Vishay Semiconductors

Fast Recovery Diodes (Stud Version), 40 A, 70 A, 85 A

DO-5 (DO-203AB)

PRIMARY CHARACTERISTICS					
I _{F(AV)}	40 A, 70 A, 85 A				
Package	DO-5 (DO-203AB)				
Circuit Configuration	Single				

FEATURES

- Short reverse recovery time
- · Low stored charge
- · Wide current range
- Excellent surge capabilities
- Stud cathode and stud anode versions
- Types up to 100 V_{RRM}
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC power supplies
- Inverters
- Converters
- Choppers
- Ultrasonic systems
- Freewheeling diodes

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER TEST CONDITIONS		40HFL	70HFL	85HFL	UNITS	
1		40	70	85	Α	
I _{F(AV)}	T _C maximum	85	85	85	°C	
1	50 Hz	400	700	1100	Α	
I _{FSM}	60 Hz	420	730	1151	A	
l ² t	50 Hz	800	2450	6050	A ² s	
1-1	60 Hz	730	2240	5523	A-S	
I ² √t		11 300	34 650	85 560	l ² √s	
V _{RRM}	Range	100 to 1000	100 to 1000	100 to 1000	V	
t _{rr}		See Recovery Characteristics table	See Recovery Characteristics table	See Recovery Characteristics table	ns	
T _J	Range	-40 to +125	-40 to +125	-40 to +125	°C	

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER (1)	V _{RRM} , MAXIMUM PEAK REPETITIVE REVERSE VOLTAGE	V _{RSM} , MAXIMUM PEAK NON-REPETITIVE REVERSE VOLTAGE	I _{FM} , MAXIMUM PEAK REVERSE CURRENT AT RATED V _{RRM} mA			
	T _J = - 40 °C TO 125 °C V	T _J = 25 °C TO 125 °C V	T _J = 25 °C	T _J = 125 °C		
VS-40HFL10S02, VS-40HFL10S05	100	150				
VS-40HFL20S02, VS-40HFL20S05	200	300				
VS-40HFL40S02, VS-40HFL40S05	400	500	0.1	10		
VS-40HFL60S02, VS-40HFL60S05	600	700	0.1	10		
VS-40HFL80S05	800	900				
VS-40HFL100S05	1000	1100				
VS-70HFL10S02, VS-70HFL10S05	100	150				
VS-70HFL20S02, VS-70HFL20S05	200	300				
VS-70HFL40S02, VS-70HFL40S05	400	500	0.1	15		
VS-70HFL60S02, VS-70HFL60S05	600	700	0.1	15		
VS-70HFL80S05	800	900				
VS-70HFL100S05	1000	1100				
VS-85HFL10S02, VS-85HFL10S05	100	150				
VS-85HFL20S02, VS-85HFL20S05	200	300				
VS-85HFL40S02, VS-85HFL40S05	400	500	0.1	20		
VS-85HFL60S02, VS-85HFL60S05	600	700	0.1	20		
VS-85HFL80S05	800	900				
VS-85HFL100S05	1000	1100				

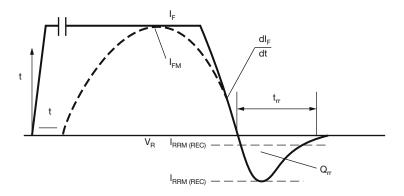
Note

⁽¹⁾ Types listed are cathode case, for anode case add "R" to code, i.e. 40HFLR20S02, 85HFLR100S05 etc.

FORWARD CONDUCTION											
PARAMETER	SYMBOL	OL TEST CONDITIONS			70HFL	85HFL	UNITS				
Maximum average forward current at maximum case temperature	I _{F(AV)}	180° conduction, half sine wave		180° conduction, half sine wave		180° conduction, half sine wave		40	70 75	85	A °C
Maximum RMS forward current	I _{F(RMS)}			63	110	134	Α				
Maximum peak repetitive forward current	I _{FRM}	Sinusoidal ha	alf wave, 30° conduction	220	380	470	Α				
		t = 10 ms	Sinusoidal half wave, 100	400	700	1100	А				
Maximum peak, one-cycle	I _{FSM}	t = 8.3 ms	% V_{RRM} reapplied, initial $T_J = T_J$ maximum	420	730	1151					
non-repetitive forward current		t = 10 ms	Sinusoidal half wave, no voltage reapplied, initial $T_J = T_J$ maximum	475	830	1308					
		t = 8.3 ms		500	870	1369					
	l ² t	t = 10 ms	100 % V_{RRM} reapplied, initial $T_J = T_J$ maximum	800	2450	6050	A ² s				
Maximum 12t fax fusing		t = 8.3 ms		730	2240	5523					
Maximum I ² t for fusing		t = 10 ms	No voltage reapplied,	1130	3460	8556					
		t = 8.3 ms	initial $T_J = T_J$ maximum	1030	3160	7810					
Maximum I ² √t for fusing ⁽¹⁾	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied		11 300	34 650	85 560	A²√s				
Maximum value of threshold voltage	V _{F(TO)}	T _J = 125 °C		1.081	1.085	1.128	V				
Maximum value of forward slope resistance	r _F			6.33	3.40	2.11	mΩ				
Maximum forward voltage drop	V_{FM}	$T_{J} = 25 ^{\circ}\text{C}, I_{FM} = \pi \times I_{F(AV)}$		1.95	1.85	1.75	V				

Note

(1) I^2t for time $t_x = I^2\sqrt{t} \times \sqrt{t_x}$


Vishay Semiconductors

RECOVERY CHARACTERISTICS										
PARAMETER SYMBO	CVMPOL	TEST CONDITIONS	40HFL		70HFL		85HFL		UNITS	
	STWIDOL	L TEST CONDITIONS		S05	S02	S05	S02	S05	UNITS	
Typical reverse recovery time t _{rr}	T_J = 25 °C, I_F = 1 A to V_R = 30 V, dI_F/dt = 100 A/ μ s	70	180	60	150	50	120	- ns		
	$T_J = 25$ °C, - $dI_F/dt = 25$ A/ μ s, $I_{FM} = \pi x$ rated $I_{F(AV)}$	200	500	200	500	200	500			
Typical reverse recovered charge	Q _{rr}	T_J = 25 °C, I_F = 1 A to V_R = 30 V, dI_F/dt = 100 A/ μ s	160	750	90	500	70	340	nC	
	∀ rr	$T_J = 25$ °C, - $dI_F/dt = 25$ A/ μ s, $I_{FM} = \pi x$ rated $I_{F(AV)}$	240	1300	240	1300	240	1300	110	

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	40HFL	70HFL	85HFL	UNITS
Junction operating temperature range	TJ			-40 to 125		°C
Storage temperature range	T _{Stg}		-40 to 150		30	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.60	0.60 0.36 0.30		14044
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.25		K/W	
		Not lubricated thread, tighting on nut (1)	3.4 (30)			
Maximum allowable mounting torque		Lubricated thread, tighting on nut (1)	2.3 (20)		N ⋅ m (lbf ⋅ in)	
(+ 0 %, - 10 %)		Not lubricated thread, tighting on hexagon (2)	4.2 (37)			
		Lubricated thread, tighting on hexagon (2)	3.2 (28)			
Approximate weight				25		
Approximate weight				0.88		
Case style		JEDEC®		DO-5 (DO	D-203AB)	

Notes

- (1) Recommended for pass-through holes
- (2) Recommended for holed threaded heatsinks

 $\mathbf{I}_{\mathrm{F}},\,\mathbf{I}_{\mathrm{FM}}$ - Peak forward current prior to commulation

-dl_E/dt - Rate of fail forward current

I_{RRM} (REC) - Peak reverse recovery current

 $\mathbf{t}_{\mathrm{rr}}\,$ - Reverse recovery time

Q_{rr} - Reverse recovered charge

Fig. 1 - Reverse Recovery Time Test Waveform

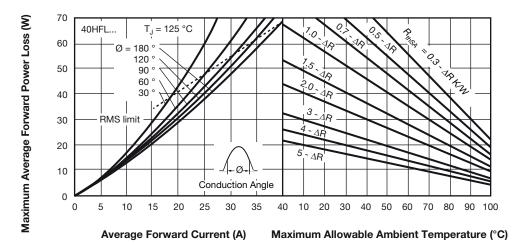


Fig. 2 - Current Rating Nomogram (Sinusoidal Waveforms), 40HFL Series

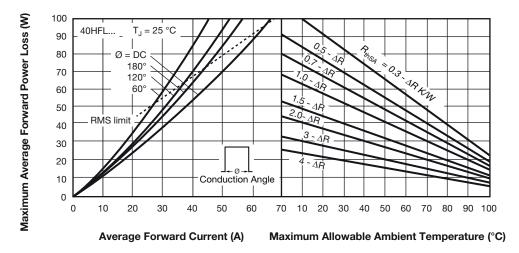
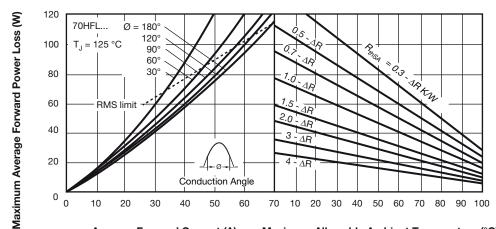



Fig. 3 - Current Rating Nomogram (Rectangular Waveforms), 40HFL Series

Average Forward Current (A) Maximum Allowable Ambient Temperature (°C) Fig. 4 - Current Rating Nomogram (Sinusoidal Waveforms), 70HFL Series

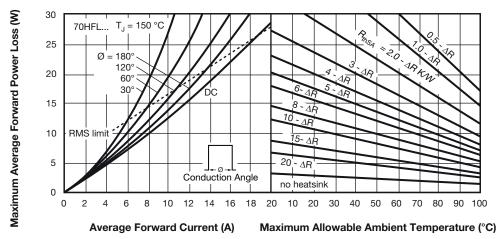
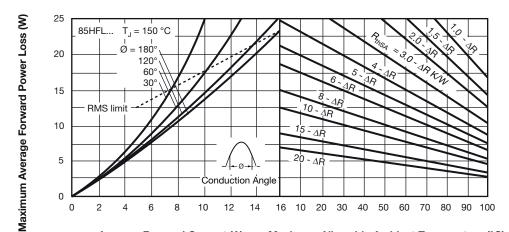



Fig. 5 - Current Rating Nomogram (Rectangular Waveforms), 70HFL Series

Average Forward Current (A) Maximum Allowable Ambient Temperature (°C) Fig. 6 - Current Rating Nomogram (Sinusoidal Waveforms), 85HFL Series

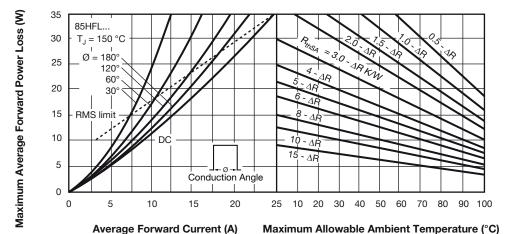


Fig. 7 - Current Rating Nomogram (Rectangular Waveforms), 85HFL Series

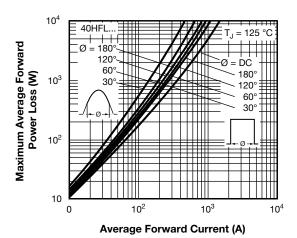


Fig. 8 - Maximum High Level Forward Power Loss vs. Average Forward Current, 40HFL Series

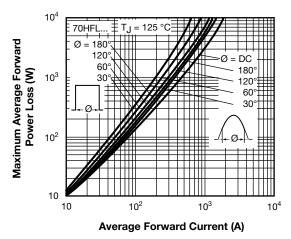


Fig. 9 - Maximum High Level Forward Power Loss vs. Average Forward Current, 70HFL Series

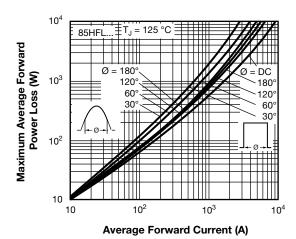


Fig. 10 - Maximum High Level Forward Power Loss vs. Average Forward Current, 85HFL Series

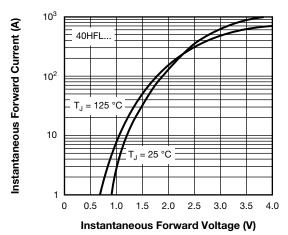


Fig. 11 - Maximum Forward Voltage vs. Forward Current, 40HFL Series

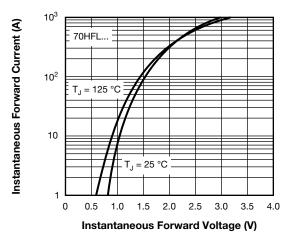


Fig. 12 - Maximum Forward Voltage vs. Forward Current, 70HFL Series

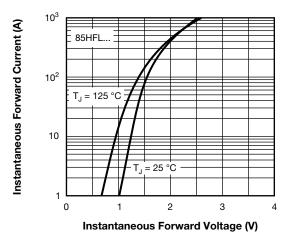


Fig. 13 - Maximum Forward Voltage vs. Forward Current, 85HFL Series

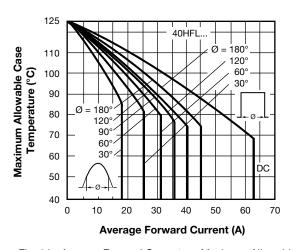


Fig. 14 - Average Forward Current vs. Maximum Allowable Case Temperature, 40HFL Series

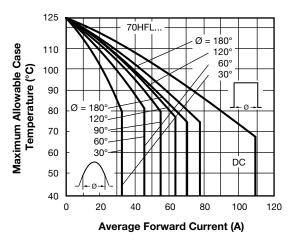


Fig. 15 - Average Forward Current vs. Maximum Allowable Case Temperature, 70HFL Series

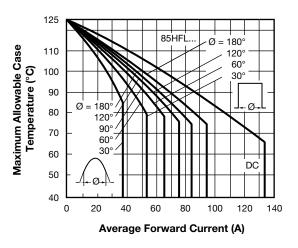


Fig. 16 - Average Forward Current vs. Maximum Allowable Case Temperature, 85HFL Series

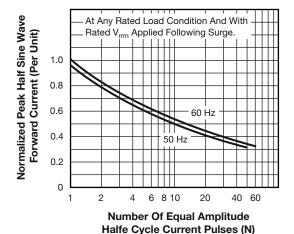


Fig. 17 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, All Series

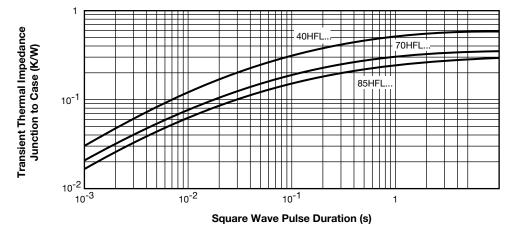


Fig. 18 - Maximum Transient Thermal Impedance, Junction to Case vs. Pulse Duration, All Series

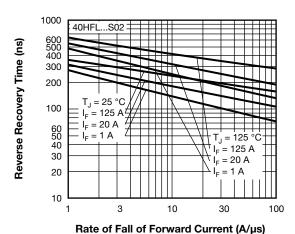


Fig. 19 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 40HFL...S02 Series

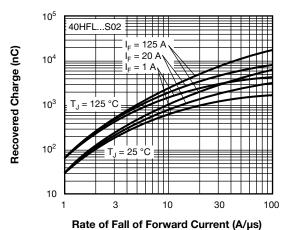


Fig. 20 - Typical Recovered Charge vs.
Rate of Fall of Forward Current, 40HFL...S02 Series

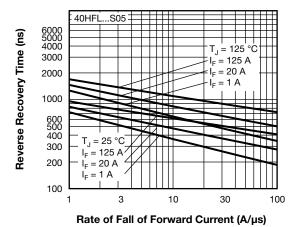
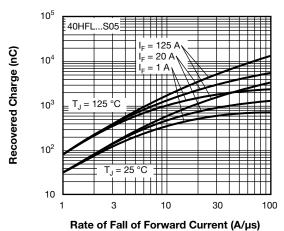
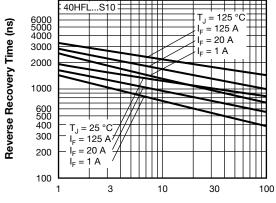


Fig. 21 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 40HFL...S05 Series

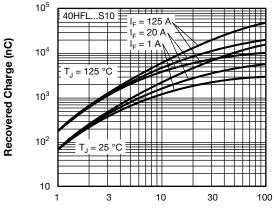

Fig. 00. Timing! Decreased Character

Fig. 22 - Typical Recovered Charge vs. Rate of Fall of Forward Current, 40HFL...S05 Series

Rate of Fall of Forward Current (A/µs)

Fig. 23 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 40HFL...Series

Rate of Fall of Forward Current (A/µs)

Fig. 24 - Typical Recovered Charge vs. Rate of Fall of Forward Current, 40HFL...Series

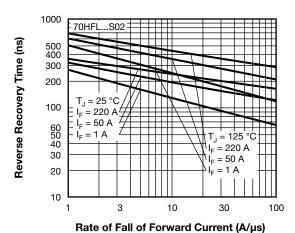


Fig. 25 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 70HFL...S02 Series

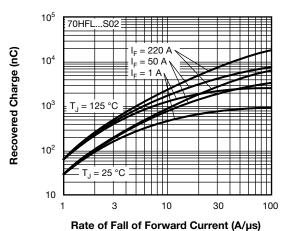


Fig. 26 - Typical Recovered Charge vs.
Rate of Fall of Forward Current, 70HFL...S02 Series

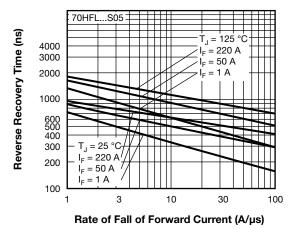
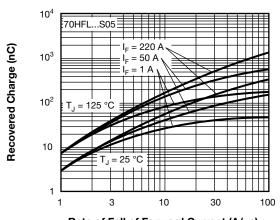
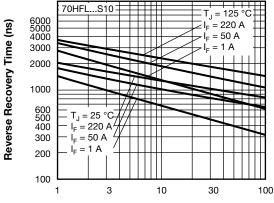




Fig. 27 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 70HFL...S05 Series

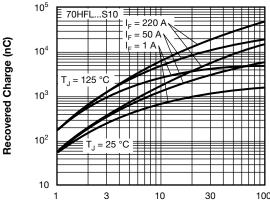
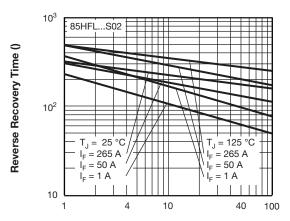

Rate of Fall of Forward Current (A/µs)

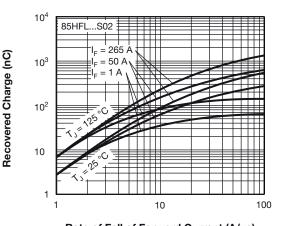
Fig. 28 - Typical Recovered Charge vs. Rate of Fall of Forward Current, 70HFL...S05 Series

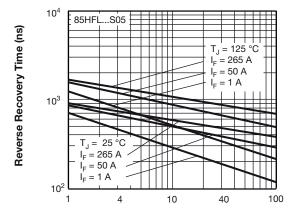
Rate of Fall of Forward Current (A/µs)

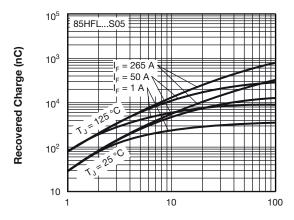
Fig. 29 - Typical Reverse Recovery Time vs. Rate of Fall of Forward Current, 70HFL... Series

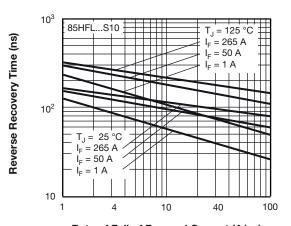


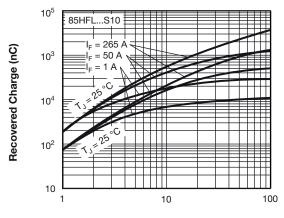
Rate of Fall of Forward Current (A/µs)


Fig. 30 - Typical Recovered Charge vs. Rate of Fall of Forward Current, 70HFL... Series



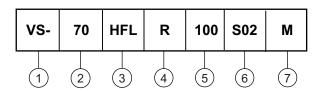

Rate of Fall of Forward Current (A/μs)
Fig. 31 - Typical Reverse Recovery Time vs.
Rate of Fall of Forward Current, 85HFL...S02 Series


Rate of Fall of Forward Current (A/μs)
Fig. 32 - Typical Recovered Charge vs.
Rate of Fall of Forward Current, 85HFL...S02 Series


Rate of Fall of Forward Current (A/μs)
Fig. 33 - Typical Reverse Recovery Time vs.
Rate of Fall of Forward Current, 85HFL...S05 Series

Rate of Fall of Forward Current (A/µs)
Fig. 34 - Typical Recovered Charge vs.
Rate of Fall of Forward Current, 85HFL...S05 Series

Rate of Fall of Forward Current (A/µs)
Fig. 35 - Typical Reverse Recovery Time vs.
Rate of Fall of Forward Current, 85HFL... Series



Rate of Fall of Forward Current (A/µs)
Fig. 36 - Typical Recovered Charge vs.
Rate of Fall of Forward Current, 85HFL... Series

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - • 70 = standard device (current rating: 40 = 40 A, 70 = 70 A, 85 = 85 A)

• 71 = not isolated lead

• 72, 87 = isolated lead with silicone sleeve

(red = reverse polarity)
(blue = normal polarity)

3 - HFL = fast recovery diode

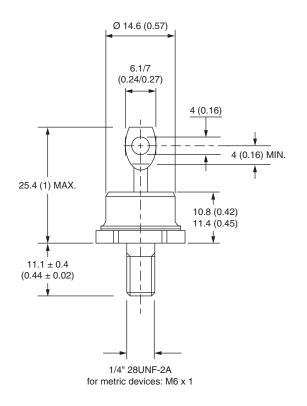
None = stud normal polarity (cathode to stud)

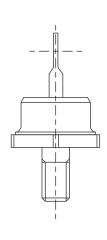
• R = stud reverse polarity (anode to stud)

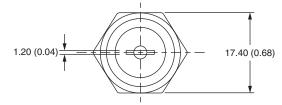
- Voltage code x 10 = V_{RRM} (see "Voltage Ratings" table)

6 - Refer to "Recovery Characteristics" table

7 - • None = stud base DO-5 (DO-203AB) 1/4" 28UNF-2A


• M = stud base DO-5 (DO-203AB) M6 x 1

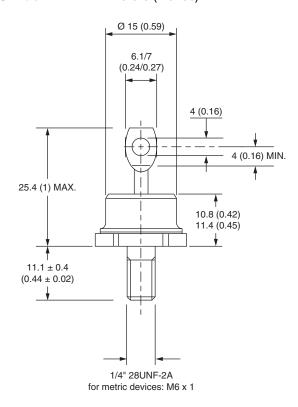

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95312			

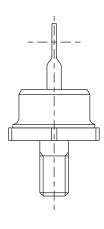


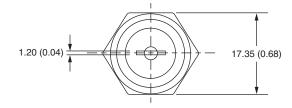
DO-203AB (DO-5) for 40HFL, 70HFL and 85HFL

DIMENSIONS FOR 40HFL/70HFL in millimeters (inches)

Document Number: 95312 Revision: 29-Sep-08


Outline Dimensions


Vishay Semiconductors


DO-203AB (DO-5) for 40HFL, 70HFL and 85HFL

DIMENSIONS FOR 85HFL in millimeters (inches)

Downloaded from Arrow.com.

Document Number: 95312
Revision: 29-Sep-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED