

TL060, TL060A, TL060B, TL061, TL061A, TL061B, TL062, TL062A, TL062B, TL064, TL064A, TL064B

Low-Power JFET-Input Operational Amplifiers

The JFET-input operational amplifiers of the TL061 series are designed as low-power versions of the TL081 series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and bias currents. The TL061 series features the same terminal assignments as the TL071 and TL081 series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

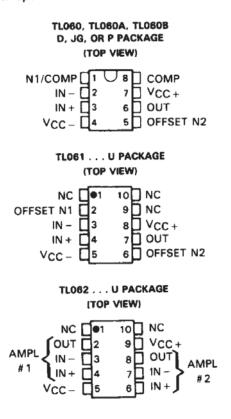
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

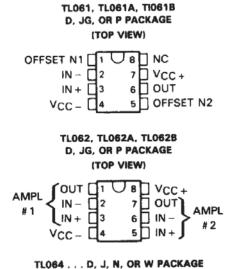
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

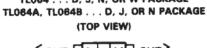
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

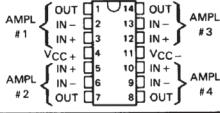
D2392, NOVEMBER 1978-REVISED NOVEMBER 1988

20 DEVICES COVER MILITARY, INDUSTRIAL, AND COMMERCIAL TEMPERATURE RANGES

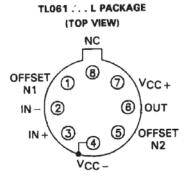

- Very Low Power Consumption
- Typical Supply Current . . . 200 μA (per Amplifier)
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Common-Mode Input Voltage Range Includes VCC+


- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL060)
- Latch-Up-Free Operation
- High Slew Rate . . . 3.5 V/μs Typ

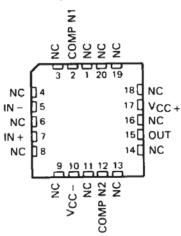

description


The JFET-input operational amplifiers of the TL061 series are designed as low-power versions of the TL081 series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and bias currents. The TL061 series features the same terminal assignments as the TL071 and TL081 series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

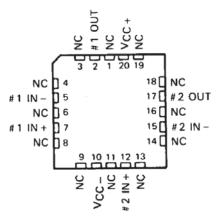
M-suffix devices are characterized for operation over the full military temperature range of $-55\,^{\circ}$ C to 125 $^{\circ}$ C. I-suffix devices are characterized for operation from $-40\,^{\circ}$ C to 85 $^{\circ}$ C, and C-suffix devices are characterized for operation from 0 $^{\circ}$ C to 70 $^{\circ}$ C.



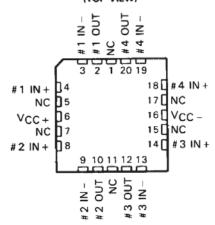
Copyright © 1983 by Texas Instruments Incorporated


PIN 4 IS IN ELECTRICAL CONTACT WITH THE CASE

AMPLIFIER # 1 AMPLIFIER # 1 AMPLIFIER # 1 AMPLIFIER # 2 AM


TL062 . . . L PACKAGE

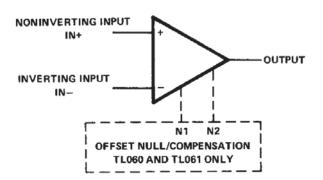
PIN 4 IS IN ELECTRICAL CONTACT
WITH THE CASE


TL061 . . . FK PACKAGE (TOP VIEW)

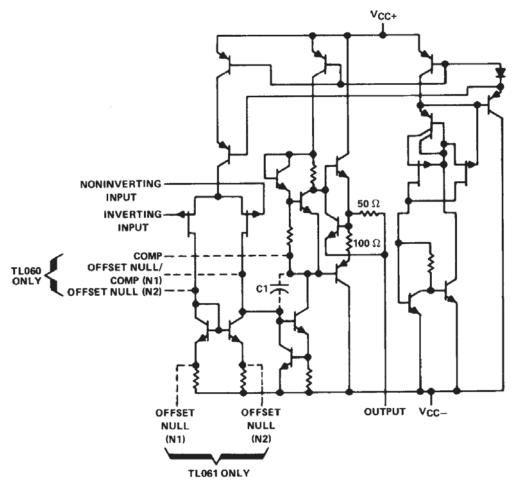
TL062 . . . FK PACKAGE (TOP VIEW)

