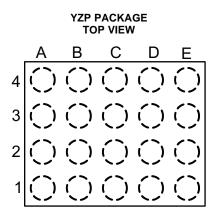


SCDS326-AUGUST 2011

DP3T SWITCH WITH IMPEDANCE DETECTION MICRO-USB SWITCH TO SUPPORT USB, UART, AUDIO, AND CHARGER DETECTION


Check for Samples: TSU5611

FEATURES

- Compatible Accessories
 - USB Data Cable
 - UART Cable
 - Charger (Dedicated Charger or Host/Hub Charger)
 - Stereo Headset With Mic
- Integrated LDOs for VREF and Mic Bias
- USB and UART Path Supports USB 2.0 High Speed
- Audio Path Provides Negative Rail Support and Click/Pop Reduction
- Supports Factory Test Mode
- 1.8-V Compatible I²C Interface
- ESD Performance Tested Per JESD 22
 - 1500-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- Cell Phones & Smart Phones
- Tablet PCs
- Digital Cameras & Camcorders
- GPS Navigation Systems
- Micro USB Interface with USB/UART

Pin Assignments

	Α	В	С	D	Е
4	MIC	ISET	UART_TX	USB_DM	USB_DP
3	R2.2K	INT	UART_RX	ID	DP
2	SDA	SCL	DSS	GND	DM
1	CLDO	V _{SUPPLY}	AUDIO_R	AUDIO_L	V _{BUS}

DESCRIPTION

The TSU5611 is designed to interface the cellular phone UART, USB, and audio chips with external peripherals via a micro-USB connector. The switch features impedance detection for identification of various accessories that are attached through DP and DM of the micro-USB port. When an accessory is plugged into the micro-USB port, the switch uses a detection mechanism to identify the accessory (see the State Machine for details). It will then switch to the appropriate channel—data, audio, or UART.

The TSU5611 has an I2C interface for communication with the cellular phone baseband or applications processor. An interrupt is generated when anything plugged into the micro-USB is detected. Another interrupt is generated when the device is unplugged.

ORDERING INFORMATION⁽¹⁾

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	WSCP-YZP (0.5-mm pitch)	Tape and Reel	TSU5611YZPR	A7

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

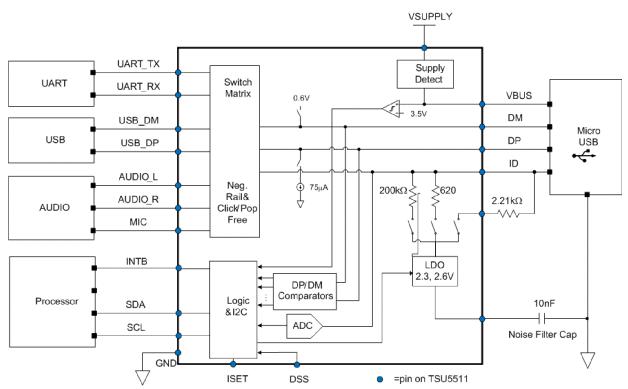
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TSU5611

SCDS326-AUGUST 2011

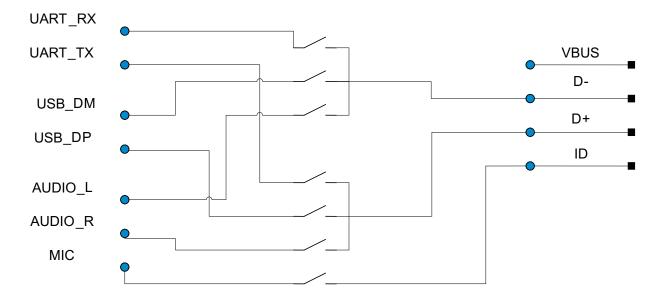
www.ti.com



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SUMMARY OF TYPICAL CHARACTERISTICS

	USB PATH	UART PATH	AUDIO PATH	MIC PATH
Number of switches	1	1	1	1
ON-state resistance (rON)	5 Ω	5 Ω	3 Ω	8.8 Ω
ON-state resistance match (ΔrON)	1 Ω	1 Ω	1.1 Ω	N/A
ON-state resistance flatness (rON(flat))	0.24 Ω	0.24 Ω	0.1 Ω	0.5 Ω
Turn-on/turn-off time (tON/tOFF)	1 ms	1 ms	1 ms	1 ms
Bandwidth (BW)	830 MHz	830 MHz	788 MHz	573 MHz
OFF isolation (OISO)	–22 dB	–22 dB	–75 dB	–100 dB
Crosstalk (XTALK)	–40 dB	–40 dB	–50 dB	–50 dB
Total harmonic distortion (THD)	N/A	N/A	0.05%	0.0017%
Leakage current (INO(OFF)/INC(OFF))	100 nA	100 nA	100 nA	100 nA
Package options		YZP package,	0.5-mm pitch	


APPLICATION BLOCK DIAGRAM

SCDS326-AUGUST 2011

SWITCH MATRIX BLOCK DIAGRAM

PIN FUNCTIONS

PIN		TYPE	DECODIDITION
NAME	NO.	TYPE	DESCRIPTION
AUDIO_L	D1	I/O	Stereo audio left channel
AUDIO_R	C1	I/O	Stereo audio right channel
CLDO	A1	0	Capacitor connection for LDO noise filtering
DM	E2	I/O	Common I/O port for USB, UART, Audio. Connected to USB receptacle.
DP	E3	I/O	Common I/O port for USB, UART, Audio. Connected to USB receptacle.
DSS	C2	I	Pulldown or pullup resistor connection to determine default switch
GND	D2	GND	Ground
ID	D3	I/O	Common I/O port for microphone, ID detection
INT	B3	0	Open-drain interrupt output. Connect an external pullup resistor.
ISET	B4	0	Output to charger for high-current charging mode. Open-drain output.
MIC	A4	I/O	Microphone signal
R2.2K	A3	I	2.21 k Ω connection for microphone bias
SCL	B2	I	I2C clock input. Connect an external pullup resistor.
SDA	A2	I/O	I2C data. Connect an external pullup resistor.
UART_RX	C3	I/O	UART receive data
UART_TX	C4	I/O	UART transmit data
USB_DM	D4	I/O	USB D- connected to host
USB_DP	E4	I/O	USB D+ connected to host
V _{BUS}	E1	Power	VBUS power supply from USB receptacle
V _{SUPPLY}	B1	Power	2.8-V to 4.4-V battery supply voltage

