

Three Phase Bridge (Power Modules), 90 A/110 A

PRIMARY CHARACTERISTICS				
I _O	90 A to 110 A			
V _{RRM}	800 V to 1600 V			
Package	MTK			
Circuit configuration	Three phase bridge			

FEATURES

- High thermal conductivity package, electrically insulated case
- Excellent power volume ratio, outline for easy connections to power transistor and IGBT modules
- 4000 V_{RMS} isolating voltage
- UL E78996 approved
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

A range of extremely compact, encapsulated three phase bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES 90MT.K	VALUES 110MT.K	UNITS	
1		90 (120)	110 (150)	Α	
Io	T _C	90 (61)	90 (57)	°C	
	50 Hz	770	950	A	
I _{FSM}	60 Hz	810	1000	A	
I ² t	50 Hz	3000	4500	A ² s	
	60 Hz	2700	4100	A-5	
I ² √t		30 000	45 000	A²√s	
V_{RRM}	Range	800 to 1600		V	
T _{Stg}	Panga	-40 to 150		- °C	
TJ	Range	-40 to 150			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS					
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	$\begin{array}{c} \mathbf{I_{RRM}} \ \mathbf{MAXIMUM} \\ \mathbf{AT} \ \mathbf{T_{J}} = \mathbf{MAXIMUM} \\ \mathbf{mA} \end{array}$	
VS-90MTK VS-110MTK	80	800	900		
	100	1000	1100		
	120	1200	1300	10	
	140	1400	1500		
	160	1600	1700		

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES 90MT.K	VALUES 110MT.K	UNITS
Maximum DC output current at case	Io	120° rect. conduction angle		90 (120)	110 (150)	Α	
temperature	10			90 (61)	90 (57)	°C	
		t = 10 ms	No voltage	Initial	770	950	A
Maximum peak, one-cycle		t = 8.3 ms	reapplied		810	1000	
forward, non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		650	800	
		t = 8.3 ms	reapplied		680	840	
Maximum I ² t for fusing	l ² t	t = 10 ms	No voltage	$T_J = T_J$ maximum	3000	4500	- A ² s
		t = 8.3 ms	reapplied		2700	4100	
		t = 10 ms	100 % V _{RRM} reapplied		2100	3200	
		t = 8.3 ms			1900	2900	
Maximum l ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied		30 000	45 000	A²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), T_J maximum		0.89	0.81	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$, T_J maximum		1.05	0.99		
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), T_J maximum		5.11	4.37	mΩ	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)})$, T_J maximum		$(I > \pi \times I_{F(AV)}), T_J$ maximum 4.64		.64	11122
Maximum forward voltage drop	V _{FM}	I_{pk} = 150 A, T_J = 25 °C t_p = 400 µs single junction		1.6	1.4	V	
RMS isolation voltage	V _{ISOL}	T _J = 25 °C, all terminal shorted f = 50 Hz, t = 1 s			4(000	V

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES 90MT.K	VALUES 110MT.K	UNITS	
Maximum junction ope storage temperature ra	0	T _J , T _{Stg}		-40 to 150		°C	
		DC operation per module	0.21	0.18			
Maximum thermal resi	Maximum thermal resistance,	В	DC operation per junction	1.26	1.07		
junction to case	R _{thJC}	120° rect. conduction angle per module	0.25	0.21	°C/W		
		120° rect. conduction angle per junction	1.47	1.25	3,		
Maximum thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface smooth, flat and greased	0.03			
Mounting to heatsink torque ± 10 % to terminal			A mounting compound is recommended and the torque should be rechecked after a period of 3 h to allow for the spread of the compound.		4 to 6 3 to 4		
Approximate weight			Lubricated threads.	1	76	g	

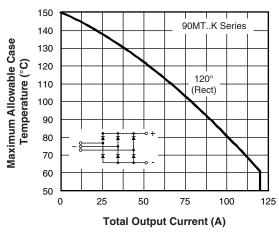


Fig. 1 - Current Ratings Characteristics

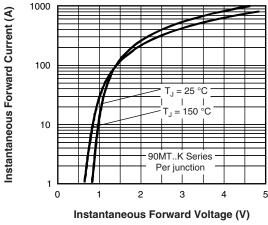
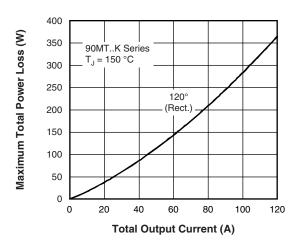



Fig. 2 - Forward Voltage Drop Characteristics

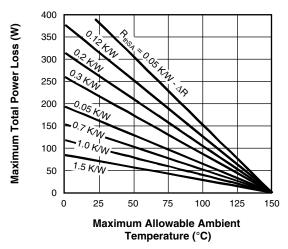


Fig. 3 - Total Power Loss Characteristics

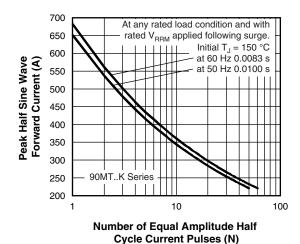


Fig. 4 - Maximum Non-Repetitive Surge Current

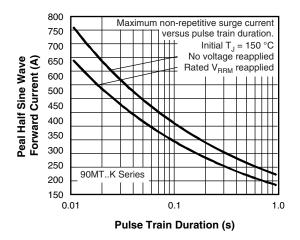


Fig. 5 - Maximum Non-Repetitive Surge Current

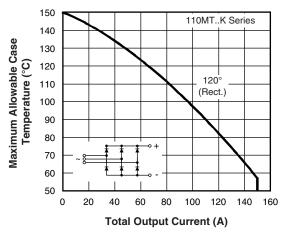


Fig. 6 - Current Ratings Characteristics

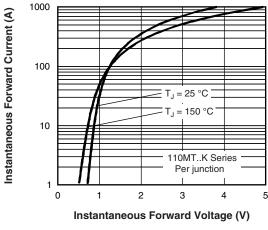
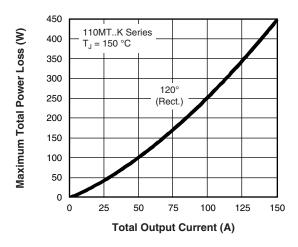