TL064 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection



AVAILABLE OPTIONS


					PACK	AGE				
_	VIO MAX	SMALL	CHIP	CERAMIC	CERAMIC	PLUG-	PLASTIC	PLASTIC	FLAT	FLAT
TA	at 25°C	OUTLINE	CARRIER	DIP	DIP	IN	DIP	DIP	PACK	PACK
		(D)	(FK)	(J)	(JG)	(L)	(N)	(P)	(U)	(W)
	15 mV	TL060CD			TL060CJG			TL060CP		
	6 mV	TL060ACD			TL060ACJG			TL060ACP		
	3 mV	TL060BCD			TL060BCJG			TL060BCP		
	15 mV	TL061CD			TL061CJG			TL061CP		
0°C to 70°C	6 mV	TL061ACD			TL061ACJG			TL061ACP		
	3 mV	TL061BCD			TL0618CJG			TL061BCP		
	15 mV	TL062CD			TL062CJG			TL062CP		
	6 mV	TL062ACD			TL062ACJG			TL062ACP		
	3 mV	TL062BCD			TL062BCJG			TL062BCP		
	15 mV	TL064CD		TL064CJ			TL064CN			
	6 mV	TL064ACD		TL064ACJ		1 1	TL064ACN			
	3 mV	TL064BCD		TL064BCJ	L		TL064BCN			
1000	6 mV	TL060ID			TL060IJG			TL060IP		
-40°C to 85°C	6 mV	TLO61ID			TL061IJG			TLO61IP		
	6 mV	TL062ID			TL062IJG			TL062IP		
	6 mV	TL064ID		TL064IJ	l		TL064IN			
-55°C	6 mV		TL061MFK		TL061MJG	TL061ML			TL061MU	
to	6 mV		TL062MFK		TL062MJG	TL062ML			TL062MU	
125°C	9 mV		TL064MFK	TL064MJ		L		L		TL064MW

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL061CDR).

symbol (each amplifier)

schematic (each amplifier)

C1 = 10 pF ON TL061, TL062, AND TL064 ONLY COMPONENT VALUES SHOWN ARE NOMINAL

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL06_M	TL06_I	TL06_C, TL06_AC,	UNIT
				TL06_BC	
Supply voltage, V _{CC+} (see Note 1)		18	18	18	٧
Supply voltage, V _{CC} (see Note 1)		- 18	- 18	-18	٧
Differential input voltage (see Note 2)		±30	±30	±30	٧
Input voltage (see Notes 1 and 3)		±15	±15	±15	V
Voltage between power-control terminal and V _{CC} -		±0.5	±0.5	±0.5	٧
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total dissipation		Se	e Dissipation	Rating Table	
Operating free-air temperature range		-55 to 125	-40 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Case temperature for 60 seconds	FK package	260			°C
Land terminative 1.6 mm (1/16 inch) from each for 60 accords	J, JG, U or	300	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	W package	300	300	300	-0
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D, N or		260	260	°C
Lead temperature 1,0 mm (1/10 inch) from case for 10 seconds	P package		200	200	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	L package	300			°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8-pin)	680 mW	5.8 mW/°C	33°C	464 mW	377 mW	N/A
D (14-pin)	680 mW	7.6 mW/°C	60°C	608 mW	494 mW	N/A
FK	680 mW	11.0 mW/°C	88 °C	680 mW	680 mW	275 mW
J (TL06_M)	680 mW	11.0 mW/°C	88 °C	680 mW	680 mW	275 mW
J (all others)	680 mW	8.2 mW/°C	67°C	656 mW	533 mW	N/A
JG (TL06_M)	680 mW	8.4 mW/°C	69 °C	672 mW	546 mW	210 mW
JG (all others)	680 mW	6.6 mW/°C	47 °C	528 mW	429 mW	N/A
L	680 mW	6.6 mW/°C	47 °C	528 mW	429 mW	165 mW
N	680 mW	9.2 mW/°C	76°C	680 mW	598 mW	N/A
. Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
U	675 mW	5.4 mW/°C	25°C	432 mW	351 mW	135 mW
w	680 mW	8.0 mW/°C	65 °C	640 mW	520 mW	200 mW

TL061M, TL062M, TL064M LOW-POWER JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, $VCC \pm = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETER	TEET	CONDITIONS†		TL061N			TL064N	1	UNIT
	PARAMETER	1231	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	1
		V _O = 0,	T _A = 25°C		3	6		3	9	mV
V _{1O}	Input offset voltage	$R_S = 50 \Omega$,	$T_A = -55$ °C to 125 °C			9			15	
ανιο	anafficient of	$V_O = 0$, $T_A = -55$ °C	-		10			10		μV/°C
	Input offset		T _A = 25°C		5	100		5	100	pΑ
lo	current [‡]	$V_0 = 0$	$T_A = 25$ °C $T_A = -55$ °C to 125 °C			20			20	nA
l. a	Input bias current	V _O = 0	T _A = 25°C		30	200		30	200	pA
IB	input bias current	10 - 0	$T_A = -55$ °C to 125°C			50		40	50	nA_
	Common-mode				-12			-12		v
VICR	input voltage range	T _A = 25°C		±11.5	to +15		±11.5	to + 15		"
	Maximum	R _L = 10 kΩ,	T _A = 25°C	±10	±13.5		±10	±13.5		V
VOM	peak output voltage swing	R _L ≥ 10 IΩ,	$T_A = -55$ °C to 125°C	± 10			± 10			
	Large-signal	VO = ± 10 V	T _A = 25°C	4	6		4	6		V/mV
AVD	differential voltage amplification		$T_A = -55$ °C to 125°C	4			4			
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	L						MHz
ri	Input resistance	TA = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} π R _S = 50 Ω,	nin, V _O = 0, T _A = 25°C	80	86		80	86		dB
ksvr	Supply voltage rejection ratio (ΔV _{CC ±} /ΔV _{IO})	$V_{CC} = \pm 15$ R _S = 50 Ω ,	V to $\pm 9 \text{ V}$, $V_0 = 0$, $T_A = 25 ^{\circ}\text{C}$	80	95		80	95		dB
PD	Total power dissipation (each amplifier)	No load, T _A = 25°C			6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	No load, T _A = 25°C	$V_O = 0$,		200	250		200	250	μΑ
V ₀₁ /V ₀	2 Crosstalk attenuation	AVD = 100,	T _A = 25 °C		120			120		dB

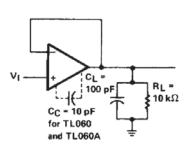
[†]All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

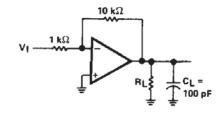
[‡]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

Operational Amplifiers

electrical characteristics, VCC ± = ± 15 V (unless otherwise noted)

					10001			71000			71 0000		F	CAOBO	ŀ	ſ
					LOBO		_	3000		,	2000			0000		
					TL061			TL061C		-	TL061AC		=	LUGIBC		
	PARAMETER	TEST C	EST CONDITIONS		TL062I			TL062C		-	TL062AC		F	TL062BC		LINO
	•				TL0641			TL084C		-	TL064AC		ļ	TL064BC		
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
,		V ₀ = 0,	TA = 25°C		6	9		m	15		3	9		7	က	>
0/0	Input offset voltage	$R_S = 50 \Omega$	T _A = full range			6			20			7.5			۵	
25.6	Temperature coefficient of	V ₀ = 0,	Rs = 50 a,		0			5			10			101		ν,ν,α πν/•ς
2	input offset voltage	T _A = full range	9.													
	Input offset		TA = 25°C		5	100		2	200		2	100		D.	100	ρĄ
9	current*	n = 0 _A	T _A = full range			10			5			3			6	Αn
	-		TA = 25°C		30	200		30	400		30	200		30	200	ρĄ
9	Input bias current	0 = 0v	TA = full range			20	L		10			7			7	۸n
VICR	Common-mode input voltage range	T _A = 25°C		±11.5	to + 15		±11	-12 to +15		±11.5	-12 to +15		±11.5	-12 to +15		>
	Maximum	R _L = 10 kB,	TA = 25°C	±10	±13.5		10 ∓	±13.5		± 10	±13.5		±10 ±	±13.5		>
WO _A	peak output voltage swing	R _L ≥ 10 kΩ,	TA = full range	±10			+ 10			±10			±10			
	Large-signal	V ₀ = ± 10 V.	/, TA = 25°C	4	9		3	9		4	9		4	9		> E
AVD	omerential voltage amplification	R _L ≥ 10 ka	TA = full range	4			3			4			4			
B1	Unity-gain bandwidth	$R_L = 10 \text{ kg},$	TA = 25°C		-			-			-			-		MHz
ī.	Input resistance	TA = 25°C			1012			1012			1012			1012		ū
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} π R _S = 50 Ω,	V_{ICR} min, $V_{Q} = 0$, in $\Omega_{A} = 25$ °C	80	86		70	86		88	86		80	98		g B
ksvR	Supply voltage rejection ratio (∆VCC ± \∆VIO)	Vcc = ±15 Vcc = ±15 Vcc	±15 V to ±9 V, V ₀ = 0, 0 Ω, T _A = 25°C	80	92		70	98		80	92		80	96		8
P _D	Total power dissipation (each amplifier)	No load, TA = 25°C	V ₀ = 0,		9	7.5		9	7.6		φ	7.5		9	7.5	≱ E
221	Supply current (each amplifier)	No load, TA = 25°C	V ₀ = 0,		200	250		200	250		200	250		200	250	ΨΨ
Vo1/Vo2	Crosstalk attenuation	Avp = 100,	TA = 25°C		120			120			120			120		дB
			10.			olon opposite ob	400		istad E	-anno 6		3000	000 of 100 has 1 At 1100 Be of 2006 - is T to acres 100 has 1100 acres 2000 and 1000 has 1000 acres 1000 acres	TINE	000	J ₀ 02 0+


All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for TA is -40°C to B5°C for TL06_I and 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC.


fingut bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 17. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible

operating characteristics, VCC± = ±15 V, TA = 25°C

	PARAMETER	TEST COM	NDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _I = 10 V,	$R_L = 10 k\Omega$,	1.5	3.5		V/μ8
311	Slew late at drifty gain	$C_L = 100 \text{ pF},$	See Figure 1	1.5	3.5		ν/μδ
t _r	Rise time	$V_{\parallel} = 20 \text{ mV},$	$R_L = 10 k\Omega$,		0.2		μs
	Overshoot factor	$C_L = 100 \text{ pF},$	See Figure 1		10%		
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$	f = 1 kHz		42		nV/√Hz

PARAMETER MEASUREMENT INFORMATION

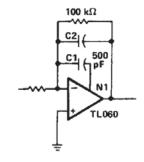


FIGURE 1. UNITY-GAIN AMPLIFIER

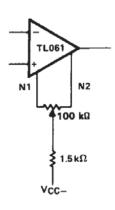
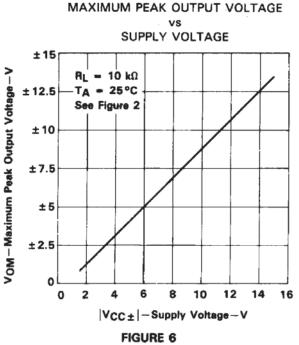
FIGURE 2. GAIN-OF-10 INVERTING AMPLIFIER

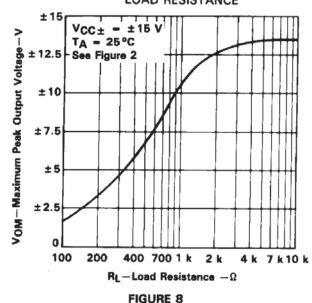
FIGURE 3. FEED-FORWARD COMPENSATION

INPUT OFFSET VOLTAGE NULL CIRCUITS

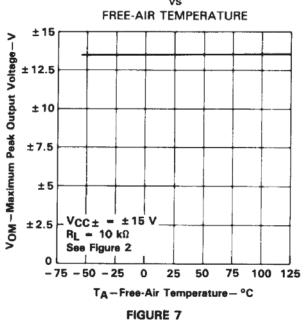
*For best results use R = 20 M Ω for VCC± = ±15 V to R = 5 M Ω for VCC± = ±3 V.

FIGURE 4

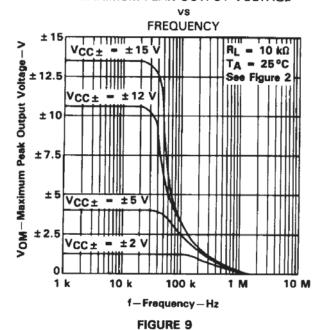




FIGURE 5

TYPICAL CHARACTERISTICS[†]



VOM – Maximum Peak Output Voltage – V

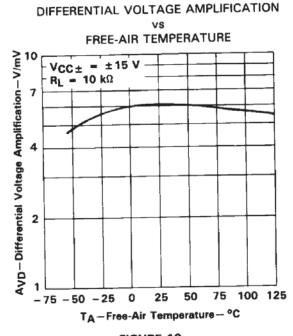

MAXIMUM PEAK OUTPUT VOLTAGE vs LOAD RESISTANCE

MAXIMUM PEAK OUTPUT VOLTAGE

MAXIMUM PEAK OUTPUT VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 10-pF compensation capacitor is used with TL060 and TL060A.

135°


TL060, TL060A, TL060B, TL061, TL061A, TL062B TL062, TL062A, TL062B, TL064, TL064A, TL064B LOW-POWER JEET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS†

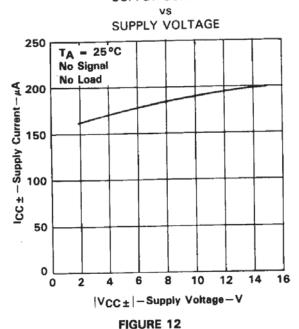
10

1

10

VS **FREQUENCY** 105 VCC ± = ±15 V AVD-Differential Voltage Amplification $R_{ext} = 0$ 0° RL = 10 kΩ 104 TA - 25°C PHASE SHIFT Shift 45° 103 (right scale) Phase 102

DIFFERENTIAL VOLTAGE


AMPLIFICATION

(left scale)

100

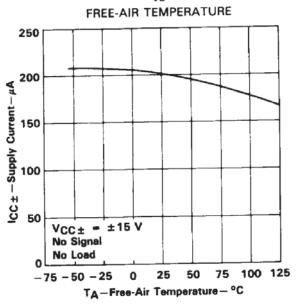
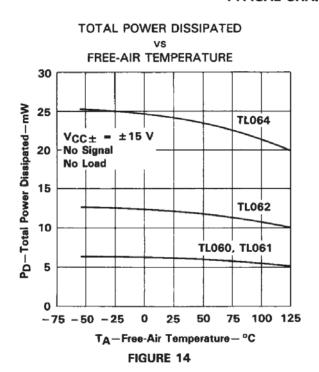
LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

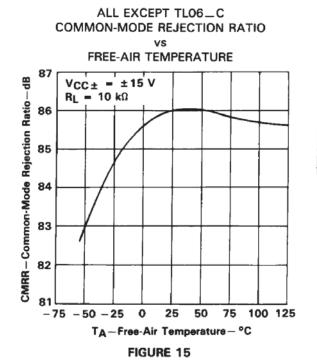
FIGURE 10 SUPPLY CURRENT

SUPPLY CURRENT

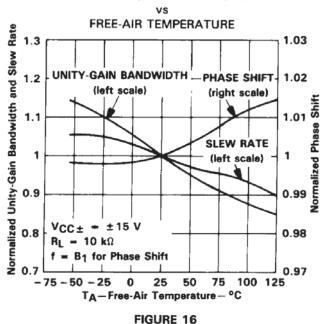
f-Frequency-Hz FIGURE 11

1 k 10 k 100 k 1 M 10 M


FIGURE 13

[†]A 10-pF compensation capacitor is used with TL060 and TL060A.



TYPICAL CHARACTERISTICS[†]

NORMALIZED UNITY GAIN BANDWIDTH SLEW RATE, AND PHASE SHIFT

INPUT BIAS CURRENT vs

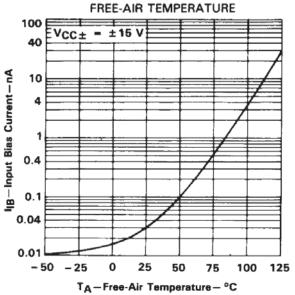
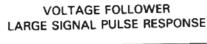
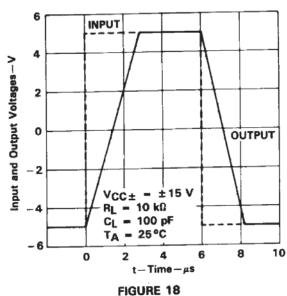
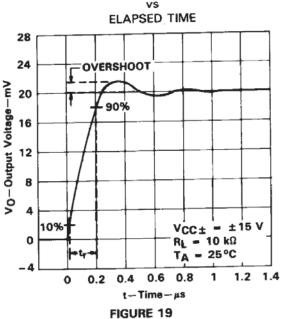
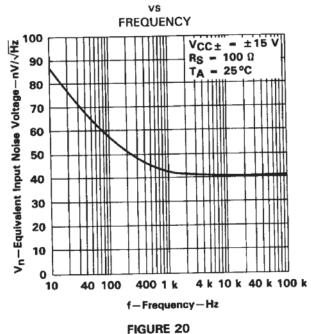




FIGURE 17


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 10-pF compensation capacitor is used with TL060 and TL060A.



OUTPUT VOLTAGE vs

EQUIVALENT INPUT NOISE VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 10-pF compensation capacitor is used with TL060 and TL060A.

TYPICAL APPLICATION DATA

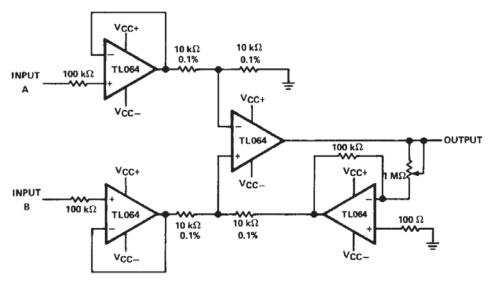


FIGURE 21. INSTRUMENTATION AMPLIFIER

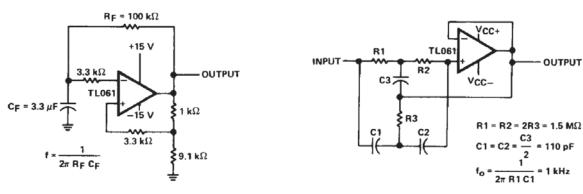


FIGURE 22. 0.5-Hz SQUARE-WAVE OSCILLATOR

FIGURE 23. HIGH-Q NOTCH FILTER

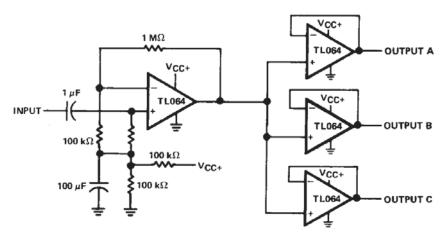


FIGURE 24. AUDIO DISTRIBUTION AMPLIFIER

TYPICAL APPLICATION DATA



FIGURE 25. LOW-LEVEL LIGHT DETECTOR PREAMPLIFIER

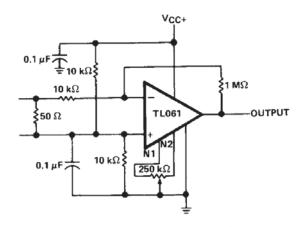


FIGURE 26. AC AMPLIFIER

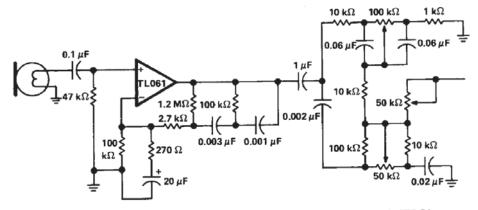


FIGURE 27. MICROPHONE PREAMPLIFIER WITH TONE CONTROL

TYPICAL APPLICATION DATA

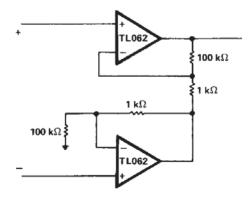


FIGURE 28. INSTRUMENTATION AMPLIFIER

IC PREAMPLIFIER RESPONSE CHARACTERISTICS

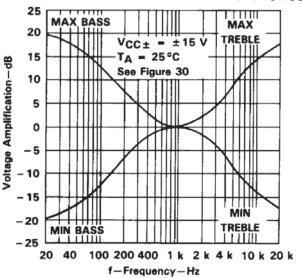


FIGURE 29

TYPICAL APPLICATION DATA

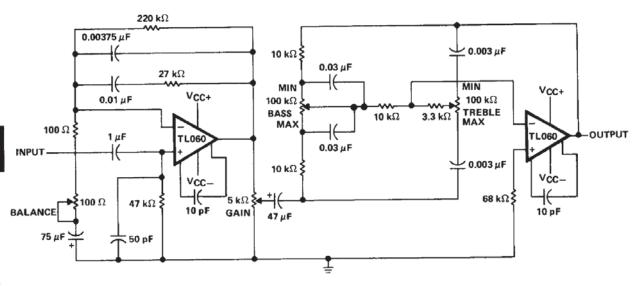


FIGURE 30. IC PREAMPLIFIER