SCDS326-AUGUST 2011

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{BUS}	Supply voltage from USB connector		-0.5	28	V
V _{SUPPLY}	Supply voltage from battery		-0.5	6	v
V _{USBIO}		USB Switch	-0.5	V _{SUPPLY} +0.5	
VUARTIO	Switch I/O voltage renge	UART Switch	-0.5	V _{SUPPLY} +0.5	V
V _{AUDIO}	Switch I/O voltage range	Audio Switch	-1.5	V _{SUPPLY} +0.5	v
V _{MICIO}		Mic Switch	-0.5	V _{SUPPLY} +0.5	
V _{LOGICI} O	Logic input, output and I/O voltage ranges	DSS, SCL, SDA	-0.5	V _{SUPPLY} +0.5	V
I _{BUS}	Input current on V _{BUS} pin			100	mA
I _{SUPPLY}	Input current on V _{SUPPLY} pin			100	mA
I _{GND}	Continuous current through GND			100	mA
Ι _K	Analog port diode current		-50	50	mA
I _{SW-DC}	ON-state continuous switch current		-60	60	mA
I _{SWPEAK}	ON-state peak switch current		-150	150	mA
I _{IK}	Digital logic input clamp current	V _L < 0		-50	mA
I _{LOGIC_O}	Continuous current through logic outp	Continuous current through logic output			mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

THERMAL IMPEDANCE RATINGS

				UNIT
θ_{JA}	Package thermal impedance	YZP package	75.5	°C/W

RECOMMENDED OPERATING CONDITIONS

			MIN	I MAX	UNIT
V _{BUS}	Supply voltage from USB con	nector	4.3	5 6.7	V
V _{SUPPLY}	Supply voltage from battery		2.8	3 4.4	V
V _{USBIO}		USB Switch	() 3.6	V
V _{UARTIO}	Switch I/O Voltage Range	UART Switch	() 3.6	V
V _{AUDIO}	Switch I/O voltage Range	Audio Switch	-1.3	3 1.3	V
V _{MICIO}		Mic Switch	() 2.3	V
V _{LOGICI} O	Logic input, output and I/O voltage ranges	DSS, SCL, SDA	() V _{SUPPLY}	V
I _{SW-DC}	ON-state continuous switch c	ON-state continuous switch current			mA
I _{SW¬PEAK}	ON-state peak switch current	DN-state peak switch current			mA
T _A	Ambient Temperature	mbient Temperature) 85	°C

ELECTRICAL CHARACTERISTICS⁽¹⁾

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		$V_{SUPPLY} = 4.2 V, V_{BUS} = 0 V, SEMREN = 0, All switches open$		14	18		
IVSUPPLY	VSUPPLY supply current	$V_{SUPPLY} = 4.2 \text{ V}, V_{BUS} = 0 \text{ V}, \text{ SEMREN} = 1, \text{ All switches open}$		14	18	μA	
VSUPPLY		V_{SUPPLY} = 4.2 V, V_{BUS} = 0 V, SEMREN = 1, USB or Audio switches closed		60	70	μ, τ	
		$V_{BUS} = 5.0 \text{ V}, V_{SUPPLY} = 3.6 \text{ V}, \text{SEMREN=0}, \text{All switches open}$		45	60		
I _{VBUS}	VBUS supply current	$V_{BUS} = 5.0 \text{ V}, V_{SUPPLY} = 3.6 \text{ V}, \text{SEMREN=1}, \text{All switches open}$		45	60	μA	
·VB02		V_{BUS} = 5.0 V, V_{SUPPLY} = 3.6 V, SEMREN=1, USB or Audio switches closed		80	98	μ, τ	
V _{VBUSDET}	VBUS Detect threshold	V_{BUS} = 2.5 V to 5 V with DP-DM short, Read the INT	3.0	3.5	4.0	V	
	Microphone removal	LDO Voltage = 2.6 V, Ramp ID down, Read the INT			2.20	V	
V _{MRCOMP}	threshold	LDO Voltage = 2.3 V, Ramp ID down, Read the INT			1.95	v	
V _{SECOMP}	SEND/END threshold	LDO Voltage = 2.6 V or 2.3 V, Ramp ID up from 0 V, Read the INT		0.15		V	
R _{ID1}	ID resistance1	ID_200 = 1, V _{SUPPLY} = 3.6 V	160	200	240	kΩ	
R _{ID2}	ID Resistance2	ID_620 = 1, V _{SUPPLY} = 3.6 V		620	850	Ω	

(1) V_O is equal to the asserted voltage on DP_CON and DM_CON pins. V_I is equal to the asserted voltage on DP_HT and DM_HT pins. I_O is equal to the current on the DP_CON and DM_CON pins. I_I is equal to the current on the DP_HT and DM_HT pins.

LDO ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{BUS}	Input voltogo		4.35	5	6.7	V
V _{SUPPLY}	Input voltage		2.8		4.4	v
V _{OUT-26}	Output voltage	$I_{O} = 0 \text{ mA}$	2.54	2.6	2.65	V
I _{O-26}	Max output current	Measured at R2.2K pin			10	μA
V _{OUT-23}	Output voltage	I _O = 0mA	2.2	2.3	2.35	V
I _{O-23}	Max output current	Measured at R2.2K pin			500	μA
PSR ₂₁₇	Device events rejection	V_{OUT} = 2.3 V, V_{SUPPLY} = 3.2 V, I_O = 150 μ A to 450 μ A, f = 217 Hz		-60		dB
PSR _{1k}	 Power supply rejection 	V_{OUT} = 2.3V, V_{SUPPLY} = 3.2 V, I_O = 150 μ A to 450 μ A, f = 1kHz		-60		dB
e _{n-OUT}	Integrated output noise	V_{OUT} = 2.3 V, V_{SUPPLY} = 3.2 V, I_O = 150 µA to 450 µA, f = 20 Hz to 20 kHz (A-weighted)		3	10	μV
T _{r 1}	Rise time1	$I_0 = 20 \ \mu A, R2.2K = 0 \ V \text{ to } 2.6 \ V$		178		μs
t _{r 2}	Rise time2	$I_0 = 20 \ \mu$ A, R2.2K = 2.3 V to 2.6 V		260		μs
t _f	Fall time	I _O = 0 μA, R2.2K = 2.6 V to 2.3 V		2.5		ms