Fig. 7 - Forward Voltage Drop Characteristics

Maximum Total Power Loss (W) 400 350 300 250 200 150 100 50 K/W 0 0 25 50 75 100 125 150 **Maximum Allowable Ambient** Temperature (°C)

Fig. 8 - Total Power Loss Characteristics

450

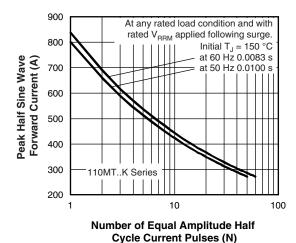


Fig. 9 - Maximum Non-Repetitive Surge Current

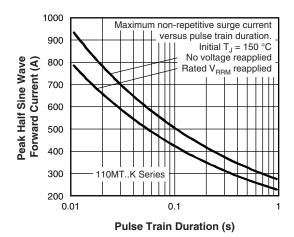


Fig. 10 - Maximum Non-Repetitive Surge Current

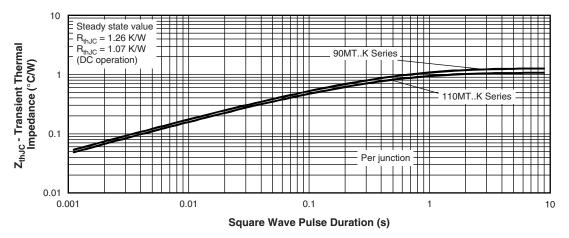
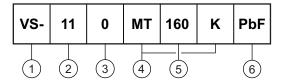
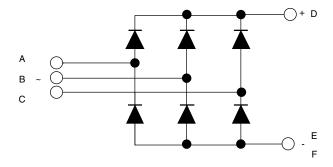



Fig. 11 - Thermal Impedance Z_{thJC} Characteristic

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Current rating code: 9 = 90 A (average)

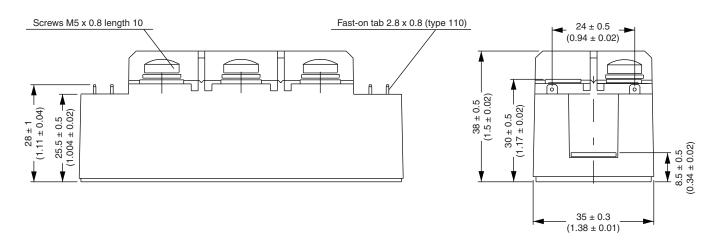

11 = 110 A (average)

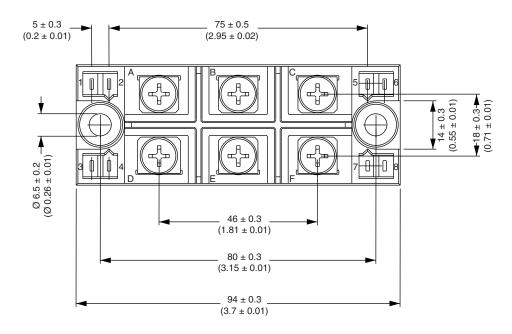
- 3 Three phase diodes bridge
- 4 Essential part number
- Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
- 6 PbF = Lead (Pb)-free

Note

• To order the optional hardware go to www.vishay.com/doc?95172

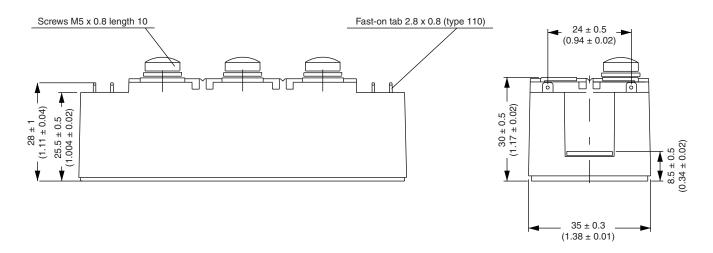
CIRCUIT CONFIGURATION

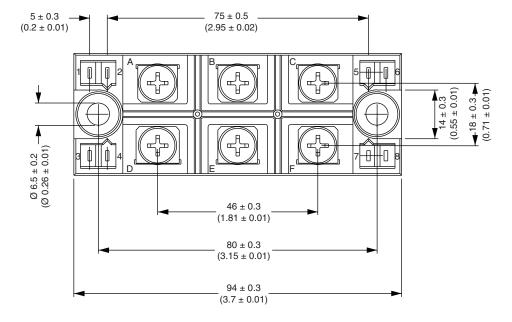



LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95004			

MTK (with and without optional barrier)

DIMENSIONS WITH OPTIONAL BARRIERS in millimeters (inches)




Document Number: 95004 Revision: 27-Aug-07

Vishay Semiconductors MTK (with and without optional barrier)

DIMENSIONS WITHOUT OPTIONAL BARRIERS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED