high voltage power thyristor/thyristor and thyristor/diode in seven basic configurations. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built. They can be interconnected to form single phase or three phase bridges or as AC-switches when modules are connected in anti-parallel mode. These modules are intended for general purpose applications such as battery chargers, welders, motor drives, UPS, etc.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VSK.170	VSK.250	UNITS	
I _{T(AV)}	85 °C	170	250		
I _{T(RMS)}		377	555	^	
1	50 Hz	5100	8500	A	
ITSM	60 Hz	5350	8900		
l ² t	50 Hz	131	361	kA ² s	
1-1	60 Hz	119	330	KA∸S	
l²√t		1310	3610	kA²√s	
V _{DRM} /V _{RRM}		400 to 1600	400 to 2000	V	
TJ	Range	-40 to +130		°C	

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND OFF-STATE BLOCKING VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 130 °C MAXIMUM mA			
	04	400	500				
	08	800	900				
	10	1000	1100	50			
VS-VSK.170- 12 14		1200	1300	50			
		1400	1500				
	16	1600	1700				
	04	400	500				
	08	800	900				
	10	1000	1100	50			
VS-VSK.250-	12	1200	1300	50			
VS-VSK.250-	14	1400	1500				
16		1600	1700				
	18	1800	1900	60			
	20	2000	2100	00			

PARAMETER	SYMBOL	-	TEST CONDITION	NS	VSK.170	VSK.250	UNITS
Maximum average on-state current	I _{T(AV)}	190º conductio	n half aing wave		170	250	А
at case temperature		180 conductio	n, half sine wave		85	85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			377	555	
		t = 10 ms	No voltage		5100	8500	
Maximum peak, one-cycle on-state		t = 8.3 ms	reapplied		5350	8900	А
non-repetitive, surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal	4300	7150	
		t = 8.3 ms	reapplied	half wave,	4500	7500	
		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	131	361	kA ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		119	330	
		t = 10 ms	100 % V _{RRM}		92.5	255	
		t = 8.3 ms	reapplied		84.4	233	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms to 10) ms, no voltage re	eapplied	1310	3610	kA²√s
Low level value or threshold voltage	V _{T(TO)1}	(16.7 % x π x I _T T _J = T _J maximu	$_{(AV)} < I < \pi \times I_{T(AV)})$ m	9	0.89	0.97	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_{V}$	_J = T _J maximum		1.12	1.00	
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), T _J = T _J maximum			1.34	0.60	mΩ
High level value on-state slope resistance	r _{t2}	$(I > \pi x I_{T(AV)}), T_J = T_J maximum$			0.96	0.57	
Maximum on-state voltage drop	V _{TM}	$I_{TM} = \pi \times I_{T(AV)}, T_J = T_J \text{ maximum, } 180^{\circ} \text{ conduction,}$ average power = $V_{T(TO)} \times I_{T(AV)} + r_f \times (I_{T(RMS)})^2$			1.60	1.44	V
Maximum holding current	Ι _Η	Anode supply =	= 12 V, initial I _T = 3	80 A, T _J = 25 °C	500	500	
Maximum latching current	١L		= 12 V, resistive lo /, 100 μs, T _J = 25	,	1000	1000	mA

Revision: 12-Nov-2018

2

Document Number: 94417

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VSK.170	VSK.250	UNITS
Typical delay time	t _d	$T_J = 25 \text{ °C}$, gate current = 1 A dl _g /dt = 1 A/µs	1	.0	
Typical rise time	t _r	$V_d = 0.67 \% V_{DRM}$	2.0		
Typical turn-off time	t _q	$\begin{split} I_{TM} &= 300 \text{ A}; \text{ dI/dt} = 15 \text{ A/}\mu\text{s}; \text{ T}_\text{J} = \text{T}_\text{J} \\ \text{maximum;} \\ V_\text{R} &= 50 \text{ V}; \text{ dV/dt} = 20 \text{ V/}\mu\text{s}; \text{ gate } 0 \text{ V}, 100 \ \Omega \end{split}$	50 to	0 150	μs

BLOCKING					
PARAMETER	PARAMETER SYMBOL TEST CONDITIONS			VSK.250	UNITS
Maximum peak reverse and off-state leakage current	I _{RRM,} I _{DRM}	$T_J = T_J maximum$	50	60	mA
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted, 25 °C, 1 s	30	00	V
Critical rate of rise of off-state voltage	dV/dt	T_J = T_J maximum, exponential to 67 $\%$ rated V_{DRM}	1000		V/µs

TRIGGERING							
PARAMETER	SYMBOL	TEST C	CONDITIONS	VSK.170	VSK.250	UNITS	
Maximum peak gate power	P _{GM}	$t_p \le 5$ ms, $T_J = T_J$ i	maximum	10	.0	w	
Maximum average gate power	P _{G(AV)}	f = 50 Hz, T _J = T _J I	maximum	2.	0	vv	
Maximum peak gate current	+ I _{GM}	$t_p \le 5$ ms, $T_J = T_J$ i	maximum	3.	0	А	
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5 \text{ ms}, T_J = T_J$ i	maximum	5.	0		
		T _J = -40 °C		4.	0	V	
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	3.0		v	
		$T_J = T_J maximum$	1001011/0 1000, 110 - 1 32	2.	0	7	
		T _J = -40 °C		35	50		
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	20	00	mA	
		$T_J = T_J maximum$		1(00		
Maximum gate voltage that will not trigger	V _{GD}	$T_J = T_J$ maximum, rated V _{DRM} applied		0.2	25	V	
Maximum gate current that willnot trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		10	.0	mA	
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J maximum, I_{TM} = 400 A,$ rated V _{DRM} applied		500		A/µs	

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER	1	SYMBOL	TEST CONDITIONS	VSK.170	VSK.250	UNITS		
Junction oper temperature r	ating and storage ange	T _J , T _{Stg}		-40 to +130		°C		
	rmal resistance, se per junction	R _{thJC}	DC operation	0.17 0.125		K/W		
Typical thermatic case to heatsi	al resistance, ink per module	R _{thCS}	Mounting surface flat, smooth and greased	0.02	0.02	r\ vv		
Mounting torque	MAGN-A-PAK to heatsink		A mounting compound is recommended and the torque should be rechecked after a period of about 3 hours to allow for the spread of the compound.		0.6	Nm		
± 10 %	busbar to MAGN-A-PAK				00			
Approximate	Approximate weight			500		g		
Approximate	weight			17	'.8	oz.		
Case style				N	IAGN-A-PAł	<		

Revision: 12-Nov-2018

Document Number: 94417

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

DEVICES	SINUS	DIDAL COM	NDUCTION	AT T _J MA	хімим	RECTA		ONDUCTIO	N AT T _J MA	XIMUM	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90 °	60°	30 °	
VSK.170-	0.009	0.010	0.010	0.020	0.032	0.007	0.011	0.015	0.020	0.033	к/W
VSK.250-	0.009	0.010	0.014	0.020	0.032	0.007	0.011	0.015	0.020	0.033	r\/ VV

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

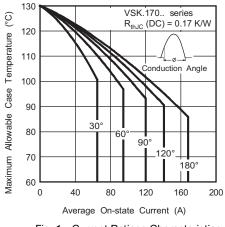


Fig. 1 - Current Ratings Characteristics

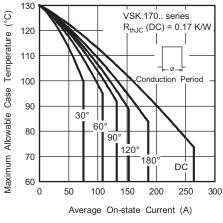


Fig. 2 - Current Ratings Characteristics

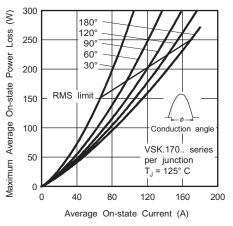


Fig. 3 - On-State Power Loss Characteristics

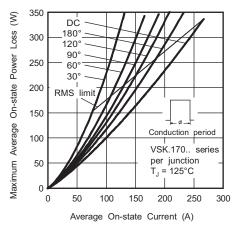


Fig. 4 - On-State Power Loss Characteristics

Vishay Semiconductors

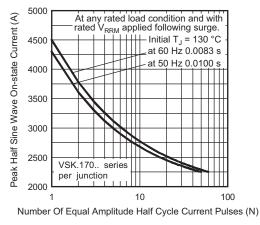


Fig. 5 - Maximum Non-Repetitive Surge Current

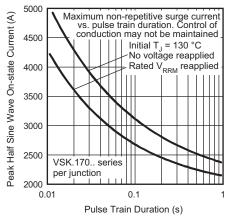


Fig. 6 - Maximum Non-Repetitive Surge Current

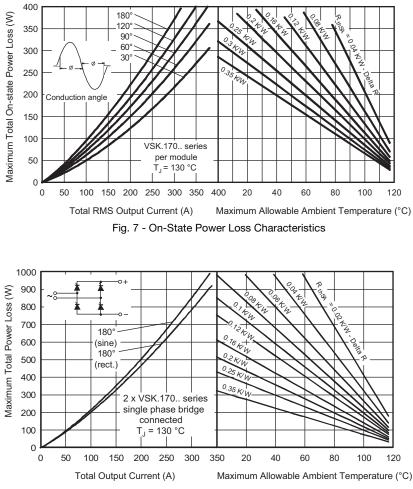
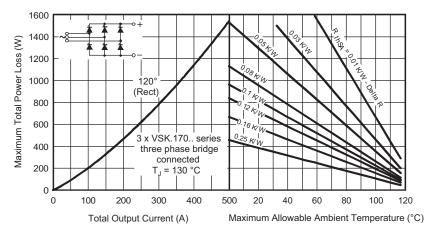
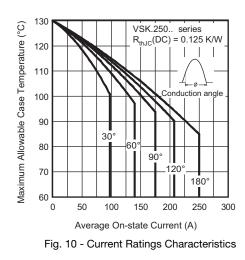
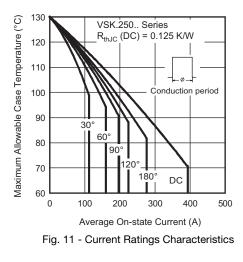



Fig. 8 - On-State Power Loss Characteristics


Revision: 12-Nov-2018	5	Document Number: 94417
For technical questions within your region:	DiodesAmericas@vishay.com, DiodesAsia@	vishay.com, DiodesEurope@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANG		
ARE SUBJECT TO SPEC	CIFIC DISCLAIMERS, SET FORTH AT <u>www.vi</u>	ishav.com/doc?91000



Vishay Semiconductors

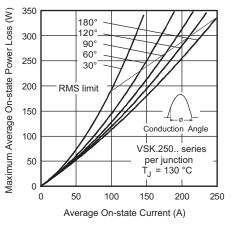


Fig. 12 - On-State Power Loss Characteristics

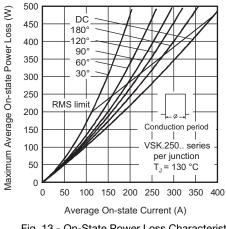


Fig. 13 - On-State Power Loss Characteristics

Revision: 12-Nov-2018	6	Document Number: 94417
For technical questions within your reg	gion: DiodesAmericas@vishay.com, DiodesAsia@vishay.	com, DiodesEurope@vishay.com
	IANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBE SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.c</u>	

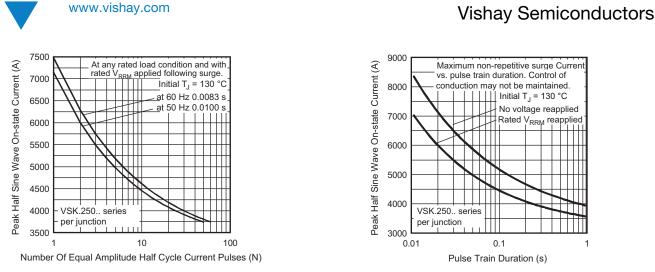


Fig. 14 - Maximum Non-Repetitive Surge Current

ISHAY

Fig. 15 - Maximum Non-Repetitive Surge Current

VS-VSK.170PbF, VS-VSK.250PbF Series

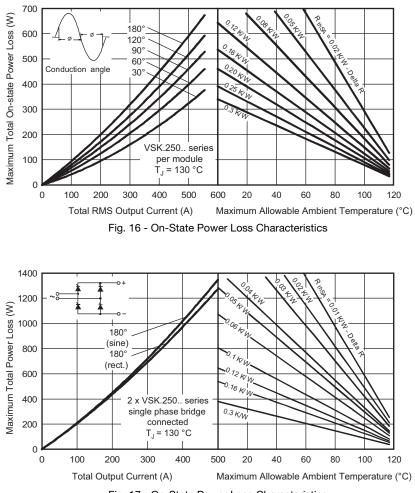
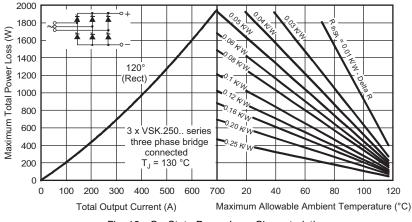
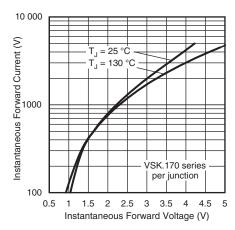



Fig. 17 - On-State Power Loss Characteristics


Revision: 12-Nov-2018	7	Document Number: 94417
For technical questions within your region:	DiodesAmericas@vishay.com, DiodesAsia@visha	<u>ay.com, DiodesEurope@vishay.com</u>
	E WITHOUT NOTICE. THE PRODUCTS DESCRIE	
ARE SUBJECT TO SPEC	FIC DISCLAIMERS, SET FORTH AT www.vishav	<u>v.com/doc?91000</u>

Vishay Semiconductors

www.vishay.com

ISHAY

Fig. 19 - On-State Voltage Drop Characteristics

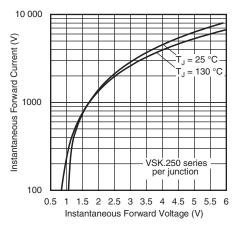


Fig. 20 - On-State Voltage Drop Characteristics

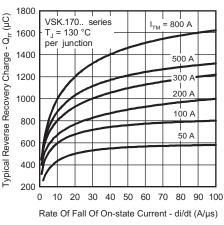
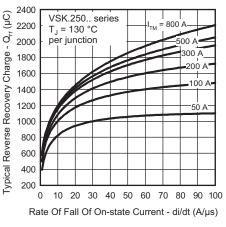
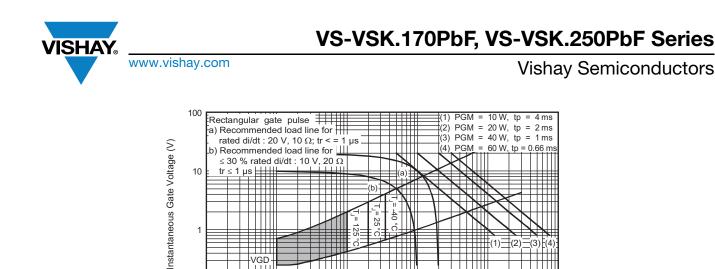


Fig. 21 - Reverse Recovery Charge Characteristics




Fig. 22 - Reverse Recovery Charge Characteristics

Revision: 12-Nov-2018

8

Document Number: 94417

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VSK.170/250 series

0.1

VGD IGD

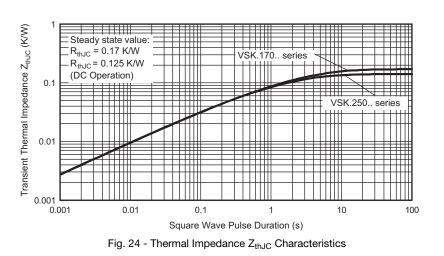
0.01

0.1 0.001

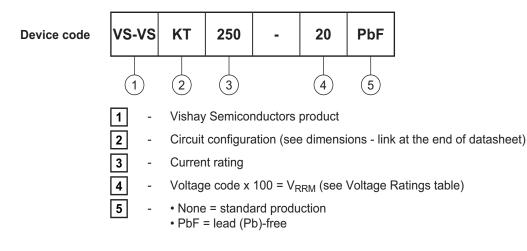
40 25

Instantaneous Gate Current (A) Fig. 23 - Gate Characteristics

1


<u>+</u>(1)<u>+</u>(2)

Frequency limited by PG(AV


10

-(3

100

ORDERING INFORMATION TABLE

Note

To order the optional hardware go to www.vishay.com/doc?95172

Revision: 12-Nov-2018 Document Number: 94417 9 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

CIRCUIT CONFIGURATION

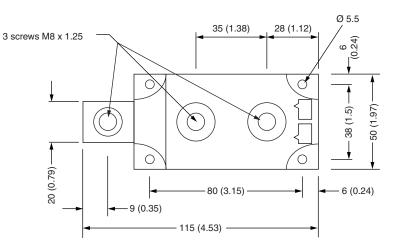
VS-VSK.170PbF, VS-VSK.250PbF Series

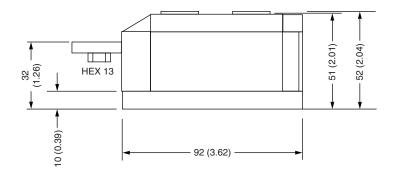
Vishay Semiconductors

CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING	
Two SCRs doubler circuit	КТ	VSKT	
		Available up to 2000 V, contact factory for different requirement	
SCR/diode doubler circuit, positive control	КН	VSKH	
		Available up to 2000 V, contact factory for different requirement	
SCR/diode doubler circuit, negative control	KL	VSKL	
		Available up to 2000 V, contact factory for different requirement	
Two SCRs common cathodes	KU	VSKU	

Available up to 1200 V, contact factory for different requirement

LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95086	




Vishay Semiconductors

MAGN-A-PAK

DIMENSIONS in millimeters (inches)

Notes

- Dimensions are nominal
- Full engineering drawings are available on request
- UL identification number for gate and cathode wire: UL 1385
- UL identification number for package: UL 94 V-0

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.