TEXAS INSTRUMENTS

www.ti.com

SCDS326-AUGUST 2011

USB SWITCH ELECTRICAL CHARACTERISTICS FOR 2.8 V TO 4.4 V SUPPLY⁽¹⁾

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
V _{USBIO}	Analog signal range			0		3.6	V
r _{ON}	ON-state resistance	$V_{\rm I}$ = 0 V to 3.6 V, $I_{\rm O}$ = –2 mA, $V_{\rm SUPPLY}$ = 3.6 V	Switch ON		4.5	10	Ω
∆r _{ON}	ON-state resistance match between channels	$V_{I} = 0.4 \text{ V}, I_{O} = -2 \text{ mA}, V_{SUPPLY} = 3.6 \text{ V}$	Switch ON		1	1.5	Ω
r _{ON(flat)}	ON-state resistance flatness	$V_{I} = 0 \text{ V to } 3.6 \text{ V}, I_{O} = -2 \text{ mA}, V_{SUPPLY} = 3.6 \text{ V}$	Switch ON		0.5	1.5	Ω
I _{IO(OFF)}	V_{I} or V_{O} OFF leakage current	$ \begin{array}{l} {\sf V}_{\sf I} = 0.3 \; {\sf V}, \; {\sf V}_{\sf O} = 2.5 \; {\sf V} \; {\rm or} \; {\sf V}_{\sf I} = 2.5 \; {\sf V}, \\ {\sf V}_{\sf O} = 0.3 \; {\sf V}, \; {\sf V}_{\sf SUPPLY} = 4.4 \; {\sf V}, \end{array} $	Switch OFF		25	360	nA
I _{IO(ON)}	V _O ON leakage current	$V_{I} = OPEN, V_{O} = 0.3 V \text{ or } 2.5 V,$ $V_{SUPPLY} = 4.4 V$	Switch ON		10	360	nA
DYNAM	IC						
t _{ON}	Turn-on time	V_{I} or V_{O} = VSUPPLY, R_{L} = 50 Ω , C_{L} = 35 pF	From receipt of I ² C ACK bit		100		μs
t _{OFF}	Turn-OFF time	$V_{\text{I}} \text{ or } V_{\text{O}} = \text{VSUPPLY}, \text{ R}_{\text{L}} = 50 \ \Omega, \text{ C}_{\text{L}} = 35 \ \text{pF}$	From receipt of I ² C ACK bit		20		μs
C _{I(OFF)}	V _I OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		6.5		pF
C _{O(OFF)}	V _O OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		3		pF
C _{I(ON)} , C _{O(ON)}	V _I , V _O ON capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz,	Switch ON		9		pF
BW	Bandwidth	$R_L = 50 \Omega$	Switch ON		920		MHz
O _{ISO}	OFF Isolation	$f = 240 \text{ MHz}, R_L = 50 \Omega$	Switch OFF		-29		dB
X _{TALK}	Crosstalk	f = 240 MHz, R _L = 50 Ω	Switch ON		-40		dB

(1) V₁ = asserted voltage on DP & DM pin. V₀ = Asserted voltage on USB_DP & USB_DM pin. I₀ = current on the USB_DP or USB_DM pin

www.ti.com

UART SWITCH ELECTRICAL CHARACTERISTICS FOR 2.8 V TO 4.4 V SUPPLY⁽¹⁾

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
ANALO	G SWITCH						
V _{USBIO}	Analog signal range			0		3.6	V
r _{ON}	ON-state resistance	$V_{I} = 0 V$ to 3.6 V, $I_{O} = -2 \text{ mA}$, $V_{SUPPLY} = 3.6 V$	Switch ON		4.5	10	Ω
∆r _{ON}	ON-state resistance match between channels	$V_{I} = 0.4 \text{ V}, I_{O} = -2 \text{ mA}, V_{SUPPLY} = 3.6 \text{ V}$	Switch ON		1	1.5	Ω
r _{ON(flat)}	ON-state resistance flatness	$V_{I} = 0 V$ to 3.6 V, $I_{O} = -2 \text{ mA}$, $V_{SUPPLY} = 3.6 V$	Switch ON		0.5	1.5	Ω
I _{IO(OFF)}	V_{I} or V_{O} OFF leakage current		Switch OFF		25	360	nA
I _{IO(ON)}	V _O ON leakage current	$V_I = OPEN, V_O = 0.3 V \text{ or } 2.5 V,$ $V_{SUPPLY} = 4.4 V$	Switch ON		10	360	nA
DYNAM	IC	·					
t _{ON}	Turn-on time	V_{I} or V_{O} = VSUPPLY, R_{L} = 50 Ω , C_{L} = 35 pF	From receipt of I ² C ACK bit		100		μs
t _{OFF}	Turn-OFF time	$V_{I} \text{ or } V_{O}$ = VSUPPLY, R_{L} = 50 Ω, C_{L} = 35 pF	From receipt of I ² C ACK bit		20		μs
C _{I(OFF)}	VI OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		6.5		pF
C _{O(OFF)}	V _O OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		3		pF
C _{I(ON)} , C _{O(ON)}	V _I , V _O ON capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch ON		9		pF
BW	Bandwidth	$R_L = 50 \Omega$	Switch ON		920		MHz
O _{ISO}	OFF Isolation	$f = 240 \text{ MHz}, R_L = 50 \Omega$	Switch OFF		-29		dB
X _{TALK}	Crosstalk	f = 240 MHz, R_L = 50 Ω	Switch ON		-40		dB

(1) V_I = asserted voltage on DP & DM pin. V_O = Asserted voltage on UART_RX & UART_TX pin. I_O = current on the UART_RX and UART_TX pin

TEXAS INSTRUMENTS

www.ti.com

SCDS326-AUGUST 2011

AUDIO SWITCH ELECTRICAL CHARACTERISTICS FOR 2.8 V TO 4.4 V SUPPLY⁽¹⁾

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
ANALOG	SWITCH						
V _{AUDIO} IO	Analog signal range			-1.3		1.3	V
r _{ON}	ON-state resistance	V_{I} = +1.3 V, -1.3 V, I _O = -20 mA, V_{SUPPLY} = 2.8 V	AUDIO_L or AUDIO_R DM or DP		3.8	6	Ω
Δr _{ON}	ON-state resistance match between channels	V _I = 1.3 V, I _O = -20 mA, V _{SUPPLY} = 2.8 V	AUDIO_L or AUDIO_R DM or DP		1	1.3	Ω
r _{ON(flat)}	ON-state resistance flatness	V_{I} = +1.3 V, -1.3 V, I _O = -20 mA, V_{SUPPLY} = 2.8 V	AUDIO_L or AUDIO_R DM or DP		0.1	0.25	Ω
I _{IO(OFF)}	$V_{\rm I} \mbox{ or } V_{\rm O} \mbox{ OFF}$ leakage current	$V_{I} = 0 V, V_{O} = 1.3 V \text{ or } V_{I} = 1.3 V, V_{O} = -1.3 V, V_{SUPPLY} = 4.4 V$	Switch OFF		25	400	nA
I _{IO(ON)}	V _O ON leakage current	$V_I = OPEN, V_O = -1.3 V \text{ or } 1.3 V,$ $V_{SUPPLY} = 4.4 V$	Switch ON		25	400	nA
DYNAMIC							
t _{ON}	Turn-on time	V_{I} or V_{O} = VSUPPLY, R_{L} = 50 Ω , C_{L} = 35 pF	From receipt of I ² C ACK bit		100		μs
t _{OFF}	Turn-OFF time	$\label{eq:VI} \begin{array}{l} V_{I} \text{ or } V_{O} = VSUPPLY, \ R_{L} = 50 \ \Omega, \\ C_{L} = 35 \ pF \end{array}$	From receipt of I ² C ACK bit		20		μs
C _{I(OFF)}	V _I OFF capacitance	DC bias = 0 V or 2.6 V, f = 10 MHz	Switch OFF		4.5		pF
C _{O(OFF)}	V _O OFF capacitance	DC bias = 0 V or 2.6 V, f = 10 MHz	Switch OFF		6.5		pF
C _{I(ON)} , C _{O(ON)}	V _I , V _O ON capacitance	DC bias = 0 V or 2.6 V, f = 10 MHz	Switch ON		9		pF
BW	Bandwidth	$R_L = 50 \Omega$	Switch ON		900		MHz
O _{ISO}	OFF Isolation	$f = 20 \text{ MHz}, R_L = 50 \Omega$	Switch OFF		-100		dB
X _{TALK}	Crosstalk	$f = 20 \text{ MHz}, R_L = 50 \Omega$	Switch ON		-100		dB
THD	Total harmonic distortion	$R_L = 16 \Omega, C_L = 20 \text{ pF},$ f = 20 Hz~20 kHz, 2.6 Vpp			0.03	0.04	%

(1) V_O = asserted voltage on DP & DM pin. V_I = Asserted voltage on AUDIO_R & AUDIO_L pin. I_O = current on the DP and DM pin. I_I = current on the AUDIO_R & AUDIO_L pin.

www.ti.com

MIC SWITCH ELECTRICAL CHARACTERISTICS FOR 2.8 V TO 4.4 V SUPPLY⁽¹⁾

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
ANALO	G SWITCH						
V _{MICIO}	Analog signal range	g signal range					V
r _{ON}	ON-state resistance	V_{I} = 2.3 V, I_{O} =– 20 mA, V_{SUPPLY} = 2.8 V	MIC ID		9	12	Ω
∆r _{ON}	ON-state resistance match between channels	$V_{I} = 2.3 \text{ V}, I_{O} = -2 \text{ mA}, V_{SUPPLY} = 2.8 \text{ V}$	MIC ID		0.5	1	Ω
r _{ON(flat)}	ON-state resistance flatness	V_{I} = 2.3 V, I_{O} = -2 mA, V_{SUPPLY} = 2.8 V			0.1	0.25	Ω
I _{IO(OFF)}	$V_{\rm I} \mbox{ or } V_{\rm O} \mbox{ OFF}$ leakage current	V_{I} = 0.3 V, V_{O} = 2.3 V or V_{I} = 2.3 V, V_{O} = 0.3 V,V $_{SUPPLY}$ = 4.4 V	Switch OFF		5	200	nA
I _{IO(ON)}	V _O ON leakage current	$V_I = OPEN, V_O = 0.3 V \text{ or } 1.8V,$ $V_{SUPPLY} = 4.4 V$	Switch ON		5	200	nA
DYNAM	IC						
t _{ON}	Turn-on time	V_{I} or V_{O} = VSUPPLY, R_{L} = 50 Ω , C_{L} = 35 pF	From receipt of I ² C ACK bit		100		μs
t _{OFF}	Turn-OFF time	V_{I} or V_{O} = VSUPPLY, R_{L} = 50 Ω , C_{L} = 35 pF	From receipt of I ² C ACK bit		20		μs
C _{I(OFF)}	V _I OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		6		pF
C _{O(OFF)}	V _O OFF capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch OFF		6		pF
C _{I(ON)} , C _{O(ON)}	V_{I} , V_{O} ON capacitance	DC bias = 0 V or 3.6 V, f = 10 MHz	Switch ON		12		pF
BW	Bandwidth	$R_L = 50 \Omega$	Switch ON		573		MHz
O _{ISO}	OFF Isolation	$f = 20 \text{ kHz}, R_L = 50 \Omega$	Switch OFF		-55		dB
X _{TALK}	Crosstalk	f = 20 kHz, to audio input, R_L = 50 Ω	Switch ON		-100		dB
THD	Total harmonic distortion	R _L = 600 Ω, C _L = 20 pF, f = 20 Hz~20 kHz, 100 mVpp			0.03	0.04	%

(1) V_I = asserted voltage on ID pin. V_O = Asserted voltage on MIC pin. I_I = current on the ID pin. I_O = current on the MIC pin.

SCDS326-AUGUST 2011

DIGITAL SIGNALS (DSS)

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITION	MIN	MAX	UNIT
V _{IH}	Input Logic High		V _{SUPPLY} x 0.7	V _{SUPPLY}	V
V _{IL}	Input Logic Low		0	V _{SUPPLY} x 0.3	V
I _{INLEAK}	Input Leakage current	$V_I = 0 V$ to V_{SUPPLY}		16	μA

DIGITAL SIGNALS (SCL, SDA)

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITION	MIN	MAX	UNIT
V _{IH}	Input Logic High		1.4		V
V IL	Input Logic Low			0.4	V
I _{INLEAK}	Input Leakage current	$V_I = 0 V \text{ to } V_{SUPPLY}$	-1	1	μA

DIGITAL SIGNALS (INT, ISET)

 $T_A = -40^{\circ}C$ to 85°C, (unless otherwise noted), Typical values are at $V_{SUPPLY} = 3.6V$, $V_{BUS} = 5.0V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITION	MIN	MAX	UNIT
V _{ODOL}	Open drain low	I _{ODL} = 4 mA		0.4	V

APPLICATION INFORMATION

Default Switch Position

The DSS (Default Switch State) pin determines if the USB switches or UART switches are selected at startup. An internal pull-down resistor is present on the DSS pin, which selects the USB switches as the default at start-up. If the user wants to default to the UART switches at startup, the DSS pin must be pulled high to VSUPPLY. If the user wants to disable the switches, this must be done using an I²C write to the SW Control register after initialization is complete.

DSS PIN	SWITCH STATES
Open / PD	USB
PU	UART

ID Impedance Detection

The TSU5611 features impedance detection for identification of various accessories that might be attached to the microUSB port. Each accessory is identified by a unique resistor value connected between the ID pin and Ground. During impedance detection, the device auto-calibrates an internal current source using an external 2.21k±1% resistor. The current source is then applied to the ID pin while an internal voltage reference is incremented till it matches the ID pin voltage. This produces a 4-bit ADC value that corresponds to the ID resistance found.

D Resistor	Tolerance	ID No.	ADC Value	A
0	1%	0	0000	
24k	1%	1	0001	
56k 1	% or 20%	2	0010	(↓)
100k	1%	3	0011	
130k	1%	4	0100	R2.2k Pin
180k	1%	5	0101	
240k	1%	6	0110	≥2.21k ±
330k	1%	7	0111	1
430k	1%	8	1000	
620k	1%	9	1001	~
910k	1%	10	1010	ID Resis
Open	N/A	11	1011	<

Figure 1. Impedance Detection Circuitry

Supply Detection

The TSU5611 can be powered by either V_{SUPPLY} or V_{BUS}. The TSU5611 will select V_{BUS} as the power source when present and otherwise will select V_{SUPPLY} as the power source when V_{SUPPLY} is present and V_{BUS} is not.

Table 1. Supply Selection and Shut Down Sequence										
	V _{SUPPLY}	HANDSET STATUS	MUIC STATUS	POWER SUPPLY						
Normal Case	Yes	ON	Active	V _{SUPPLY}						
Normal Case	Yes	OFF(S/W Off)	Shut down							
Sudden Power Loss	Yes	ON	Active	V _{SUPPLY}						
Sudden Power Loss	No	OFF	Shut down							
No Dotton/	No	OFF	Shut down							
No Battery	No	ON(V _{BUS})	Active	V _{BUS}						
USB Charging	Yes(Charging)	ON(VBUS)	Active	V _{BUS}						

SCDS326-AUGUST 2011

Standard I2C Interface Details

The bidirectional I^2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by the master sending a START condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 2). After the start condition, the device address byte is sent, MSB first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse.

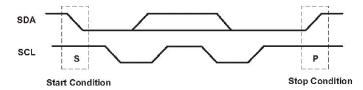


Figure 2. Definition of Start and Stop Conditions

The data byte follows the address ACK. The R/W bit is kept low for transfer from the master to the slave. The data byte is followed by an ACK sent from this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (tpv) after the low-to-high transition of SCL, during the clock cycle for the ACK.

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (START or STOP) (see Figure 3).

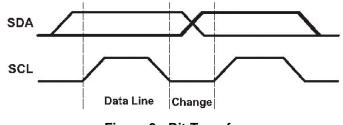


Figure 3. Bit Transfer

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 2).

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

A slave receiver that is addressed must generate an ACK after the reception of each byte. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 4). Setup and hold times must be taken into account.

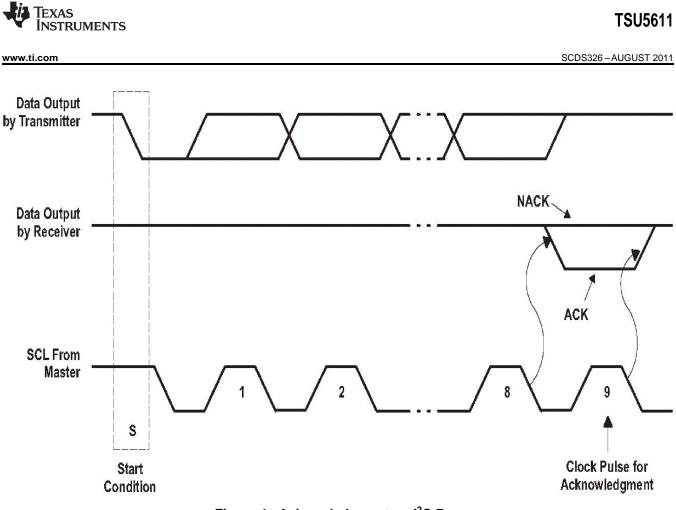
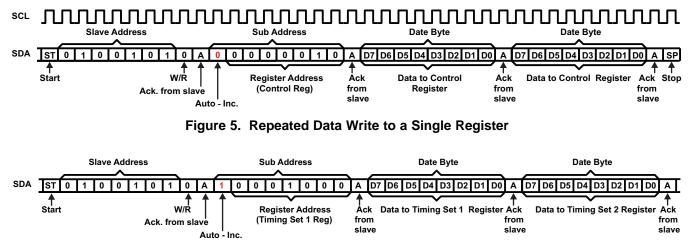



Figure 4. Acknowledgment on I²C Bus

Writes

Data is transmitted to the TSU5611 by sending the device slave address and setting the LSB to a logic 0 (see Figure 5 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. The next byte is written to the specified register on the rising edge of the ACK clock pulse.

Reads

The bus master first must send the TSU5611 slave address with the LSB set to logic 0. The command byte is sent after the address and determines which register is accessed. After a restart, the device slave address is sent again but, this time, the LSB is set to logic 1. Data from the register defined by the command byte then is sent by the TSU5611. Data is clocked into the SDA output shift register on the rising edge of the ACK clock pulse. See Figure 7.

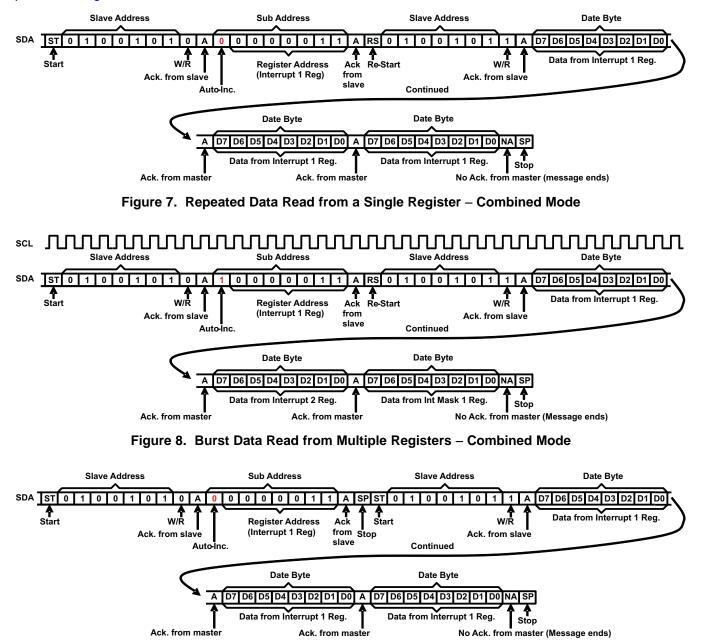


Figure 9. Repeated Data Read from a Single Register - Split Mode

SCDS326-AUGUST 2011

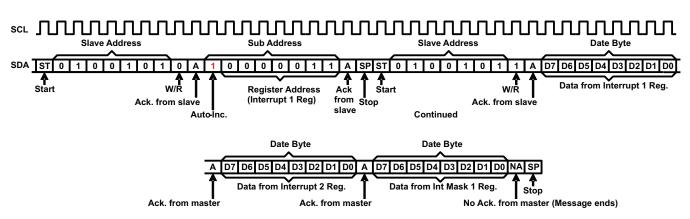


Figure 10. Burst Data Read from Multiple Registers – Split Mode

Notes (Applicable to Figure 5–Figure 10):

- SDA is pulled low on Ack. from slave or Ack. from master.
- Register writes always require sub-address write before first data byte.
- Repeated data writes to a single register continue indefinitely until Stop or Re-Start.
- · Repeated data reads from a single register continue indefinitely until No Ack. from master.
- Burst data writes start at the specified register address, then advance to the next register address, even to the read-only registers. For these registers, data write appears to occur, though no data are changed by the writes. After register 14h is written, writing resumes to register 01h and continues until Stop or Re-Start.
- Burst data reads start at the specified register address, then advance to the next register address. Once register 14h is read, reading resumes from register 01h and continues until No Ack. from master.

TEXAS INSTRUMENTS

www.ti.com

SOFTWARE FLOWCHART

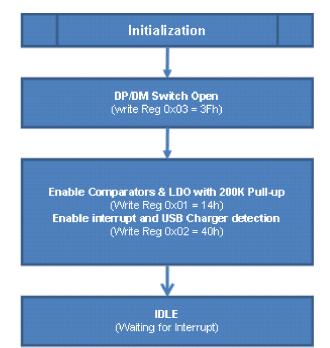
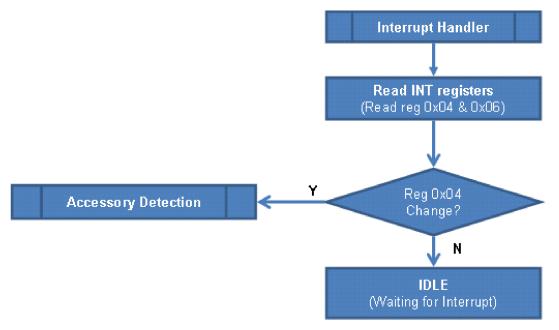



Figure 11. Initialization

SCDS326-AUGUST 2011

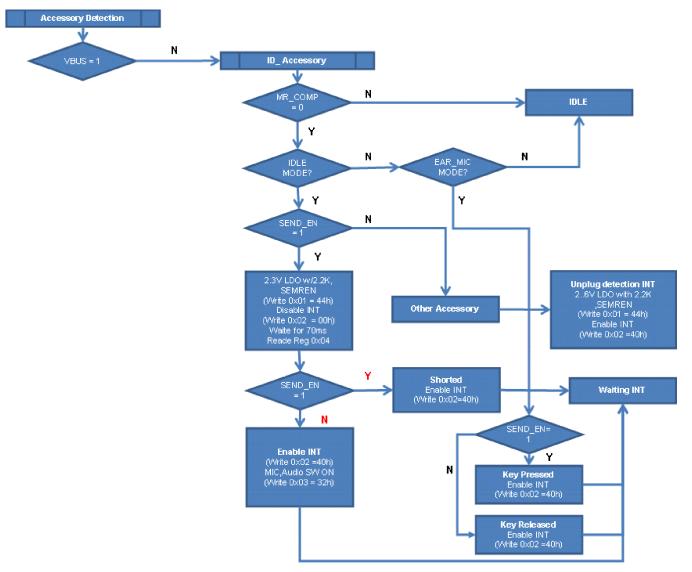


Figure 13. Accessory Detection (1/2)

www.ti.com

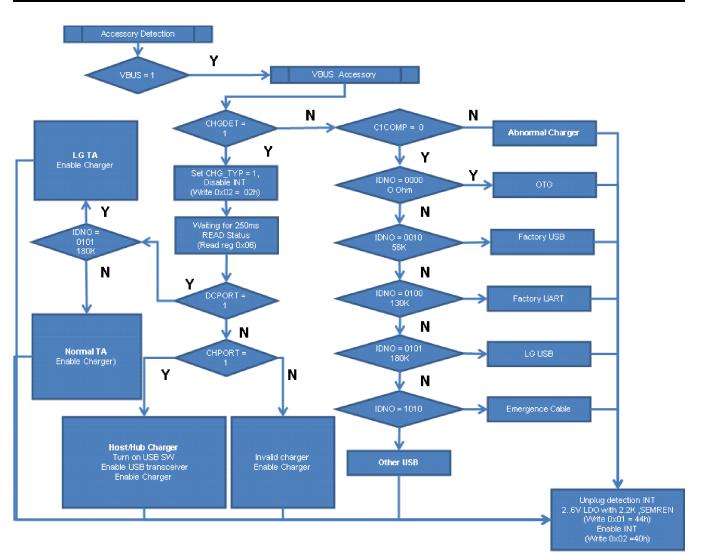


Figure 14. Accessory Detection (2/2)

I²C Register Map⁽¹⁾⁽²⁾

Addr ess (xxh)	Name	TYPE	Reset Value	b7	b6	b5	b4	b3	b2	b1	b0
00	Device ID	R	00011000	,	VENDOR ID B	ITS (TI=00	001)	REVISION BITS			
01	Control 1	R/W	X0000000	SEMREN2	ID_2P2	ID_620	ID_200	VLDO	SEMREN		
02	Control 2	R/W	0000XX01	INTPOL	INT1_EN	MIC_L P	CP_AUD	MB 200	INT2 EN	CHG_TYP	USB_DET_DIS
03	SW Control	R/W	See (1)		MIC_ON		DP[2:0]	DM[2:0]			
04	INT_Status1	R	00000000 ⁽²⁾	CHGDET	MR_COMP	SEND/ END	VBUS	IDNO[3: 0]			
05	INT_Status2	R	00000000							MR_COMP2	SEND/END2
06	Status	R	00XXXXX0	DCPORT	CHPORT						TIMEOUT_CD

Refer SW_Control register description.
 Refer INT_Status1 Note2.
 Refer SW_Control register description.
 Refer INT_Status1 Note2.

Slave Address

	SIZE				DESC	CRIPTION			
NAME	(BITS)	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
Slave address	8	1	0	0	0	1	0	0	R/W

www.ti.com

Register Descriptions

1. Device ID Address: 00H Type: Read

NAME	SIZE (BITS)	DESCRIPTION						
		A unique number for chip version						
Device ID	8	00011000 bits 0-3 = chip revision, bits 4-7 = Vendor ID (TI=0001b)						

2. Control 1 Address: 01H Type: Read and Write

Address (xxh)	Name	TYPE	b7	b6	b5	b4	b3	b2	b1	b0
01	Control 1	R/W	SEMREM2	ID_2P2	ID_620	ID_200	VLDO	SEMREN1		
	Reset Value		Х	0	0	0	0	0	0	0

NAME	SIZE (BITS)	DESCRIPTION						
SEMREN2	1	0: Disable Send/End2 and MIC Removal2 Comparators and LDO						
		1: Enable Send/End2 and MIC Removal2 Comparators and LDO						
ID_2P2	1	0: 2.21 kΩ switch open						
		1: Connect LDO to ID through 2.21 kΩ external resistor						
ID_620	1	0: 620 Ω switch open						
		1: Connect LDO to ID through 620 Ω internal resistor (Used for Video)						
ID_200	1	0: 200 kΩ switch open						
		1: Connect LDO to ID through 200 kΩ internal resistor						
VLDO	1	0: LDO voltage = 2.6V (If Manual Switching Mode)						
		1: LDO voltage = 2.3V (If Manual Switching Mode)						
SEMREN1	1	0: Disable Send/End and MIC Removal Comparators and LDO						
		1: Enable Send/End and MIC Removal Comparators and LDO						

3. Control 2 Address: 02H

Address (xxh)			b7	b6	b5	b4	b3	b2	b1	b0
02	02 Control 2 R/W		INTPOL	INT1_EN	MIC_LP	CP_AUD	MB_200	INT2_EN	CHG_TYP	USB_DET_DIS
	Reset Value		0	0	0	0	0	0	0	1

NAME	SIZE (BITS)	DESCRIPTION						
INT_POL	1	0: Interrupt Polarity = Active Low						
		: Interrupt Polarity = Active High						
INT1_EN	1	0: All Interrupts on INT_Status1 disabled (masked)						
		1: All Interrupts on INT_Status1 enabled						
MIC_LP	1	0: Low Power mode - MIC power pulsing disabled						
		: Low Power mode - MIC power pulsing enabled						
CP_AUD	1	0: Click/Pop resistors on AUDIO_L and AUDIO_R disabled						
		1: Click/Pop resistors on AUDIO_L and AUDIO_R enabled						
MB_200	1	0: 200 k Ω switch to MIC line open						
		1: Connect LDO to MIC through 200 k Ω internal resistor						
INT2_EN	1	0: All Interrupts on INT_Status2 disabled (masked)						
		1: All Interrupts on INT_Status2 enabled						
CHG_TYP	1	0: Charger type detection disabled						
		1: Charger type detection enabled						
USB_DET_DIS	1	0: USB Detection Enabled						
		1: USB Detection Disabled						

4. SW_Control Address: 03H

Address (xxh)	Name	TYPE	b7	b6	b5	b5 b4		b2	b1	b0	
03 SW Control R/W				MIC_ON	DP[2:0]			DM[2:0]			
Reset Value			Х	0	See ⁽¹⁾			See ⁽¹⁾			

(1) The reset value depends on V_{BUS} status at power up. If V_{BUS} presents, the default value depends on DSS pin state (refer **Error! Reference source not found.** session). If V_{BUS} does not present, the default value is 111b (DM/DP switch is open)

NAME	SIZE (BITS)	DESCRIPTION						
MIC_ON	1	0: MIC switching path open						
		1: MIC switching path connected to ID line						
DP	3	000: DP connected to USB_DP						
		001: DP connected to UART_TX						
		010: DP connected to AUDIO_R						
		011: Future Use (right Audio for Video)						
		100-111: DP switching path open						
DM	3	000: DM connected to USB_DM						
		001: DM connected to UART_RX						
		010: DM connected to AUDIO_L						
		011: Future Use (left Audio for Video)						
		100-111: DM switching path open						

5. INT_Status1 Address: 04H

Address Name (xxh)		TYPE	b7	b6	b5	b4	b3	b2	b1	b0
04	04 INT_Status1 R			MR_COMP	SEND/END	VBUS	IDNO[3:0]			
Reset Value			0	0	0	0	See ⁽¹⁾			

(1) ADC value of the ID pin

NAME	SIZE (BITS)	DESCRIPTION
CHGDET	1	0: High Current Charger Not Detected
		1: High Current Dedicated Charger Detected. The dedicated charger has DP-DM short with less than 50Ω
MR_COMP	1	0: MIC removal comparator low
		1: MIC removal comparator high
SEND/END	1	0: ID line not grounded
		1: ID line grounded (Send/End button pressed)
VBUS	1	0: No power detected on VBUS
		1: Power detected on VBUS
IDNO	4	0000: ADC determined ID impedance = 0 ohms (grounded)
		0001: ADC determined ID impedance = 24 K-ohms
		0010: ADC determined ID impedance = 56 K-ohms
		0011: ADC determined ID impedance = 100 K-ohms
		0100: ADC determined ID impedance = 130 K-ohms
		0101: ADC determined ID impedance = 180 K-ohms
		0110: ADC determined ID impedance = 240 K-ohms
		0111: ADC determined ID impedance = 330 K-ohms
		1000: ADC determined ID impedance = 430 K-ohms
		1001: ADC determined ID impedance = 620 K-ohms
		1010: ADC determined ID impedance = 910 K-ohms
		1011: ADC determined ID impedance = open

6. INT_Status2 Address: 05H

Address (xxh)	Name	TYPE	b7	b6	b5	b4	b3	b2	b1	b0
05	INT_Status2	R							MR_COMP2	SEND/END2
	Reset Value								N/A	N/A

NAME	SIZE (BITS)	DESCRIPTION
MR_COMP2	1	0: MIC removal comparator2 low
		1: MIC removal comparator2 high
SEND/END2	1	0: MIC line not grounded
		1: MIC line grounded (Send/End button pressed)

7. Status Address: 06H

Address (xxh)	Name	TYPE	b7	b6	b5	b4	b3	b2	b1	b0
06	06 Status R		DCPORT	CHPORT						TIMEOUT_CD
	Reset Value		0	0	Х	Х	Х	Х	Х	0

NAME	SIZE (BITS)	DESCRIPTION							
DCPORT	1): No Dedicated charger detected							
		Dedicated charger detected							
CHPORT	1): No Charging host port detected							
		1: Charging host port detected							
TIMEOUT_CD	1	0: No timeout for DP/DM contact detection.							
		1: Timeout occurred for DP/DM contact detection.							

SCDS326-AUGUST 2011

PARAMETER MEASUREMENT INFORMATION

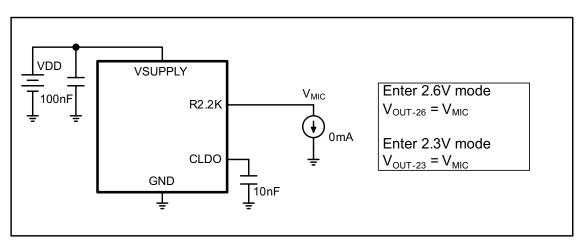


Figure 15. LDO Output Voltage

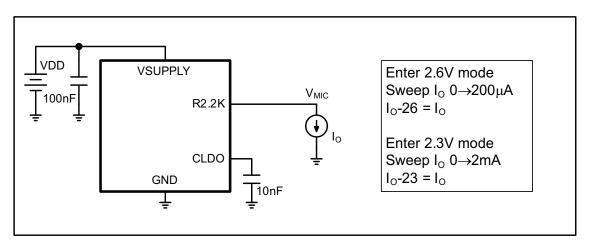


Figure 16. Max Output Current

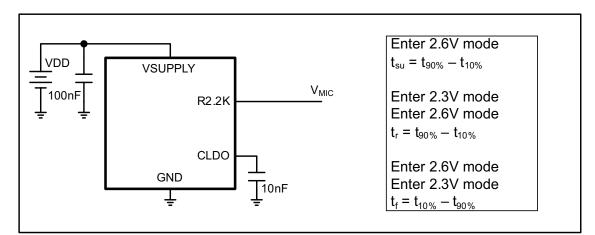


Figure 17. LDO Rise/Fall Time

PARAMETER MEASUREMENT INFORMATION (continued)

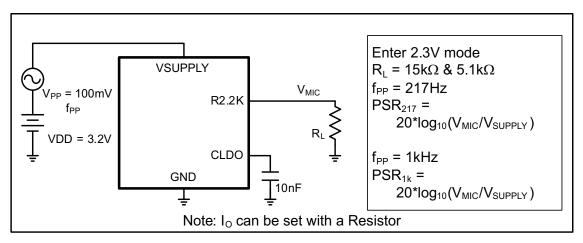


Figure 18. Power Supply Rejection

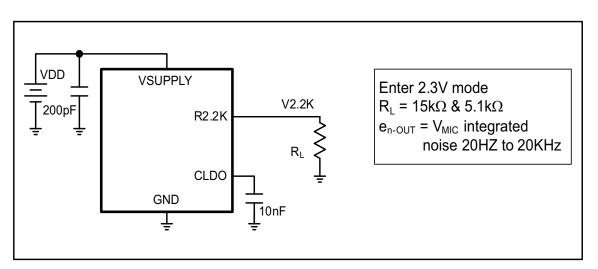


Figure 19. Integrated Output Noise

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TSU5611YZPR	ACTIVE	DSBGA	YZP	20	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

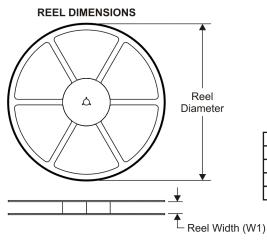
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

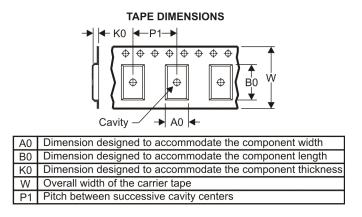
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

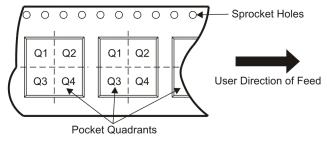
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	
-----------------------------	--


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TSU5611YZPR	DSBGA	YZP	20	3000	180.0	8.4	1.99	2.49	0.56	4.0	8.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

1-Sep-2011

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TSU5611YZPR	DSBGA	YZP	20	3000	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connctivity	www.ti.com/wirelessconnectivity		
		a O a Al a a m	

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated