60-Pin Emulation Header

User's Guide

Literature Number: SPRU655C March 2007

Contents

Preface	6
1 Introduction	8
2 Fundamental Information	
3 Alternate Target Impedance Configurations	
4 Header Information	10
5 Header Footprint Comparisons	10
6 Header Changes	11
7 Header Pin Assignment	12
8 Electrical Requirements	14
9 60-Pin Emulation Header Specifications	14
10 Terminations	15
11 Buffering	15
12 General Specifications	16
13 Acceptable Signal Qualifications	17
14 Connecting Alternate Headers	18
14.1 14-Pin and 60-Pin Headers in Parallel	18
15 Layout and Routing Requirements	19
15.1 Maximum Recommended Distances	19
15.2 Implications of Layout and Route Distance Deviations	20
16 Advanced Emulation – Layout and Route Distance Deviations	<mark>21</mark>
16.1 Signal to Signal Clearance	21
16.2 Trace Lengths	21
17 Traditional JTAG Emulation Layout & Route Distance Deviations	<mark>22</mark>
17.1 Layout and Routing – Mechanical Considerations	22
18 Multiple DSP Considerations	<mark>24</mark>
Appendix A Alternate Target Impedance Configurations	<mark>27</mark>
A.1 PCI Interfaces	27
Appendix B Header Information	<mark>28</mark>
B.1 Header Information	28
Appendix C Buffering – Methods, Techniques and Terminations	<mark>29</mark>
C.1 Buffering – Methods, Techniques and Terminations	29
Appendix D 14-Pin and 60-Pin Headers in Parallel	31
D.1 14-Pin and 60-Pin Headers in Parallel	31
Appendix E Layout and Routing Requirements	32
E.1 Layout and Route Deviations [Advanced Emulation]	32
Appendix F Spice Model	33
F.1 Spice Model	33
Appendix G Variable Board Impedance	48
G.1 Variable Board Impedance	48

List of Figures

1	60-Pin Target to 14-Pin Emulator Adapter	8
2	60-Pin Target to 20-Pin Emulator Adapter	. 9
3	60-Pin Emulation Header	10
4	14-Pin Traditional Through Hole Emulation Interface	10
5	14-Pin Traditional SMT Emulation Interface Header	11
6	60-Pin Header Orientation	13
7	Emulator Cable Connector Superimposed Over 60-Pin Header	13
8	Acceptable Wave Form Criteria	17
9	Multi-Header TMS/TDI/TDO Terminations	18
10	Multi-Header EMU0/1 Terminations	19
11	Symmetrical Nets	19
12	Maximum Trace Lengths	20
13	Minimum Clearance - Height	22
14	Emulation and Debug Pod Header Enclosure Dimensions	23
15	Clearance Dimensions With Thumb Grips	23
16	Emulation and Debug Header and Keep-out Area	24
17	Multiple DSP - Parallel Configuration	25
18	Independent DSP Connection Method	26
C-1	Recommended TCLK Buffered Configuration	29
C-2	Recommended TCLK Unbuffered Configuration	29
C-3	Recommended EMU Output Configuration	29
C-4	Preferred Configuration for EMU0 and EMU1 Terminations	30
D-1	TCLK, Multiple Header Configuration	31
F-1	EMU0 Simulation Model – (Advanced Emulation Pod, 50 Ω , and 75 Ω Target and Pod Model)	34
F-2	EMU0 Acceptable Wave Form (Host Side, Advanced Emulation Pod - 50 Ω)	36
F-3	EMU0 Wave Form (Host Side, Advanced Emulation – 75 Ω)	38
F-4	EMU2 Type Signals Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)	39
F-5	EMU2 Type Signals Acceptable Wave Form (Host Side, Emulation Pod – 50 Ω)	41
F-6	EMU18 Type Signals Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)	42
F-7	EMU18 Type Signals – Acceptable Wave Form (Host Side, Emulation Pod – 50 Ω)	44
F-8	EMU0 Dual-Header Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)	45
F-9	EMU0 Dual-Header – Wave Form (Host Side, Emulation Pod – 50 Ω)	47
G-1	Various PCB Impedance Calculations	48

List of Tables

1	Summary: Example	. 6
2	Summary: Alternate Target Impedance Configurations	. 9
3	Summary: Header Information	10
4	Summary: Header Footprint Comparisons	11
5	Summary: Header Changes	11
6	60-Pin Header Signal Naming Convention	12
7	Summary: Header Pinout	12
8	Summary: Header Pin Location	14
9	JTAG Signal Directions	14
10	Header Connectivity	14
11	Summary: Electrical Requirements	14
12	Termination Values and Use Cases	15
13	Summary: Terminations	15
14	Summary: Buffering	16
15	General Specifications	16
16	Summary: Acceptable Signals	18
17	Summary: 14- and 60-Pin Headers in Parallel	19
18	Summary: Advanced Emulation Layout and Routing	21
19	Summary: Layout and Routing – Mechanical Considerations	24
B-1	Next Generation Emulation Header Interface Specifications	28
F-1	EMU Pins Modeled as EMU2 or EMU18	34

Preface SPRU655C-March 2007

About This Manual

This technical reference describes how to incorporate Texas Instruments' next-generation emulation header on a board with a trace-enabled DSP.

Key Changes

This document's organization has significantly changed from the previous version. It is now a quick reference guide with supplemental information as an appendix to each chapter. Additionally, this document includes material that covers multiprocessor configurations.

Note that each main section has a summary component to identify key areas addressed in that section:

Table 1. Summary: Example		
1	Key points or examples will go here.	
2	Key points or examples will go here.	

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.
- Measurements are in English standard units (inches, pounds, etc.).

Related Documentation From Texas Instruments

The following documents describe the C6000 DSP platform and related support tools. Copies of these documents are available on the Internet at www.ti.com. *Tip:* Enter the literature number in the search box provided at www.ti.com.

Emulation Fundamentals for TI's DSP Solutions (SPRA439) This paper will explain the fundamentals of how the emulation logic and emulation tools work together with the TI digital signal processors. By understanding the fundamentals of emulation, you will be able to accelerate the process of setting up and performing software debug, as well as aid in troubleshooting potential problems in the debugging setup. A detailed explanation of the setup of the emulator hardware systems for single and multi-processor applications, along with a discussion of how the system components interact during debug will be discussed in the sections to follow. Also included is a troubleshooting guide to assist in common setup problems.

TMS320C6000 DSP Designing for JTAG Emulation Reference Guide (<u>SPRU641</u>) This document assists you in meeting the design requirements of the XDS510 emulator with respect to JTAG designs and discusses the XDS510 cable. This cable supports both standard 3-volt and 5-volt target system power inputs.

XDS560 Emulator Reference Guide (SPRU589) This technical reference describes the fundamentals of the XDS560 PCI Emulator and Pod and how to interface it to a target system.

Standard Test Access Port and Boundary-Scan Architecture – Description (IEEE 1149.1) A standard defining test accessibility, also referred to as Boundary Scan.

JTAG/MPSD Emulation Technical Reference (SPDU079) A reference guide that provides detailed information to be used when designing for JTAG emulation.

Common Trace Transmission Problems and Solutions (SPRAAK6) This document provides guidelines for identifying and solving common problems associated with the collecting of high speed data. On a trace-capable device, the trace interface is one of the highest performance interfaces. Although only used during design, development, and debug, the trace interface must be implemented correctly for full functionality and performance.

Trademarks

XDS510, XDS560 are trademarks of Texas Instruments.

ARM is a trademark of of ARM Limited in the EU and other countries.

Samtec is a trademark of Samtec, Inc.

User's Guide SPRU655C-March 2007

60-Pin Emulation Header

This technical reference describes the requirements necessary to incorporate Texas Instruments' next generation emulation header on a board that includes a trace-enabled DSP.

1 Introduction

The new 60-pin header replaces the standard 14-pin header. The 60-pin header supports existing JTAG scan and multiprocessor breakpoints, and provides additional EMU pins for future features. Even though the 60-pin header supports all the features provided by the original 14-pin header, not all emulators, target cables, and target device combinations support all features. See the documentation and device user guides for your specific emulator to confirm that the desired functionality is supported.

Two adapters are available. The first one allows a 14-pin target cable, such as the one provided with a XDS510[™] or XDS560[™] emulator, to be used with the 60-pin header (Figure 1). The other allows a 20-pin target cable, such as the REV D XDS560 Target Cable, to be used with the 60-pin header (Figure 2).

Figure 1. 60-Pin Target to 14-Pin Emulator Adapter

60-Pin Emulation Header

8

Note: Use of any adapter could have a negative impact on performance.

Figure 2. 60-Pin Target to 20-Pin Emulator Adapter

2 Fundamental Information

Note: TI does not recommend placing both 14-pin and 60-pin headers on a board since the performance of trace capabilities will be degraded, but if both headers are incorporated, the design must follow the guidelines within this document.

This technical reference offers guidance for creating new designs that take advantage of the extended emulation capabilities. This document is not intended to be the sole design guide.

In addition to this guide, good engineering practices for high-speed logic design and mechanical layout must be followed. Any deviation from such practices and design techniques will affect the end product performance.

3 Alternate Target Impedance Configurations

Within specific end use applications for TI's hardware emulation products, multiple printed circuit board (PCB) trace impedances may be required. The advanced emulation signals connecting to the 60-pin header require a 50 Ω trace impedance for optimal performance.

For DSP target applications that incorporate alternate interfaces including, but not limited to, PCI or external memory interfaces (EMIF), see Appendix A for additional information.

Table 2. Summary: Alternate Target Impedance Configurations

1	Target boards without special considerations must be designed for a 50 Ω character impedance.
2	All header signals must be routed as if they are clock signal lines operating at 200 MHz.

4 Header Information

The header selected for this next generation emulation interface is manufactured by Samtec[™] USA. The next generation header is a surface mount connector containing a total of 60 interconnecting pins, 34 of which are allocated to signals (including static signals), with the remaining 26 pins providing an adequate ground.

Appendix B identifies the specific details of the header selected. Section 7 addresses the specific pin allocation assigned.

1	Connector Manufacturer is Samtec USA.
2	Connector Model number is SOLC-115-02-S-Q-P.
3	Connector Drawing is located at URL http://www.samtec.com/ftppub/cpdf/SOLC-MKT.PDF
4	Connector Footprint Drawing is located at URL http://www.samtec.com/ftppub/cpdf/SOLC.PDF

5 Header Footprint Comparisons

The new 60-pin emulation header was chosen because of its high pin count density, high frequency performance, and robustness. A key design constraint was to maintain a form factor for the new header that is similar as possible to the traditional 14-pin header. The following figures illustrate three of the four most common form factors available today, each inclusive of the mating connector when calculated. Figure 3 represents Texas Instruments' 60-pin header, Figure 4 and Figure 5 represent the traditional 14-pin emulator header in a through hole and surface mount configuration, respectively.

A quick calculation (see Table 4) of the new 60-pin header against three other common interfaces results in a modest increase (11.9%) in one case and a 3.2%-21.2% smaller form factor as compared to the remaining two interfaces.

Figure 3. 60-Pin Emulation Header

Figure 5. 14-Pin Traditional SMT Emulation Interface Header

	Common Emulation Interfaces	Square Inch	Notes
1	Original 14-pin SMT connector form factor	0.2431"	Includes mounting pads
2	60-pin next generation emulation header	0.2720"	Includes mounting pads
3	Original through hole 14-pin connector form factor	0.2808"	Includes both sides of PCB
4	20-pin ARM™ ETM header	0.3451"	Includes mounting pads

Table 4. Summary: Header Footprint Comparisons

6 **Header Changes**

Since the initial release of this document, a change was made to the emulation and debug pod connector to minimize potential pin-to-pin interface problems. This change does not have an impact on routing or layout beyond what is addressed in this document.

Note: All headers (emulator and target) should be examined for possible damage before being mated together. Damaged or bent pins may affect functionality and performance.

Never apply excessive force when mating connectors; if excessive force is required, the mating connector pairs are not parallel to one another.

Table 5. Summary: Header Changes				
1	Verify the target and emulator headers are intact and free of defects before mating.			
2	Always use caution when mating connectors to ensure no damage occurs.			
3	Verify connectors are parallel to one another before mating.			

7 Header Pin Assignment

60-Pin Header Interface Pinout				
Column/Row	Α	В	С	D
1	GND ⁽¹⁾	ID0	ID2	NC
2	GND	TMS	EMU18 ⁽²⁾	GND
3	GND	EMU17 ⁽²⁾	TRST	GND
4	GND	TDI	EMU16 ⁽²⁾	GND
5	GND	EMU14 ⁽²⁾	EMU15 ⁽²⁾	GND
6	GND	EMU12 ⁽²⁾	EMU13 ⁽²⁾	GND
7	GND	TDO	EMU11	GND
8	TYPE 0	TVD	TCLKRTN	TYPE 1
9	GND	EMU9	EMU10	GND
10	GND	EMU7	EMU8	GND
11	GND	EMU5	EMU6	GND
12	GND	TCLK	EMU4	GND
13	GND	EMU2	EMU3	GND
14	GND	EMU0	EMU1	GND
15	TGTRST	ID1	ID3	GND

Table 6. 60-Pin Header Signal Naming Convention

⁽¹⁾ On some target applications, detection of the emulation pod is required. It is recommended that when this condition exists, pin A1 on the 60-pin header be used. Instead of grounding pin A1 on the target board, a pull-up resistor \geq to 10K Ω should be connected to the pin. When the emulation pod header is connected, pin A1 will be grounded.

(2) The 60-pin header provides 19 EMU pins for advance emulation features. Not all devices support 19 EMU pins. Connect only the EMU pins present on the target DSP to the corresponding EMU pin on the header.

Table 7. Summary: Header Pinout

1	Pin D1 should be left unconnected.
2	Pin A1, if required, enables or disables external multiplexers or buffers.
3	Only the appropriate trace pins should be connected.

Figure 6 is a top view of Texas Instruments' new 60-pin emulation header, illustrating the orientation and pin location of the 60-pin emulation header. See Table 6 for specific pin assignments. Texas Instruments' new emulation and debug pod now incorporates a pin 1 (red dot) locator on the emulation and debug pod (Figure 7). Alignment with the pin 1 of the target board header is critical.

Figure 7. Emulator Cable Connector Superimposed Over 60-Pin Header

_

	Table 8. Summary: Header Pin Location
1	Header orientation is critical.
2	Align the emulation pod pin 1 locator with pin 1 on the target board header.

8 Electrical Requirements

This section describes the basic electrical requirements. Deviation from these requirements may result in performance degradation.

Table 9 defines the chip pin input pull-up and pull-down characteristics.

Signal Name	DSP Direction	Notes
EMU[N] ⁽¹⁾	Bidirectional	Pull-up within device per device data sheet
TCLK	In	Pull-up within device per device data sheet
TDI	In	Pull-up within device per device data sheet
TDO	Out	Pull-up within device per device data sheet
TMS	In	Pull-up within device per device data sheet
TRST	In	Pull-down within device per device data sheet

Table 9. JTAG Signal Directions

⁽¹⁾ Varies by device type, see the device data sheet for actual number of EMU pins.

Table 10 lists the header specifications where EMU pins do not exceed 19.

9 60-Pin Emulation Header Specifications

Table 10. Header Connectivity

Signal Name	Emulator Signal Direction	Notes
TMS	Output	Connection to device pin of same name.
TDO	Input	Connection to device pin of same name.
TDI	Output	Connection to device pin of same name.
TRST	Output	Connection to device pin of same name.
TCLKRTN	Input	Connected to a board supplied TCLK if one is present. Connected to TCLK or a buffered version of TCLK otherwise.
TCLK	Output	Connection to device pin of same name, possibly through buffer.
TVD	Input	Chip I/O voltage current limited via 100 Ω resistor.
EMU[18:0] ⁽¹⁾	Bidir	Connection to device pin of same name.
ID[3:0]	Input	Only header type 0000 is currently supported, where 0 is GND and 1 is a No Connect. All other combinations are reserved.
TYPE[1:0]	Output	Pin A8 (Type 0) is an N/C; Pin D8 (Type 1) must be connected to GND.
TGTRST	Output	Currently not supported by TI tools.

⁽¹⁾ Leave unused pins unconnected.

Table 11. Summary: Electrical Requirements

1	Always refer to the device data sheet for number and connectivity of EMU pins.
3	Leave unused EMU pins unconnected.

10 Terminations

All signals are assumed to operate at a minimum of 200 MHz and should be designed as if they were clock signals. All signals are assumed to have rise times of 500–1000 picoseconds. It is assumed that the impedance of the PCB traces from the DSP to the 60-pin header is controlled and is between 50 Ω and 55 Ω .

Table 12 describes the recommended termination values by signal names.

Signal Name	Serial Termination Value in Ω s	Notes
TMS	42 ⁽¹⁾	Must be placed as closely as possible to the pin on the device, not to exceed 1" trace length from the pin.
TDO	42	Must be placed as closely as possible to the pin on the device, not to exceed 1" trace length from the pin.
TDI	42 ⁽¹⁾	Must be placed as closely as possible to the pin on the device, not to exceed 1" trace length from the pin.
TRST	-	Input
TCLKRTN	-	If not buffered, this signal is routed from TCLK with a 22 Ω series resistor with a trace length as short as possible. If buffered, see Figure C-2. If unbuffered, see Figure C-3.
TCLK	See note ⁽¹⁾	100 Ω in series with 8.2 pF parallel termination to ground for buffered TCLK configuration (Figure C-1). Use a 22 Ω series termination (near header) for unbuffered configuration (Figure C-2), unless the data sheet indicates this pin is an output, in which case use a 42 Ω resistor near the DSP. Values should be modeled to ensure proper value.
EMU[N:2]	42	Must be placed as close as possible to the EMU pin on the device, placement should not exceed 1" trace length from the pin at the DSP. See Figure C-3.
EMU[1:0]	42	Must be placed as close as possible to the EMU pin on the device, placement should not exceed 1" (0.5" recommended) trace length from the pin of the DSP. If a 14-pin header is used in parallel (not recommended), a separate 42 Ω resistor must be used to route these signals to the 14-pin header, see Figure C-4.

Table 12. Termination Values and Use Cases

⁽¹⁾ If the data sheet indicates these pins can be outputs, then the series termination resistors are required. Otherwise, no termination resistors are required.

See Section 16 and Appendix C for additional information on the trace lengths and impact of termination location.

Table 13. Summary: Terminations

1	Use of 42 Ω terminations is based on 50 Ω target designs.
2	Alternate termination values should be used if indicated by detailed modeling.
3	Model all critical nets to ensure termination values are correct.
4	Placement of indicated terminations is critical.

11 Buffering

The series termination value recommended assumes a source impedance between 5 Ω and 7 Ω . If the device output impedance is significantly different, the series termination values may need to be changed accordingly. The circuit should be simulated to determine the best value based on the device IBIS simulation models and/or data sheet.

If buffers are used, they should be selected based on the DSP source impedance and the potential load(s). In applications where multiple DSPs are used, selection of buffers and signals to be buffered are critical.

When buffering signals, it is imperative that timing, propagation delay, sink and source currents, and general buffer characteristics be considered.

See Appendix C for additional information on the buffering, location, and type of buffers to be used.

Table	14.	Summary:	Buffering
-------	-----	----------	-----------

	· •
1	Buffer signals based on loading and signal integrity.
2	In most cases, a single target board is better than a target board with daughter cards consisting of multiple headers.
3	Timing is a critical consideration for all active signals.
4	Model all critical nets to ensure termination values are correct.

12 General Specifications

General specifications are shown in Table 15.

ltem	Description/Specification
Impedance	Target board impedance should be in the range of 50 Ω (+5 / –0 Ω).
Connector Spacing	Maximum distance from header pin to respective emulation pin on DSP equals 2.0 inch trace length (1.5" recommended).
Board Material	Composite laminate FR-4.
Signal Skew	For EMU[18:00] signals, skew induced by the board should be 0 to 200 ps maximum between signals.
Capacitance	Maximum capacitance loading per pin (inclusive of all vias and components) equals 20 pF.
Signal Interconnect	Number of vias, not more than 2, and must be within the capacitive loading specified above.
Clock Source	TCLKRTN, pin number C8, is for a customer supplied clock source or TCLK return. A customer supplied clock source must not exceed a 3.3-V logic level.
Voltage Source	TVD, pin number B8, requires a current limited customer supplied voltage reference source.
Voltage Range	The TI emulation system is designed to operate between 0.5 V and 5.0 V.
Orientation Detect	Pin A8 is an N/C; pin D8 must be connected to GND.
Board Plating	Recommended is immersion gold, alternate is palladium or heavy gold.
Vertical Connector Clearance	Clearance for connector to be $1.2^{\circ} \times 1.0^{\circ}$ min (include additional space for grasping). See Figure 13.
Horizontal Connector Clearance	Clearance surrounding the 60-pin emulator connector should be per Figure 14, Figure 15, and Figure 16.
Signal Frequency	All signals are assumed to be clock signals and operating at 200 MHz, any signal can change direction dynamically.
Rise and Fall times	All rising and falling edges are assumed to be within 500-1500 picoseconds.

Table 15. General Specifications

13 Acceptable Signal Qualifications

The criteria for determining an acceptable signal waveform during simulation at the LVDS receiver within the emulator, or in actual application are illustrated in Figure 8. All percentages listed are with respect to the V^{High} reference levels (LVTTL 3.3 V). See Figure 8 for the corresponding graph points for the following list.

- A. Details the maximum amount of reflection, or protobations that may occur on the rising edge (pre-shoot). The magnitude of the reflections or protobations should be less than 20% of V^{High}.
- B. Details the critical signal switching region. No inflections greater than 10% of the rise time or 5% greater than V^{High} are allowed. It is preferred that the signal be able to increase monotonically.
- C. Details the region of the rising edge above the critical signal switching area. Inflections and/or protobations are allowed within this region as long as they do not exceed 20% of V^{High} or a duration less than the rise time of the pulse.
- D. Details the top of the pulse. The amplitude of all noise, crosstalk and other protobations should be less than 10% of V^{High}. For a 3.3 V signal, the amplitude should not exceed 165 mV.
- E. Details the maximum amount of reflection, or protobations that may occur on the falling edge. The magnitude of the reflections or protobations should be less than 20% of V^{High}.
- F. Details the critical signal-switching region. No inflections greater than 10% of the fall time or 5% greater than V^{High} are allowed. It is preferred that the signal be able to decrease monotonically.
- G. Details the region of the falling edge below the critical signal switching area. Inflections and/or protobations are allowed within this region as long as they do not exceed 20% of V^{High} or a duration less than the fall time of the pulse.
- H. Details the bottom of the pulse. The amplitude of all noise, crosstalk and other protobations should be less than 10% of V^{High}.
 - Duty cycle distortion should be less than 5%
 - All waveforms should be treated as dual edge clocks
 - Rise and fall times should be symmetrical
 - Switching thresholds are assumed to be 50% of $\mathsf{V}^{\mathsf{High}}$

Table 16. Summary: Acceptable Signals

1	Calculate reflections to verify they will not fall within the switching regions.
2	Protobations should not exceed 20% of V ^{High} .
3	Rise and fall times should be symmetrical.
4	The duration of overshoots should not exceed 20% of V ^{High} or less than the rise time of the pulse.
5	Noise and crosstalk should not exceed 10% of V ^{High} or 165 mV for a 3.3 V signal.
6	All wave forms should be treated as dual edge clocks.
7	Duty cycle distortion should be less than 5%.
8	Switching thresholds are assumed to be 50% of V ^{High} .

14 Connecting Alternate Headers

Traditional target designs commonly incorporated multiple headers. However, with the advent of higher speed DSPs and faster off chip emulation, it is strongly recommended that newer designs only use a single emulation header.

Traditional TI JTAG emulation operated at a maximum frequency of 10.368 MHz; however, more recent versions of basic scan JTAG now operate in excess of 35 to 50 MHz. More importantly, with the advent of Texas Instruments' new high speed trace that operates at a maximum of 333 MHz (167 dual edge, bi-phase), it is critical to use TI's 60-pin emulation header.

If alternate headers are used, consider how alternate headers, net lengths, timing, and the effect of stubs will impact performance and signal integrity.

14.1 14-Pin and 60-Pin Headers in Parallel

If a board is designed with both (two and more) headers; for example a 14-pin and 60-pin header, the signals should be connected as shown in Figure 9 and Figure 10. Each figure represents a split termination configuration. The traces should be kept as short as possible. The distance from the terminations and the pins on the DSP must not exceed a 0.75 inch trace length. EMU[0] and EMU[1] are terminated in the same manner as TMS, TDI and TDO (see Figure 9 and Figure 10 for recommended terminations). The EMU[2]–EMU[n] terminations are not shown because they are not supported by the 14-pin header.

Figure 9. Multi-Header TMS/TDI/TDO Terminations

Figure 10. Multi-Header EMU0/1 Terminations

Final termination values should be selected based on signal quality. Examine all signals against simulations and functional application. All nodes (see Figure 11) should have symmetrical lengths to the terminations to prevent reflections.

Figure 11. Symmetrical Nets

1	The series termination closest to the DSP should be closer than 0.75".
2	Traces originating at nodes should have symmetrical lengths.
3	The maximum distance originating from the node to the respective header should not exceed 1.5" in length.
4	Final termination values must be based on simulation and functional testing.
5	All terminations and nets should be void of stubs.

15 Layout and Routing Requirements

15.1 Maximum Recommended Distances

The layout requires certain specifications. Figure 12 illustrates the maximum recommended routing distance between the header pin and respective DSP EMU (emulation trace) pin. All emulation signals should be treated as a separate net class and routed accordingly. Take special care to meet the skew specifications. See Figure 12 for connector orientation.

Figure 12. Maximum Trace Lengths

The maximum recommended routing distance between a specific DSP pin and the respective pin on the interconnecting 60-pin header should not exceed 2.0 inches.

15.2 Implications of Layout and Route Distance Deviations

An increase in distance (DSP to Header) typically indicates an increased route distance. The implications to an extended route distance could not be fully summarized in this document, as all variables or possible routing methods cannot be considered and documented. Header proximity to the target device is critical for three main reasons: the speed of advanced emulation features, the higher speed traditional JTAG, and the faster rise times and logic speeds of the device itself.

16 Advanced Emulation – Layout and Route Distance Deviations

16.1 Signal to Signal Clearance

Consider routing key emulation or clock signals when laying out your target board with respect to the 60-pin emulation header. The potential for signal noise, crosstalk, and coupling increases with the higher frequency of TI's next generation emulators. To minimize this variable, route all clock and emulation (EMU) signals with a minimum of a 5 mil (0.005") clearance, although 6 mil (0.006") is preferred.

16.2 Trace Lengths

Trace length considerations take on two key variables: propagation and skew.

Propagation involves the distance between the header and the respective pin on the DSP. Excessive trace lengths present a problem, specifically with reflections. The key to minimizing the impact of reflections is to minimize trace lengths. When possible, lay out critical signals such that they propagate between the insertion and terminating points in a period of time that does not result in the reflected energy occurring in the switching region or the additive effect of multiple reflections does not fall in the switching regions on either the rising or falling edge. All active trace lengths (specifically for emulation, JTAG, and clock signals) should not exceed 2 inches in length. Lengths in excess of 2 inches increase the risk of reflections occurring in the critical regions of the signal waveform.

The remaining trace length variable is signal skew. For the purposes of this document, signal skew is the difference between the minimum and maximum propagation delays (T_{pd}) for a net class (grouping of signals belonging together). In most high speed applications, such as the new emulator, skew is as important as propagation delays. TI's new emulator will accommodate a certain amount of skew; however, excessive skew greater than 176 ps (or 1.0" for FR4) introduced during layout and routing also increases the potential for reduced performance.

Excessive skew or propagation delays increase the risk in potential bit errors, loss of data or faulty operation. Figure 12 illustrates the recommended header distance from the target processor (2" maximum).

While considering the routed length implications of propagation and skew, also consider the total circuit. Most traditional board designers are concerned with only the routes on their board. However, the target board is only one of three critical components of the typical emulation system. The interconnecting pod assembly and emulator are the other critical components. Consider all three components when designing a high-speed functional system.

The advanced emulation pins from the DSP to the header are grouped and routed as a net class to constrain the skew for all EMU[0] through EMU[n] signals. Emulation signals on the target board must be short because of the timing constraints. The distance for the EMU[n] net class of signals can also be interpreted as a maximum routed distance of 2 inches; this is inclusive of all supporting logic in each signal path on the target board. Maintaining a maximum routed length of \leq 2 inches equals approximately 352 ps of propagation delay. This tight constraint is required because of the combinational/multi-functional logic contained within the interconnecting pod.

Appendix F provides a spice model representing the pod interconnect logic. Deviations from the recommended route distances, loading, or skew must be evaluated using this representative model to ensure optimum frequency operation and overall performance.

1	All high speed emulation signals (CLKS and EMU) should be spaced a minimum of 5 mil from other signals.
2	Trace lengths for all clock and EMU signals should not exceed 2" maximum.
3	Unused EMU pins on the header should be left unconnected.
4	Skew between signals within a net class should not exceed 176 ps.
5	Layout and routing should also take into account the emulator and target.
6	PCB stack up should have a character impedance of 50 Ω .

Table 18. Summary: Advanced Emulation Layout and Routing

17 Traditional JTAG Emulation Layout & Route Distance Deviations

Layout and routing considerations include traditional JTAG signals, such as TDI, TDO, TMS, TCLK, and TCLKRTN. The greater the distance (or skew) between the header and the target processor, the greater the potential for timing errors (set up and hold, etc.). Skewing routed signals such as TCLK and TDI, or TDO and TCLKRTN, dramatically reduces the margin of setup timing to and from the target processor. Figure 12 illustrates the recommended header distance from the target processor (2 inches maximum).

As with the advanced emulation features described above, the routed length is equally, if not more important. Traditional JTAG signals, especially in the interconnecting pod, may serve other purposes in future devices. The interconnecting pod assembly has a significant amount of support logic that contains a large portion of the allotted quota of the routed distance. That, coupled with the induced cable propagation delay, requires that the traditional JTAG emulation signals be short.

As stated previously, traditional board designers typically concern themselves with only the routes on the board they are designing. The basic emulation signals are critical, not because of their high speed, but because of their unique timing characteristics. As the TCLK and TCLKRTN rates increase, the margin for setup and hold times decrease, so both must be considered when designing a high speed functional system.

The distance for the traditional JTAG emulation signals can also be interpreted as a maximum routed distance of 2 inches; this is inclusive of all supporting logic in each signal path on the target board. Maintaining a maximum routed length of \leq 2 inches is equal to approximately 352 ps of propagation delay. This tight constraint is required because of the combinational/multi-functional logic contained within the interconnecting pod. A spice model representing the pod interconnect logic is provided in Appendix F. Deviations from the recommended route distances, loading, or skew must be evaluated using this representative model to ensure optimum frequency operation and overall performance.

Note: Follow routing guideline for best operating frequency

Failure to follow the above routing guideline may result in a severely reduced operating frequency, resulting in lost bandwidth or the inability of the advanced features to function at full speed.

17.1 Layout and Routing – Mechanical Considerations

In addition to routing and layout considerations and electrical clearances, certain mechanical clearances must be observed and followed.

Figure 13. Minimum Clearance - Height

Figure 13 illustrates the target board header placement and clearances below the emulation and debug pod connector.

Figure 14 illustrates the top view of the emulation and debug pod header enclosure; additional spacing is required for installing and removing the pod target connector and for clearance of the emulator cable assembly.

Figure 14. Emulation and Debug Pod Header Enclosure Dimensions

Figure 15 illustrates the top view of the emulation and debug pod header enclosure and includes clearances for gripping.

Figure 16 illustrates the clearance area beneath the emulation and debug pod header enclosure with the pod removed. Components inside this area must maintain the minimum height as specified by Figure 13.

Figure 16. Emulation and Debug Header and Keep-out Area

Table 19. Summary:	Layout and	Routing – Mechanical	Considerations
--------------------	------------	----------------------	----------------

1	The maximum height of components in the keep-out area cannot exceed 0.274".
2	The basic area of concern beneath the pod header is 1.8" by 1.3".

18 Multiple DSP Considerations

There are two supported multiple device configurations: parallel and independent.

Figure 17 illustrates the basic parallel DSP interconnection method. This configuration supports global breakpoints using EMU0 or EMU1 routed in parallel between all processors. It also supports synchronous execution control by daisy-chaining the JTAG signals between processors, and advanced emulation capabilities with EMU[2:n] for a single processor. Given the source current capability of the individual devices, a maximum of 30 devices should never be exceeded. Exceeding this number of devices may severely impact performance. When designing target systems with a large number of DSPs, always minimize the number of vias and trace lengths, and pay special attention to the lengths of individual trace stubs.

Figure 17. Multiple DSP - Parallel Configuration

Multiple DSP Considerations

Figure 18 illustrates the basic independent DSP interconnection method. Under the independent interconnection method, each DSP has its own independent emulation pins assigned per header. An independent configuration as indicated in Figure 18 minimizes the pin count efficiency but maximizes the performance.

In the illustrated independent configuration (Figure 18), each DSP is in its own scan chain. Scanning through each device or global breakpoints are not supported.

Figure 18. Independent DSP Connection Method

Appendix A Alternate Target Impedance Configurations

A.1 PCI Interfaces

Most TI DSPs are designed to operate on a 50 Ω character impedance target board. For Texas Instruments' DSP processors incorporating a built-in PCI, Ethernet, or memory interface, the trace impedance should also be 50 Ω . Other DSPs may require a different trace impedance in the range of 60 to 100 Ω .

Always see the DSP application reports or data sheets for detailed impedance requirements and confirm that the target board is designed accordingly.

Appendix G provides information to assist target board designers in obtaining the optimal interconnect impedance by varying widths of the appropriate traces. Various constraints are noted, such as the dielectric constant of the board material, the separation between layers, etc. This chart assumes an Er of 4.1, which is typical for FR-4 material. This appendix also shows how to design a multiple impedance printed circuit board.

All header signals are routed as if they were clock signal lines operating at 200 MHz.

Appendix B Header Information

B.1 Header Information

The header selected for Texas Instruments' next generation emulation interface is manufactured by Samtec USA. Table 6 lists the basic specifications for the 60-pin header.

Item	Value	Comments
Connector Type	SOLC-115-02-S-Q-P	Standard force
Contact Rating	2.5 Ω	Per contact
Contact Material		BeCu
Contact Plating	Au over Ni	Alternate is palladium
Contact Resistance	<15 Ω max	
Contact Insertion/Removal Cycles	2,000	Per manufacturer specifications and standard force
Contact Pitch (Row)	0.050"	Pitch between mating header contacts
Contact Capacitance	0.4 pF	Average at 1 MHz
Propagation Delay	57.3 ps	100 ps rise time
Crosstalk @ 10 MHz	–51.6 dB	(G / S / S / G) average
Crosstalk @ 100 MHz	–32.0 dB	(G / S / S / G) average
Crosstalk @ 500 MHz	–16.0 dB	(G / S / S / G) average
Contact Inductance	7.0 nH	Average at 1 MHz
Contact Pitch (A-B-C-D)	0.025"	Pitch between board contacts
Contact Insertion Force	4.0 oz–7.8 oz	SIF (standard insertion force) (nom = 4 oz)
Contact Removal Force	3.8 oz–7.3 oz	SRF (standard removal force) (nom = 5 oz)
Connector Insertion Force	15 lbs-29.25 lbs	SIF (standard insertion force) (nom = 15 lbs)
Connector Removal Force	14.25 lbs-27.37 lbs	SRF (standard removal force) (nom = 18.75 lbs)
Connector Impedance @ 10 MHz	50 Ω	Does not include board modifications to adjust impedance.
Connector Impedance @100 MHz	50.7 Ω	Does not include board modifications to adjust impedance.
Connector Impedance @ 500 MHz	51.3 Ω	Does not include board modifications to adjust impedance.
Insertion Depth	0.066"–0.142"	0.015" wipe
Connector Temperature Range	–65°C to + 125°C	

Detailed drawings and specifications are available online from the connector manufacturer's web site at http://www.samtec.com.

Appendix C Buffering – Methods, Techniques and Terminations

C.1 Buffering – Methods, Techniques and Terminations

Figure C-1 represents the recommended buffering for TCLK; alternate buffers may be used if appropriate. See the manufacturer's data sheets to confirm timing, drive, and voltage characteristics for your specific target.

Figure C-1. Recommended TCLK Buffered Configuration

Figure C-2 represents the recommended termination for an unbuffered TCLK line. Termination values should be placed in close proximity to the 60-pin emulation header.

Figure C-2. Recommended TCLK Unbuffered Configuration

Figure C-3 illustrates the preferred placement for all emulation (EMU) terminations. Values and placements may vary depending on your DSP and trace lengths. Always model or simulate your design for optimal performance.

See your DSP data sheet for additional recommendations.

Figure C-3. Recommended EMU Output Configuration

Figure C-4 illustrates the preferred placement for EMU0 and EMU1 terminations when multiple headers are used. Values and placements may vary depending on your DSP and trace lengths. The trace lengths listed are maximum values. Always model or simulate your design for optimal performance.

See your DSP data sheet for additional recommendations.

Figure C-4. Preferred Configuration for EMU0 and EMU1 Terminations

Figure C-1, Figure C-3, and Figure C-4 all recommend a maximum 0.5" trace distance between the DSP and the termination resistor. This distance for this node under all conditions cannot exceed 1.0".

Appendix D 14-Pin and 60-Pin Headers in Parallel

D.1 14-Pin and 60-Pin Headers in Parallel

If a multi-header configuration is used, the TCLK signal must be buffered. See Figure D-1 for recommended terminations. The use of an FET style switch or multiplexer, such as a 74CBT3125 or 74CBT3257, is mandatory to minimize clock skew between TCLKRTN and the TCLK to the DSP.

The buffer, in this case a 74LVC1G32, is not mandatory, any suitable device can be used. The AC terminations and buffers must be located within 0.5-inch trace length of the header. The 33 Ω series termination should be located as close as possible to the buffer.

Designers should model their circuits including board impedance to determine the proper termination values. It should be noted that Texas Instruments does not recommend the use of the dual header scheme, as it has a potential impact on the overall performance of advanced emulation features.

Figure D-1. TCLK, Multiple Header Configuration

Appendix E Layout and Routing Requirements

E.1 Layout and Route Deviations [Advanced Emulation]

To minimize routing deviations, provide a clean electrical environment for advance emulation capabilities. The greater the distance (or skew) between the header and the target processor, the greater the potential for timing errors. A small amount of skew is acceptable and can be accommodated. However, excessive propagation or skew, beyond an allotted amount, will produce bit errors, loss of data or faulty operation. Figure 15 illustrates the recommended header distance from the target processor (2 inches maximum).

A spice model representing the pod interconnect logic is provided in Appendix F. Deviations from the recommended route distances, loading, or skew must be evaluated using this representative model to ensure optimum frequency operation and overall performance.

Appendix F Spice Model

F.1 Spice Model

Figure F-1 illustrates the EMU0 spice model for TI's advanced emulation pod assembly and partial target board logic.

Example F-1 is the spice net list for the spice model in Figure F-1. This illustration references a 50 Ω characteristic impedance target PCB. Clock speeds are 200 MHz. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-2 illustrates an acceptable waveform for Figure F-1 and Example F-1 using TI's new advanced emulation pod and a 50 Ω character-impedance target board.

Example F-2 illustrates the spice net list used to create the spice model for a 75 Ω target board impedance and TI's advanced emulation pod.

Figure F-3 illustrates the waveform for Figure F-1 and Example F-2 using TI's new advanced emulation pod and a 75 Ω character-impedance target board.

Figure F-4 illustrates the EMU2 type signals (see Table F-1) spice model for TI's advanced emulation pod assembly and partial target board logic.

Example F-3 is the spice net list for the spice model in Figure F-4. This illustration references a 50 Ω character-impedance target PCB. Clock speeds are 200 MHz. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-5 illustrates an acceptable waveform for Figure F-4 and Example F-3 using TI's new advanced emulation pod and a 50 Ω character-impedance target board.

Figure F-6 illustrates the EMU18 type signals (see Table F-1) spice model for TI's advanced emulation pod assembly and partial target board logic.

Example F-4 is the spice net list for the spice model in Figure F-6. This illustration references a 50 Ω character-impedance target PCB. Clock speeds are 200 MHz. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-7 illustrates an acceptable waveform for Figure F-6 and Example F-4 using TI's new advanced emulation pod and a 50 Ω character-impedance target board.

Figure F-8 illustrates the dual header configuration EMU0 spice model for TI's advanced emulation pod assembly and a partial target board logic. This model is provided to emphasize the advantages of using a single emulation header.

Example F-5 is the spice net list for the spice model in Figure F-8. This illustration references a 50 Ω character-impedance target PCB. Clock speeds are 200 MHz. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-9 illustrates the waveform for Figure F-8 and Example F-5 using TI's new advanced emulation pod and a 50 Ω character impedance target board in a two-header configuration.

Certain characteristics of the target board may change – the spice net list must be modified and rerun to determine the outcome.

Model as EMU2	Model as EMU18
EMU2	EMU12
EMU3	EMU14
EMU4	EMU15
EMU5	EMU16
EMU6	EMU17
EMU7	EMU18
EMU8	
EMU9	
EMU10	
EMU11	
EMU13	

Table F-1. EMU Pins Modeled as EMU2 or EMU18

Figure F-1 is a representative spice model for TI's XDS560T advanced emulation pod assembly. Clock speeds are 200 MHz. This illustration supports both a 75 Ω and 50 Ω character impedance target PCB. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-1. EMU0 Simulation Model – (Advanced Emulation Pod, 50 Ω, and 75 Ω Target and Pod Model)

Example F-1 represents the spice net list used to create the spice model for a 50 Ω target board impedance and Texas Instruments' advanced emulation pod. Certain characteristics of the target board may change - the spice net list must be modified and re-run to determine the potential outcome.

Example F-1. EMU0 Spice Net List (50 Ω Target And Pod Model)

```
*** Top Level Netlist ***
C4
       0 10 0.5p
C50
        6 InputLVDS 3.9p
V1
       DSP 0
              DC 3.3V AC 0 0 PULSE 0 3.3V 0 800.00p 800.00p 2.20n 4.40n
          1 0 DSP 0 ZO=50 TD=.088ns F=200Meg NL=0.5
Tran0
Tranl
          Header 0 9 0 ZO=50 TD=.264ns F=200Meg NL=1.5
Tran2
          10 0 Header 0 ZO=50 TD=.176ns F=200Meg NL=0.5
          10 0 13 0 ZO=50 TD=0.990ns F=200Meg NL=5.625
Tran3
Tran6
          2 0 20 0 ZO=50 TD=0.2403808ns F=200Meg NL=1.3658
C2
       0 Header 1p
C7
       0 2 0.5p
       0 4 4p
Сб
      12 0
V2
               DC 3.30 AC 0 0
C9
       0 InputLVDS 0.5p
C0
       0 1 0.5p
C1
       0 9 0.5p
       0 InputLVDS 0.5p
C10
C11
        0 InputLVDS 5p
C12
        13 0 0.5p
Tran5
          8 0 20 0 ZO=50 TD=.1056ns F=200Meg NL=0.6
          6 0 2 0 ZO=50 TD=0.1232ns F=200Meg NL=0.7
Tran10
C13
        023p
C14
        0 2 1.3p
         13 0 20 0 ZO=50 TD=0.176ns F=200Meg NL=0.576
Tran4
R1
       1 9 42
         InputLVDS 6 2.87K
R216
        12 InputLVDS 1.5K
R217
R215
        12 6 1.5K
R100
         2 0 100K
       0 4 100K
R3
R218
        4 8 27
R214
         InputLVDS 0 1.5K
       InputLVDS 0 100K
R8
***** Spice models and macro models *****
***** End of spice models and macro models *****
.tran 1n 100n 0.0 1n
.save all
.end
```


Spice Model

The result of your 50 Ω target PCB simulation and modeling should be an acceptable waveform, similar to that illustrated in Figure F-2.

Figure F-2. EMU0 Acceptable Wave Form (Host Side, Advanced Emulation Pod - 50 Ω)

Example F-2 represents the spice net list used to create the spice model for a 75 Ω target board impedance and Texas Instruments' advanced emulation pod assembly.

Example F-2. EMU0 Spice Net List (Host Side, Advanced Emulation Pod - 75 Ω)

```
*** Top Level Netlist ***
       0 10 0.5p
C4
C50
       6 InputLVDS 3.9p
       DSP 0
              DC 3.3V AC 0 0 PULSE 0 3.3V 0 800.00p 800.00p 2.20n 4.40n
V1
Tran0
         1 0 DSP 0 ZO=75 TD=.088ns F=200Meg NL=0.5
          Header 0 9 0 ZO=75 TD=.264ns F=200Meg NL=1.5
Tran1
Tran2
         10 0 Header 0 ZO=75 TD=.176ns F=200Meg NL=0.5
Tran3
         10 0 13 0 ZO=75 TD=0.990ns F=200Meg NL=5.625
          2 0 20 0 ZO=75 TD=0.2403808ns F=200Meg NL=1.3658
Tran6
C2
       0 Header 1p
C7
       0 2 0.5p
       0 4 4p
C6
       12 0
              DC 3.30 AC 0 0
V2
C9
       0 InputLVDS 0.5p
C0
       0 1 0.5p
       0 9 0.5p
C1
C10
       0 InputLVDS 0.5p
C11
        0 InputLVDS 5p
C12
        13 0 0.5p
         8 0 20 0 ZO=75 TD=.1056ns F=200Meg NL=0.6
Tran5
Tran10
          6 0 2 0 ZO=75 TD=0.1232ns F=200Meg NL=0.7
        0 2 3p
C13
C14
        0 2 1.3p
Tran4
         13 0 20 0 ZO=75 TD=0.176ns F=200Meg NL=0.576
       1 9 42
R1
R216
        InputLVDS 6 2.87K
R217
        12 InputLVDS 1.5K
R215
        12 6 1.5K
R100
        2 0 100K
       0 4 100K
R3
R218
        4 8 27
R214
        InputLVDS 0 1.5K
       InputLVDS 0 100K
R8
***** Spice models and macro models *****
***** End of spice models and macro models *****
.tran 1n 100n 0.0 1n
.save all
.end
```


Spice Model

The result of your 75 Ω target PCB simulation and modeling from Example F-2 should be similar to the waveform illustrated in Figure F-3.

Figure F-3. EMU0 Wave Form (Host Side, Advanced Emulation – 75 Ω)

Figure F-4 is a representative spice model for TI's XDS560T advanced emulation pod assembly. Clock speeds are 200 MHz. This illustration supports a 50 Ω character impedance target PCB. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-4. EMU2 Type Signals Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)

Spice Model

Example F-3 represents the spice net list used to create the spice model in Figure F-4 for a 50 Ω target board impedance and Texas Instruments' advanced emulation pod.

Example F-3. EMU2 Type Signals Spice Net List (Host Side, Emulation Pod – 50 Ω)

```
*** Top Level Netlist ***
C4
       0 10 0.5p
C52
        2 InputLVDS 3.9p
       DSP 0
              DC 3.3V AC 0 0 PULSE 0 3.3V 0 1.00n 1.00n 1.50n 5.00n
V1
Tran0
         1 0 DSP 0 ZO=50 TD=.088ns F=200Meg NL=0.5
          Header 0 9 0 ZO=50 TD=.264ns F=200Meg NL=1.5
Tran1
Tran2
          10 0 Header 0 ZO=50 TD=.176ns F=200Meg NL=0.5
Tran3
          10 0 13 0 ZO=50 TD=0.990ns F=200Meg NL=5.625
          17 0 3 0 ZO=50 TD=0.2464n F=200Meg NL=1.4
Tran5
C2
       0 Header 1p
       0 17 0.5p
C7
V2
       70
            DC 3.30 AC 0 0
       0 1 0.5p
C0
C1
       0 9 0.5p
C10
        0 InputLVDS 0.5p
C11
        0 InputLVDS 5p
        0 3 0.5p
C12
          2 0 17 0 ZO=50 TD=0.1056ns F=200Meg NL=0.6
Tran6
C14
        0 17 1.3p
         13 0 3 0 ZO=50 TD=0.0176ns F=200Meg NL=0.1
Tran4
R1
       1 9 42
R228
         InputLVDS 2 2.87K
R226
         7 InputLVDS 1.5K
R227
         7 2 1.5K
R8
       InputLVDS 0 100K
C53
       0 InputLVDS 0.5p
R229
        InputLVDS 0 1.5K
***** Spice models and macro models *****
***** End of spice models and macro models *****
.tran 10p 100n 0.0 5p
.save all
.end
```


The result of your 50 Ω target PCB simulation and modeling from Example F-3 should be an acceptable waveform, similar to that illustrated in Figure F-5.

Figure F-5. EMU2 Type Signals Acceptable Wave Form (Host Side, Emulation Pod – 50 Ω)

Spice Model

Figure F-6 is a representative spice model for TI's XDS560T advanced emulation pod assembly. Clock speeds are 200 MHz. This illustration supports a 50 Ω character impedance target PCB. Constraints to consider or modify are trace length and board supporting logic. Additional modeling should be done for signal cross talk.

Figure F-6. EMU18 Type Signals Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)

Example F-4 represents the spice net list used to create the spice model in Figure F-6 for a 50 Ω target board impedance and Texas Instruments' advanced emulation pod.

Example F-4. EMU18 Type Signals Spice Net List (Host Side, Emulation Pod – 50 Ω)

```
*** Top Level Netlist ***
C4
       0 10 0.5p
C70
       6 InputLVDS 3.9p
       DSP 0
              DC 3.3V AC 0 0 PULSE 0 3.3V 0 1.00n 1.00n 1.50n 5.00n
V1
Tran0
         1 0 DSP 0 ZO=50 TD=.088ns F=200Meg NL=0.5
          Header 0 9 0 ZO=50 TD=.264ns F=200Meg NL=1.5
Tran1
Tran2
          10 0 Header 0 ZO=50 TD=.176ns F=200Meg NL=0.5
Tran3
          10 0 13 0 ZO=50 TD=0.990ns F=200Meg NL=5.625
         18 0 8 0 ZO=50 TD=0.0352n F=200Meg NL=0.2"
Tran5
C2
       0 Header 1p
C7
       0 18 0.5p
V2
       70
            DC 3.30 AC 0 0
       0 1 0.5p
C0
C1
       0 9 0.5p
C10
        0 InputLVDS 0.5p
C11
        0 InputLVDS 5p
C12
        0 8 0.5p
         6 0 18 0 ZO=50 TD=0.0176ns F=200Meg NL=0.1
Tran6
C14
        0 6 1.3p
         13 0 8 0 ZO=50 TD=0.0704ns F=200Meg NL=0.4
Tran4
       1 9 42
R1
R309
         InputLVDS 6 2.87K
R310
         7 InputLVDS 1.5K
R308
         7 6 1.5K
R8
       InputLVDS 0 100K
C53
       0 InputLVDS 0.5p
R307
        InputLVDS 0 1.5K
***** Spice models and macro models *****
***** End of spice models and macro models *****
.tran 2n 100n 0.0 2n
.save all
.end
```


Spice Model

The result of your 50 Ω target PCB simulation and modeling from Figure F-6 should be an acceptable waveform, similar to that illustrated in Figure F-7.

Figure F-7. EMU18 Type Signals – Acceptable Wave Form (Host Side, Emulation Pod – 50 Ω)

Figure F-8 is a spice model for a dual-header configuration using TI's XDS560T advanced emulation pod assembly. Clock speeds are 200 MHz. This illustration supports a 50 Ω character impedance target PCB. Dual-header configurations are not recommended and require a variety of constraints to be modeled (trace length and supporting logic). Additional modeling should be done for signal cross talk.

It is strongly recommended that only TI's emulation header be used.

Figure F-8. EMU0 Dual-Header Simulation Model (Advanced Emulation Pod - 50 Ω Target and Pod Model)

Spice Model

Example F-5 represents the spice net list used to create the spice model in Figure F-8 for a 50 Ω dual-header target board impedance and Texas Instruments' advanced emulation pod.

Example F-5. EMU0 Dual-Header Spice Net List (Host Side, Emulation Pod – 50 Ω)

```
*** Top Level Netlist ***
       0 10 0.5p
C4
C50
       12 InputLVDS 3.9p
              DC 3.3V AC 0 0 PULSE 0 3.3V 0 800.00p 800.00p 2.20n 4.40n
V1
       DSP 0
Tran0
         1 0 DSP 0 ZO=50 TD=.088ns F=200Meg NL=0.5
Tranl
          5 0 9 0 ZO=50 TD=.264ns F=200Meg NL=1.5
Tran2
         10 0 5 0 ZO=50 TD=.176ns F=200Meg NL=0.5
         10 0 13 0 ZO=50 TD=0.990ns F=200Meg NL=5.625
Tran3
          2 0 18 0 ZO=50 TD=0.2403808ns F=200Meg NL=1.3658
Tran6
C2
       0 5 1p
C7
       2 0 0.5p
C6
       8 0 4p
       16 0
              DC 3.30 AC 0 0
V2
C9
       0 InputLVDS 0.5p
C0
       0 1 0.5p
C1
       0 9 0.5p
C10
       0 InputLVDS 0.5p
C11
        0 InputLVDS 5p
C12
        13 0 0.5p
         14 0 18 0 ZO=50 TD=.1056ns F=200Meg NL=0.6
Tran5
         12 0 2 0 ZO=50 TD=0.1232ns F=200Meg NL=0.7
Tran7
        0 2 3p
C13
C14
        0 2 1.3p
         13 0 18 0 ZO=50 TD=0.176ns F=200Meg NL=0.576
Tran4
       1 9 42
R1
R216
        InputLVDS 12 2.87K
R217
        16 InputLVDS 1.5K
R215
        16 12 1.5K
R100
        2 0 100K
       8 0 100K
R3
R218
        8 14 27
R214
         InputLVDS 0 1.5K
       InputLVDS 0 100K
R8
Tran8
         5 0 Header14 0 ZO=50 TD=0.2816ns F=200Meg NL=1.6
        0 5 0.5p
C51
C52
        0 Header14 1p
        Header14 0 100K
R300
***** Spice models and macro models *****
***** End of spice models and macro models *****
.tran 1n 100n 0.0 1n
.save all
.end
```


The result of your 50 Ω dual-header target PCB simulation and modeling from Figure F-8 should be an acceptable waveform, similar to that illustrated in Figure F-9.

Figure F-9. EMU0 Dual-Header – Wave Form (Host Side, Emulation Pod – 50 Ω)

Appendix G Variable Board Impedance

G.1 Variable Board Impedance

Figure G-1 illustrates the ability to alter individual printed circuit board impedances by varying the dielectric thickness and spacing for specific signal layers to reference planes.

Microstrip Impedance (Er=4.1)

Figure G-1. Various PCB Impedance Calculations

A typical layer stackup is shown to the left, all copper layers are assumed to be 1 mil thick. Total board thickness is 0.063.

If h=7 mils, and h1 = 5 mils, a 7.5-mil wide trace has a 50- Ω impedance and a 3.5-mil wide trace has a 71- Ω impedance.

Example of 10-layer PCB construction

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated