

1

Using the TPS51315-EVM, A 10-A Step-Down Synchronous Switcher with Integrated MOSFETs

The TPS51315-EVM evaluation module (EVM), is a D-CAP[™] mode, 10-A synchronous buck controller with integrated MOSFETs providing a fixed 1.5-V output at up to 10 A from a 12-V input bus. The EVM uses the TPS51315 step down buck controller.

Contents

1	Introduction	. 3
2	Description	. 3
3	Typical Applications	. 3
4	Features	. 3
5	Electrical Performance Specifications	. 4
6	Schematic	
7	Test Setup	. 6
8	Test Procedure	. 8
9	Performance Data and Typical Characteristic Curves	. 9
10	EVM Assembly Drawing and PCB layout	
11	List of Materials	
12	References	16

List of Figures

1	TPS51315-EVM Schematic Diagram	5
2	Tip and Barrel Measurement for $V_{\mbox{\scriptsize out}}$ Ripple	6
3	TPS51315-EVM Recommended Test Set Up	7
4	TPS51315-EVM Efficiency	9
5	TPS51315-EVM Load Regulation	9
6	0-A to 10-A Load Transient Rise	10
7	0-A to 10-A Load Transient Fall	10
8	Output Ripple	10
9	Enable Turn-Off	10
10	Enable Turn-On	10
11	Switching Node	10
12	Overcurrent Protection (OCP) Latch-Off	11
13	Overcurrent Protection (OCP) Hiccup	11
14	Top Layer Assembly Drawing (Top View)	12
15	Bottom Assembly Drawing (Bottom View)	12
16	Top Copper (Top View)	12
17	Internal Layer 1	13
18	Internal Layer 2	13
19	Internal Layer 3	
20	Internal Layer 4	14
21	Bottom Copper (Top View)	15

List of Tables

1	Performance Specification Summary	4
2	Test Point Functions	8
3	TPS51315-EVM List of Materials	16

1 Introduction

The TPS51315-EVM evaluation module (EVM), is a D-CAP[™] mode, 10-A synchronous buck controller with integrated MOSFETs providing a fixed 1.5-V output at up to 10 A from a 12-V input bus. The EVM uses the TPS51315 step down buck controller.

2 Description

The TPS51315-EVM is designed to use a regulated 12-V bus to produce a regulated 1.5-V output at up to 10 A of the load current. The TPS51315-EVM is designed to demonstrate the TPS51315 in a typical low-voltage application while providing a number of test points to evaluate the performance of the TPS51315.

3 Typical Applications

- · High current system converters for server and desktop power
- Point of load non-isolated DC-DC converters for telecom and datacom application

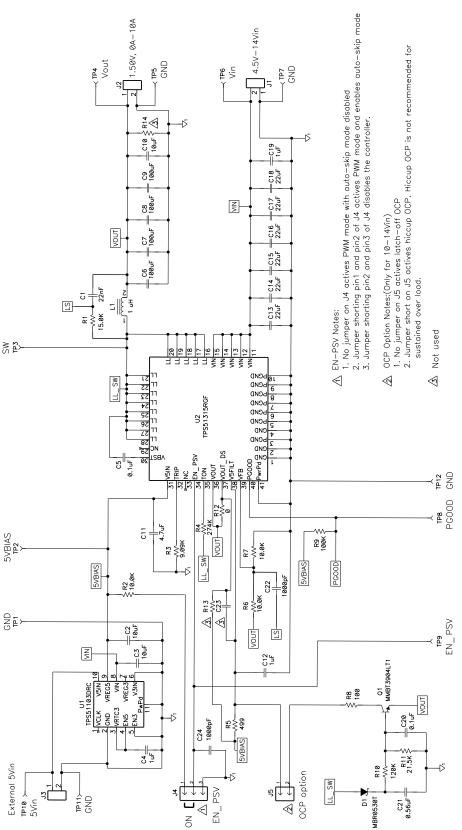
4 Features

The TPS51315-EVM features include

- 10-A DC Steady State Current
- Support pre-bias output voltage start-up
- 300-kHz switching frequency
- J4 for enable function
- Convenient test points for probing critical waveforms and loop response testing
- J5 for hiccup overcurrent protection option

4

5 Electrical Performance Specifications


Table 1 gives the EVM performance specifications.

	SPECIFICATION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT C	CHARACTERISTICS		1			
V _{IN}	Input voltage range		4.5	12	14	V
I _{IN(max)}	Maximum input current	V _{IN} = 4.5 V, I _O = 10 A			3.9	А
I _{IN}	No load input current	$V_{IN} = 14 \text{ V}, I_{O} = 0 \text{ A}$			30	mA
OUTPU	T CHARACTERISTICS	•				
V _{OUT}	Output voltage			1.5		V
V		Line regulation, 10 V \leq V _{IN} \leq 14 V			0.3%	
V_{REG}	Output voltage regulation	Load regulation, $V_{IN} = 12 \text{ V}, 0 \text{ A} \le I_0 \le 10 \text{ A}$			0.5%	
V_{RIPPLE}	Output voltage ripple	V _{IN} = 12 V, I _O = 10 A			30	mVpp
	Ouptut load current		0		10	А
	Output overcurrent threshold			15		А
SYSTEM	IS CHARACTERISTICS					
f _{sw}	Switching frequency			300		kHz
η	Peak efficiency	$V_{IN} = 12 \text{ V}, V_{OUT} = 1.5 \text{ V}, I_{O} = 4 \text{ A}$		90.29%		
η	Full load efficiency	$V_{IN} = 12 \text{ V}, V_{OUT} = 1.5 \text{ V}, I_{O} = 10 \text{ A}$		87%		
T _A	Operating ambient temperature			25		°C

Table 1. Performance Specification Summary

6 Schematic

SLUU364B–MAY 2009–Revised FEBRUARY 2012 Submit Documentation Feedback

Y 2012 Using the TPS51315-EVM, A 10-A Step-Down Synchronous Switcher with Integrated MOSFETs Copyright © 2009–2012, Texas Instruments Incorporated

ÈXAS RUMENTS

Test Setup

7 **Test Setup**

7.1 Test Equipment

7.1.1 Voltage Source

The input voltage source V_{IN} should be a variable DC source between 0 V and 14 V, capable of supplying 10 Adc. Connect V_{IN} to J1 as shown in Figure 3.

7.1.2 **Multimeters**

A voltmeter between 0 V and 15 V should be used to measure V_{IN} at TP6 (V_{IN}) and TP7 (GND). A voltmeter between 0 V and 5 V for output voltage measurement at TP4 (Vout) and TP5 (GND). A current meter between 0 A and 10 A (A1) as shown in Figure 3 is used for input current measurements.

7.1.3 Output Load

The output load should be an electronic constant resistance mode load capable of between 0 Adc and 20 Adc at 1.5 V.

7.1.4 Oscilloscope

A digital or analog oscilloscope can be used to measure the output ripple. The oscilloscope should be set for 1-MΩ impedance, 20-MHz bandwidth, AC coupling, 2-µs/division horizontal resolution, 20-mV/division vertical resolution. Test points TP4 and TP5 can be used to measure the output ripple voltage. Place the oscilloscope probe tip through TP4 and rest the ground barrel on TP5 as shown in Figure 2. Using a leaded ground connection may induce additional noise due to the large ground loop.

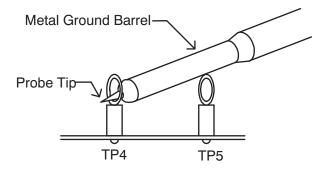


Figure 2. Tip and Barrel Measurement for V_{out} Ripple

7.1.5 Fan

Some of the components in this EVM may approach temperatures of 60°C during operating. A small fan capable of 200-400 LFM is recommended to reduce component temperatures while the EVM is operating. The EVM should not be probed while the fan is not running.

7.1.6 Recommended Wire Gauge

For V_{IN} to J1 (12-V input) the recommended wire size is 1 × AWG #14 per input connection, with the total length of wire less than 4 feet (2 feet input, 2 feet return). For J2 to LOAD the minimum recommended wire size is 1 × AWG #14, with the total length of wire less than 4 feet (2 feet output, 2 feet return).

7.2 Recommended Test Setup

Figure 3 is the recommended test set up to evaluate the TPS51315-EVM. Working at an ESD workstation, make sure that any wrist straps, bootstraps or mats are connected referencing the user to earth ground before power is applied to the EVM.

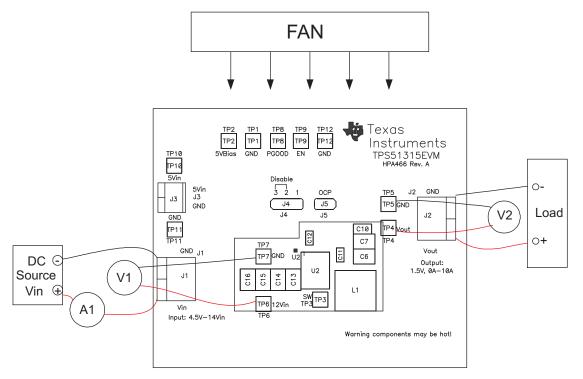


Figure 3. TPS51315-EVM Recommended Test Set Up

7.2.1 Configuration

- 1. EN-PSV J4 setting.
 - (a) No Jumper actives PWM mode only.
 - (b) Jumper on pin1 and pin2 actives auto-skip mode
 - (c) Jumper on pin2 and pin3 disables the controller. (Default setting)
- 2. OCP option J5 setting (only between 10 V $_{\mbox{\tiny IN}}$ and 14 V $_{\mbox{\tiny IN}}$
 - (a) No Jumper actives latch-off OCP. (Default setting)
 - (b) Jumper on J5 actives hiccup OCP. Hiccup OCP is not recommended for sustained over load.

7.2.2 Input Connections

- 1. Prior to connecting the DC input source V_{IN} , it is advisable to limit the source current from V_{IN} to 10 A maximum. Make sure V_{IN} is initially set to 0 V and connected as shown in Figure 3.
- 2. Connect a voltmeter V1 at TP6(V_{IN}) and TP7 (GND) to measure the input voltage.

7.2.3 Output Connections

- 1. Connect Load to J2 and set the load to constant resistance mode to sink 0 Adc before V_{IN} is applied.
- 2. Connect a voltmeter V2 at TP4 (V_{OUT}) and TP5 (GND) to measure the output voltage.

7.2.4 Other Connections

Place a fan as shown in Figure 3 and turn on, making sure air is flowing across the EVM.

8 **Test Procedure**

8.1 Line/Load Regulation and Efficiency Measurement Procedure

- 1. Ensure that the load is set to constant resistance mode and to sink 0 Adc.
- 2. Ensure that the jumper provided in the EVM to short on pin 2 and pin 3 of J4 before V_{IN} is applied.
- 3. Increase V_{IN} from 0 V to 12 V, using V1 to measure input voltage.
- 4. Remove the jumper on J4 to enable the controller.

(a) No jumper on J4 to active PWM mode but disable auto-skip mode.

- (b) Jumper short on pin 1 and pin 2 of J4 to active PWM mode and enable auto-skip mode.
- 5. Vary load from between 0 VAdc and 10Adc, V_{OUT} should remain in load regulation.
- 6. Vary V_{IN} from 10 V to 14 V. V_{OUT} should remain in line regulation.
- 7. Put the jumper on pin 2 and pin 3 of J4 to disable the controller.
- 8. Decrease the load to 0 A.
- 9. Decrease V_{IN} to 0 V.

8.2 List of Test Points

TEST POINTS	NAME	DESCRIPTION
TP1	GND	GND for 5VBIAS
TP2	5VBIAS	5VBIAS
TP3	SW	Monitor switch node voltage
TP4	V _{OUT}	V _{OUT}
TP5	GND	GND for Vout
TP6	V _{IN}	V _{IN}
TP7	GND	GND for V _{IN}
TP8	PGOOD	Power Good
TP9	EN_PSV	Enable
TP10	5Vin	External 5VIN
TP11	GND	GND for external 5VIN
TP12	GND	GND

Table 2. Test Point Functions

Equipment Shutown Procedure 8.3

- 1. Shut down load.
- 2. Shut down V_{IN}.
- 3. Shut down fan.

TEXAS INSTRUMENTS

www.ti.com

Performance Data and Typical Characteristic Curves

9 Performance Data and Typical Characteristic Curves

Figure 4 through Figure 13 present typical performance curves for the TPS51315-EVM

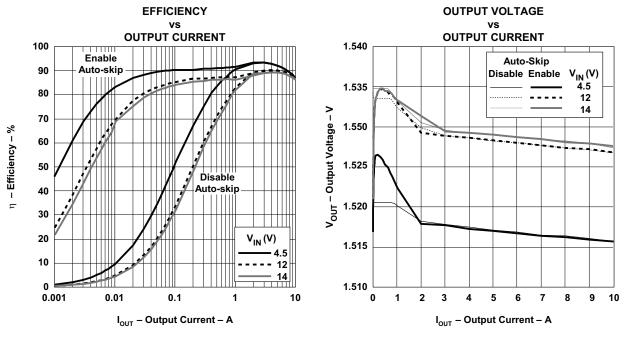
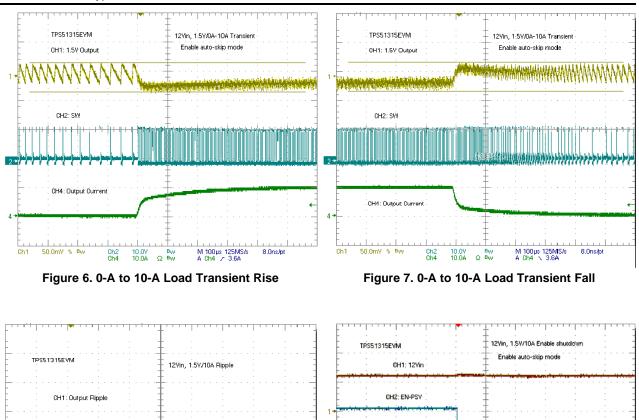


Figure 4. TPS51315-EVM Efficiency


Figure 5. TPS51315-EVM Load Regulation

Performance Data and Typical Characteristic Curves

20.0mV % Bw

Ch1

2

4

Ch1 Ch3 10.0V 1.0V

M 2.0µs 1.25GS/s A Ch1 / 2.0mV

Figure 8. Output Ripple

800ps/pt

-----CH3: 1.5Youtput ĊH4: PGOOD

B₩ B₩

Ch2 Ch4 5.0V 5.0V M 2.0ms 250kS/s A Ch3 \ 780mV

B_W B_W

Figure 9. Enable Turn-Off

4.0us/pt

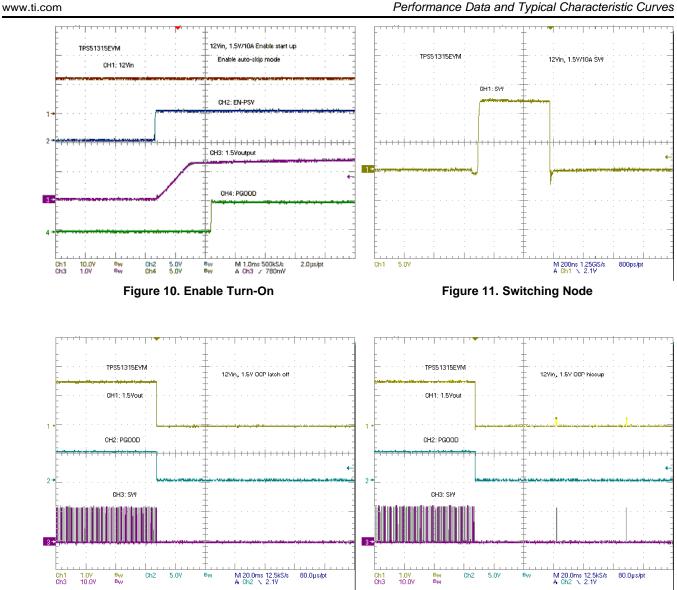
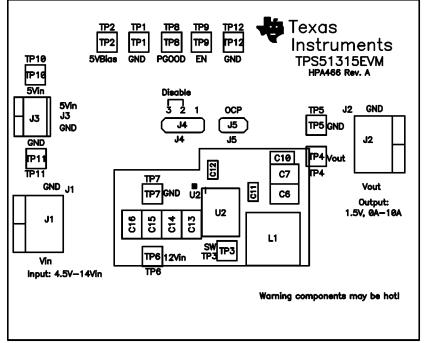


Figure 12. Overcurrent Protection (OCP) Latch-Off


Figure 13. Overcurrent Protection (OCP) Hiccup

Performance Data and Typical Characteristic Curves

10 **EVM Assembly Drawing and PCB layout**

Figure 14 through Figure 21 show the design of the TPS51315-EVM printed circuit board. The EVM has been designed using 6 layers on a 2-oz. copper circuit board.

Figure	14. To	p Laver	Assembly	Drawing	(Top View)
	•	ρ =α, ο.	7.0000	Diamig	(100 1101)

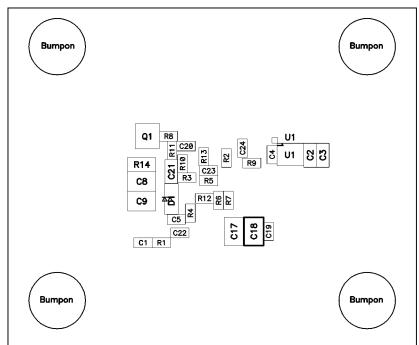


Figure 15. Bottom Assembly Drawing (Bottom View)

EVM Assembly Drawing and PCB layout

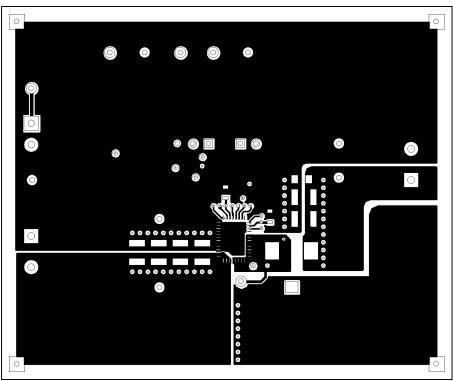


Figure 16. Top Copper (Top View)

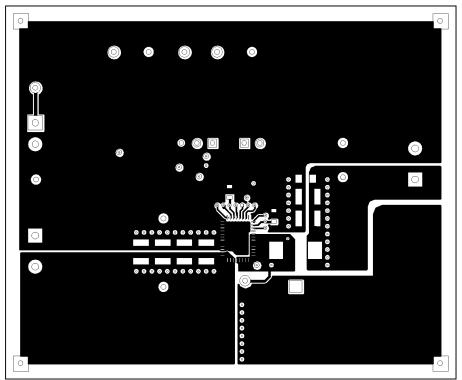


Figure 17. Internal Layer 1

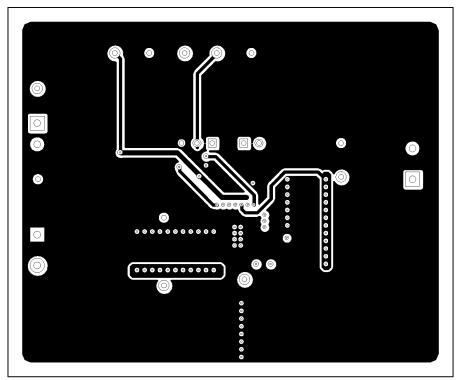


Figure 18. Internal Layer 2

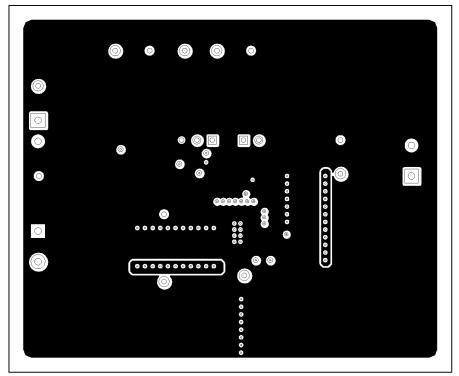


Figure 19. Internal Layer 3

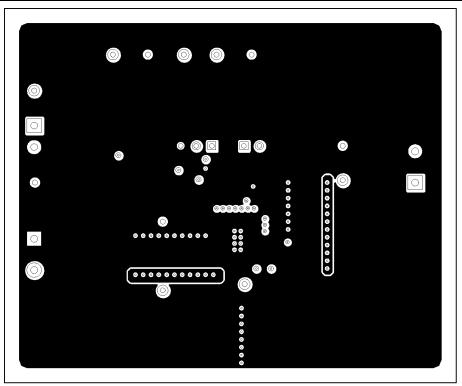


Figure 20. Internal Layer 4

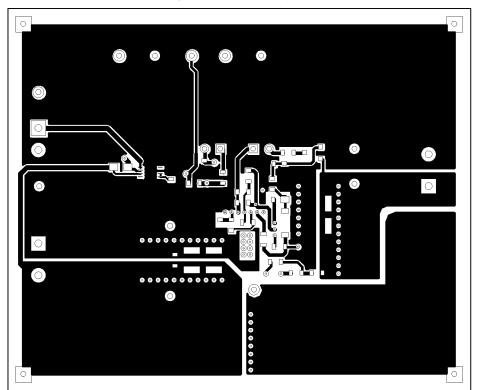


Figure 21. Bottom Copper (Top View)

List of Materials

11 **List of Materials**

List of materials for the TPS51315-EVM.

REFERENCE DESIGNATOR	QTY	DESCRIPTION	MFR	PART NUMBER
C13, C14, C15, C16, C17, C18	6	Capacitor, Ceramic, 22 µF, 16V, X5R, 20%, 1210	MuRata	GRM32ER61C226KE20L
C1	1	Capacitor, Ceramic, 22 nF, 50V, X7R, 10%, 0603	STD	STD
C10, C2, C3	3	Capacitor, Ceramic, 10 µF, 16V, X5R, 10%, 0805	STD	STD
C11	1	Capacitor, Ceramic, 4.7 µF, 10V, X5R, 10%, 0603	STD	STD
C19, C4, C12	3	Capacitor, Ceramic, 1 µF, 16V, X7R, 10%, 0603	STD	STD
C20, C5	2	Capacitor, Ceramic, 0.1 µF, 25V, X7R, 10%, 0603	STD	STD
C21	1	Capacitor, Ceramic, 0.56 µF, 25V, X7R, 10%, 0603	STD	STD
C22, C24	2	Capacitor, Ceramic, 1000 pF, 25V, X7R, 10%, 0603	STD	STD
C6, C7, C8, C9	4	Capacitor, Ceramic, 100 µF, 6.3V, X5R, 20%, 1210	MuRata	GRM32ER60J107ME20L
D1	1	Diode, Schottky, 0.5 A, 30 V	On Semiconductor	MBR0530T
L1	1	Inductor, SMT, 1.0 μH, 13 A, 0.0023 Ω	ICE Components	IN06155
Q1	1	Bipolar, N-channel, 40 V, 200 mA, 350 mW, SOT-23	On Semiconductor	MMBT3904LT1
R1	1	Resistor, Chip, 15 kΩ 1/16W, 1%, 0603	STD	STD
R10	1	Resistor, Chip, 120 kΩ, 1/16W, 1%, 0603	STD	STD
R11	1	Resistor, Chip, 21.5 kΩ, 1/16W, 1%, 0603	STD	STD
R12	1	Resistor, Chip, 0 Ω, 1/16W, 5%, 0603	STD	STD
R2, R6, R7	3	Resistor, Chip, 10 kΩ, 1/16W, 1%, 0603	STD	STD
R3	1	Resistor, Chip, 9.09 kΩ, 1/16W, 1%, 0603	STD	STD
R4	1	Resistor, Chip, 274 kΩ, 1/16W, 1%, 0603	STD	STD
R5	1	Resistor, Chip, 499 Ω, 1/16W, 1%, 0603	STD	STD
R8	1	Resistor, Chip, 100 Ω, 1/16W, 1%, 0603	STD	STD
R9	1	Resistor, Chip, 100 kΩ, 1/16W, 1%, 0603	STD	STD
U1	1	IC, Integrated LDO with switch-over circuit, DGS10	Texas Instruments	TPS51103DRC
U2	1	IC, Synchronous PWM controller with integrated switcher,QFN-40	Texas Instruments	TPS51315RGF

12 References

TPS51315 Datasheet, Synchronous Switcher with Integrated MOSFETs (SLUS881).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated