
Vishay Semiconductors

Phase Control Thyristors (Stud Version), 180 A

PRIMARY CHARACTERISTICS				
I _{T(AV)}	180 A			
V _{DRM} /V _{RRM}	400 V, 800 V, 1000 V			
V _{TM}	1.35 V			
I _{GT}	65 mA			
T _J	-40 °C to +125 °C			
Package	TO-93 (TO-209AB)			
Circuit configuration	Single SCR			

FEATURES

International standard case TO-93 (TO-209AB)

Designed and qualified for industrial level

ROHS COMPLIANT

 Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
1		180	А		
I _{T(AV)}	T _C	80	°C		
I _{T(RMS)}		285			
ı	50 Hz	3800	Α		
I _{TSM}	60 Hz	4000			
2 _t	50 Hz	72	kA ² s		
1-1	60 Hz	66			
V _{DRM} /V _{RRM}		400 to 1000	V		
tq	Typical	100	μs		
TJ		-40 to +125	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
PART NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I_{DRM}/I_{RRM} MAXIMUM AT T _J = T _J MAXIMUM mA				
1/0 10001/1	40	400	500					
VS-180RKI VS-181RKI	80	800	900	30				
10 1011111	100	1000	1100					

Vishay Semiconductors

PARAMETER	SYMBOL		TEST COND	DITIONS	VALUES	UNITS
Maximum average on-state current at case temperature	I _{T(AV)}	180° conduction, half sine wave		180	A	
·		DO -1 70 00			80	°C
Maximum RMS on-state current	I _{RMS}	DC at 79 °C	case temperatu	re	285	
		t = 10 ms	No voltage		3800	
Maximum peak, one-cycle		t = 8.3 ms	reapplied	Sinusoidal half wave,	4000	А
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		3500	
		t = 8.3 ms	reapplied		3660	
Maximum 12t for fucing	l ² t	t = 10 ms	No voltage	intial $T_J = T_J$ maximum	72	kA ² s
		t = 8.3 ms	reapplied		66	
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		61	
		t = 8.3 ms	reapplied		56	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to	10 ms, no volta	ige reapplied	720	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \mid_{T(AV)} < I < \pi \times I$	$T(AV)$, $T_J = T_J$ maximum	0.83	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$			V
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x I _{T(AV)} < I < π x I _{T(AV)}), T _J = T _J maximum			0.92	~ 0
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$			0.81	mΩ
Maximum on-state voltage	V_{TM}	$I_{pk} = 570 \text{ A}, T_J = T_J \text{ maximum}, t_p = 10 \text{ ms sine pulse}$		1.35	V	
Maximum holding current	I _H	T 05 °C 4	anada ayanlı 10	V registive lead	600	Λ
Typical latching current	ΙL	$\frac{1}{1}$ $\frac{1}$	T _J = 25 °C, anode supply 12 V resistive load		1000	- mA

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 Ω , $t_r \le 1~\mu s$ $T_J = T_J$ maximum, anode voltage $\le 80~\%~V_{DRM}$	300	A/μs	
Typical delay time	t _d	Gate current 1 A, $dl_g/dt = 1 A/\mu s$ $V_d = 0.67 \% V_{DRM}$, $T_J = 25 °C$	1.0	- 10	
Typical turn-off time	t _q	$I_{TM} = 50 \text{ A}, T_J = T_J \text{ maximum, dI/dt} = 10 \text{ A/}\mu\text{s},$ $V_R = 100 \text{ V}, \text{dV/dt} = 20 \text{ V/}\mu\text{s}$	100	μs	

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	T _J = T _J maximum linear to 80 % rated V _{DRM}	500	V/µs
Maximum peak reverse and off-state leakage current	I _{RRM,} I _{DRM}	$T_J = T_J$ maximum rated V_{DRM}/V_{RRM} applied	30	mA

Vishay Semiconductors

TRIGGERING							
DADAMETED	CVMPOL	_	TEST CONDITIONS		VALUES		
PARAMETER	SYMBOL	'	TEST CONDITIONS	TYP.	MAX.	UNITS	
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum,	t _p ≤ 5 ms	1	0	W	
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	f = 50 Hz, d% = 50	2	.0	VV	
Maximum peak positive gate current	I _{GM}			3	.0	Α	
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum,	$T_J = T_J$ maximum, $t_p \le 5$ ms		20	V	
Maximum peak negative gate voltage	- V _{GM}		·			٧	
	I _{GT}	T _J = - 40 °C		130	-		
DC gate current required to trigger		I _{GT}	T _J = 25 °C	Maximum required gate trigger/	65	150	mA
		T _J = 125 °C	current/voltage are the lowest	35	-		
		T _J = - 40 °C	value which will trigger all units	2.0	-		
DC gate voltage required to trigger	V_{GT}	T _J = 25 °C	12 V anode to cathode applied	1.2	2.5	V	
		T _J = 125 °C		0.9	-		
DC gate current not to trigger	I _{GD}		Maximum gate current/voltage not	10		mA	
DC gate voltage not to trigger	V _{GD}	$T_J = T_J$ maximum	$T_J = T_J \ maximum \\ \ \ \ \ \ \ \ \ \ \ \ \ $		25	V	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum operating junction temperature range	TJ		-40 to 125	°C	
Maximum storage temperature range	T _{Stg}		-40 to 150		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.15	IZ AAI	
Maximum thermal resistance, junction to ambient	R _{thCS}	Mounting surface, smooth, flat and greased	0.04	K/W	
Marathar faces 40.07		Non-lubricated threads	31 (275)	N · m	
Mounting force, ± 10 %		Lubricated threads	24.5 (210)	(lbf · in)	
Approximate weight			280	g	
Case style		See dimensions - link at the end of datasheet TO-93 (TO-209/		209AB)	

△R _{thJC} CONDUCTION				
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.050	0.032		
120°	0.063	0.059		
90°	0.080	0.082	$T_J = T_J$ maximum	K/W
60°	0.118	0.124		
30°	0.225	0.228		

Note

The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

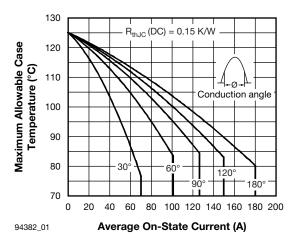


Fig. 1 - Current Ratings Characteristics

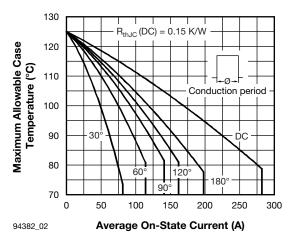
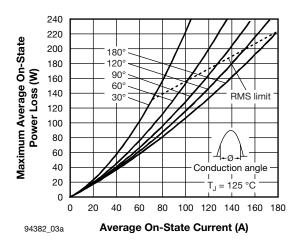



Fig. 2 - Current Ratings Characteristics

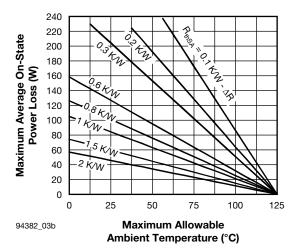
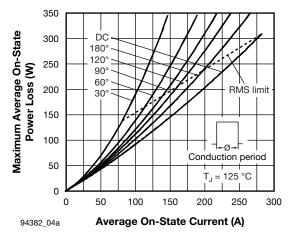



Fig. 3 - On-State Power Loss Characteristics

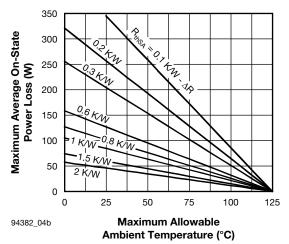


Fig. 4 - On-State Power Loss Characteristics

Vishay Semiconductors

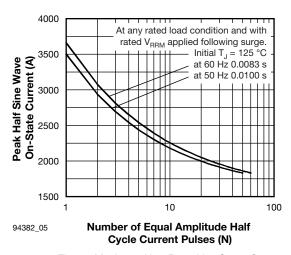


Fig. 5 - Maximum Non-Repetitive Surge Current

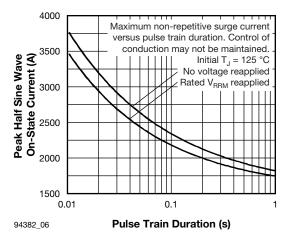


Fig. 6 - Maximum Non-Repetitive Surge Current

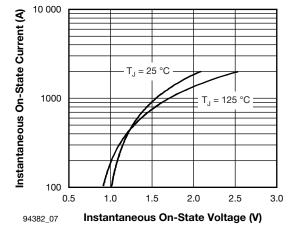


Fig. 7 - On-State Voltage Drop Characteristics

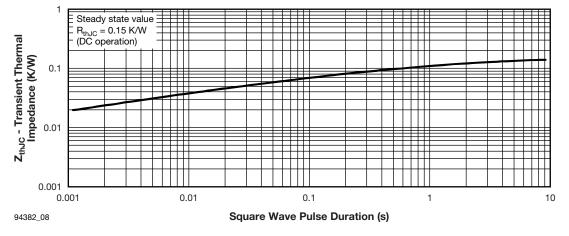


Fig. 8 - Thermal impedance Z_{thJC} Characteristics

Vishay Semiconductors

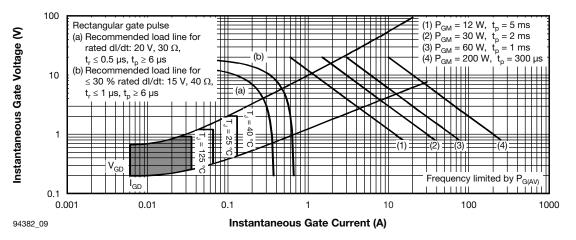
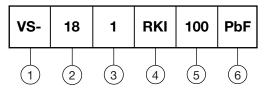
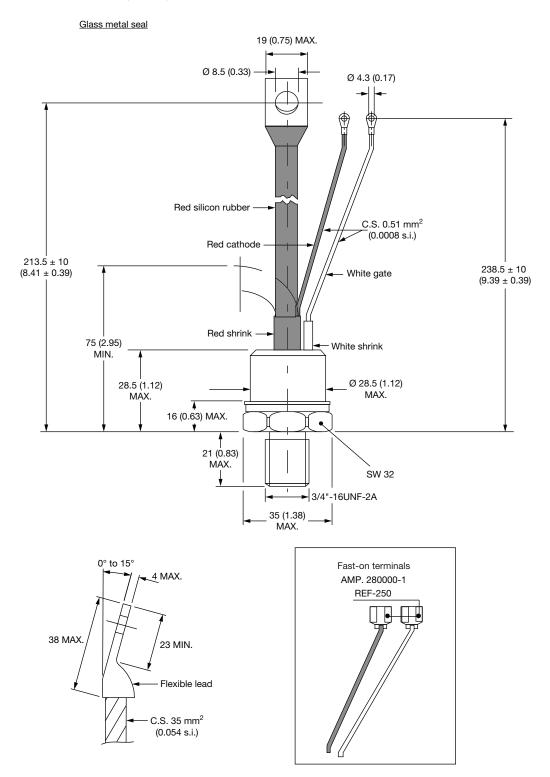



Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

- Vishay Semiconductors product
- 2 I_{T(AV)} rated average output current (rounded/10)
- 0 = eyelet terminals (gate and auxiliary cathode leads)
 - 1 = fast-on terminals (gate and auxiliary cathode leads)
- 4 Thyristor
- Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
- 6 • None = standard production
 - PbF = lead (Pb)-free


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95077		

Vishay Semiconductors

TO-209AB (TO-93)

DIMENSIONS in millimeters (inches)

Document Number: 95077 Revision: 19-May-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED