

Vishay Semiconductors

Hyperfast Rectifier, 8 A FRED Pt®

3L TO-220 FULL-PAK

PRODUCT SUMMARY					
Package	3L TO-220FP				
I _{F(AV)}	8 A				
V_{R}	600 V				
V _F at I _F	2.4 V				
t _{rr} (typ.)	See Recovery table				
T _J max.	175 °C				
Diode variation	Doubler				

FEATURES

- Hyperfast recovery time, extremely low Q_{rr}
- 175 °C maximum operating junction temperature RoHS
- High frequency PFC CCM operation

COMPLIANT **HALOGEN** FREE

- · Low leakage current
- Halogen-free according to IEC 61249-2-21 definition
- · Designed and qualified for industrial level

DESCRIPTION

VS-8STH06FP 600 V series are the state of the art tandem hyperfast recovery rectifiers: excellent switching performance and extremely low forward voltage drop trade off is overcome, boosting overall application performance. Specially designed for CCM PFC application, these devices show incomparable performance in every current intensive hard switching application.

Optimized reverse recovery stored charge enables downsizing of boosting switch and cooling system, increased operating frequency make possible use of smaller reactive elements. Cost effective PFC application is then possible with high efficiency over wide input voltage range and loading factor.

Plastic insulated package features easy mounting together with not insulated parts.

ABSOLUTE MAXIMUM RATINGS FOR BOTH DIODES					
PARAMETER SYMBOL 1		TEST CONDITIONS	MAX.	UNITS	
Repetitive peak reverse voltage	V_{RRM}		600	V	
DC forward current	I _F	50 % duty cycle, rect. waveforms, $T_C = 93$ °C	8	Α	
Non-repetitive peak surge current	I _{FSM}	T _C = 25 °C	100	A	
Operating junction and storage temperatures	T _J , T _{Stg}		- 55 to 175	°C	

ELECTRICAL SPECIFICATIONS FOR BOTH DIODES (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V _{BR} , V _R	I _R = 100 μA	600	-	-	
Forward voltage V _F	I _F = 8 A	-	2.1	2.4	V	
	V_{F}	I _F = 8 A, T _J = 125 °C	-	1.7	2	ļ
	I _F = 8 A, T _J = 150 °C	-	1.6	1.8		
		V _R = V _R rated	-	< 1	10	
Reverse leakage current I _R	I _R	$T_J = 125 ^{\circ}\text{C}, V_R = V_R \text{rated}$	-	7	80	μA
		T _J = 150 °C, V _R = V _R rated	-	27	100	
Junction capacitance	C _T	V _R = 600 V	-	12	-	pF

VS-8STH06FP

Vishay Semiconductors Hyperfast Rectifier, 8 A FRED Pt®

DYNAMIC RECOVERY CHARACTERISTICS FOR BOTH DIODES (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
	I _F = 1.0 A, dI _F /		- 50 A/μs, V _R = 30 V	-	-	25	
Reverse recovery time	Reverse recovery time t_{rr}	T _J = 25 °C		-	19	-	ns
		T _J = 125 °C		-	35	-	
Peak recovery current I _{RRM}	T _J = 25 °C	I _F = 8 A dI _F /dt = - 200 A/μs V _B = 390 V	-	2.8	-	А	
	T _J = 125 °C		$V_{\rm H} = 125 ^{\circ}{\rm C}$ $V_{\rm H} = 390 {\rm V}$	-	4.6	5.5	A
Reverse recovery charge Q _{rr}	0	T _J = 25 °C		=	26	-	nC
	T _J = 125 °C		=	84	-	110	

THERMAL - MECHANICAL SPECIFICATIONS FOR BOTH DIODES						
PARAMETER	SYMBOL	MBOL TEST CONDITIONS		TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		- 55	-	175	°C
Thermal resistance, junction to case	R _{thJC}		-	4.1	4.8	°C/W
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.2	-	- C/VV
Weight			-	2.0	-	g
vveignt			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking device		Case style 3L TO-220 FULL-PAK		8STH	106FP	

Hyperfast Rectifier, 8 A FRED Pt® Vishay Semiconductors

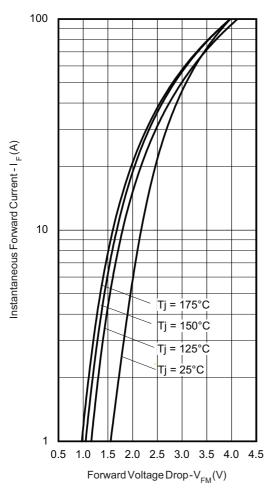


Fig. 1 - Maximum Forward Voltage Drop Characteristics

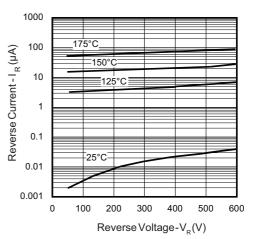


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

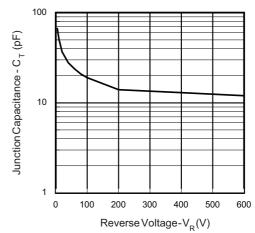


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

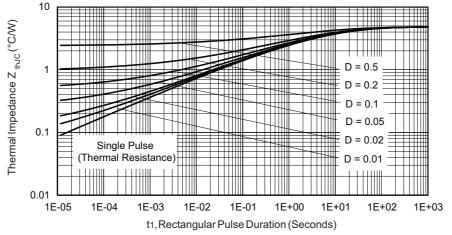


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

VS-8STH06FP

Vishay Semiconductors Hyperfast Rectifier, 8 A FRED Pt®

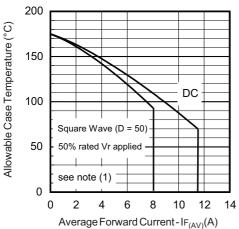


Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current

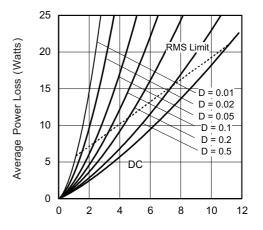


Fig. 6 - Forward Power Loss Characteristics

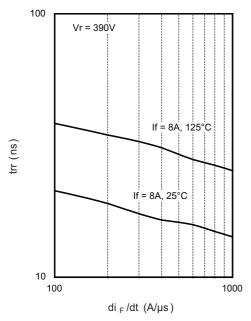


Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

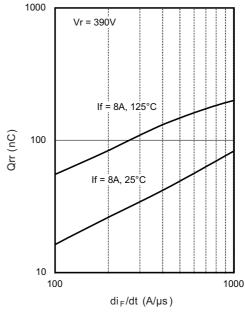
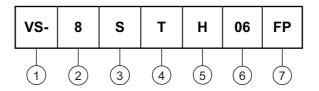


Fig. 8 - Typical Stored Charge vs. dl_F/dt

Note


 $\begin{array}{ll} \text{(1)} & \text{Formula used: } T_C = T_J - (\text{Pd} + \text{Pd}_{\text{REV}}) \times R_{\text{th}JC}; \\ \text{Pd} & = \text{Forward power loss} = I_{\text{F}(\text{AV})} \times V_{\text{FM}} \text{ at } (I_{\text{F}(\text{AV})}/D) \text{ (see fig. 6);} \\ \text{Pd}_{\text{REV}} & = \text{Inverse power loss} = V_{\text{R1}} \times I_{\text{R}} \text{ (1 - D); } I_{\text{R}} \text{ at } V_{\text{R1}} = 50 \text{ \% rated } V_{\text{R}} \\ \end{array}$

Hyperfast Rectifier, 8 A FRED Pt® Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product suffix

- Current rating (8 = 8 A)

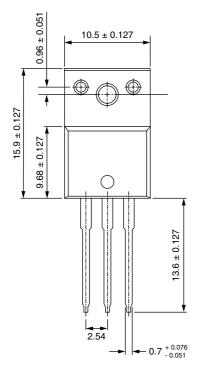
3 - S = Doubler

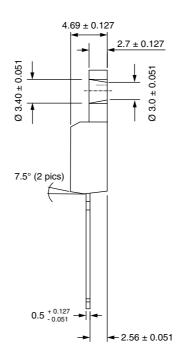
4 - T = TO-220

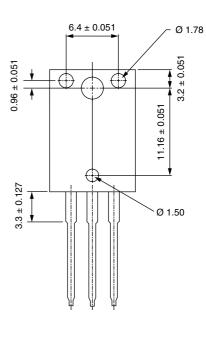
5 - H = Hyperfast recovery

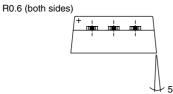
6 - Voltage rating (06 = 600 V)

7 - FP = TO-220 FULL-PAK


LINKS TO RELATED DOCUMENTS					
Dimensions <u>www.vishay.com/doc?95264</u>					
Part marking information	www.vishay.com/doc?95266				




Vishay High Power Products


TO-220 (3 PIN) FULL-PAK Tandem

DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Revision: 12-Mar-12 1 Document Number: 91000