

High-Efficiency LED Backlight Driver for Tablets

General Description

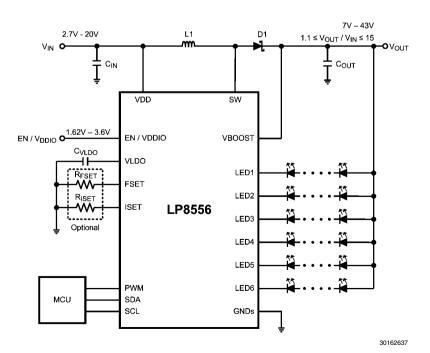
LP8556 is a white LED driver featuring an asynchronous boost converter and six high precision current sinks that can be controlled by a PWM signal or an I²C master.

The boost converter uses adaptive output voltage control for setting the optimal LED driver voltages as low as 7V and as high as 43V. This feature minimizes the power consumption by adjusting the output voltage to the lowest sufficient level under all conditions. The converter can operate at three switching frequencies: 312, 625 and 1250 kHz settable with an external resistor or pre-configured via EPROM. Programmable slew rate control and spread spectrum scheme minimize switching noise and improve EMI performance.

LED current sinks can be set with the PWM dimming resolution of up to 15 bits. Proprietary adaptive dimming mode allows higher system power saving. In addition, phase shifted LED PWM dimming allows reduced audible noise and smaller boost output capacitors.

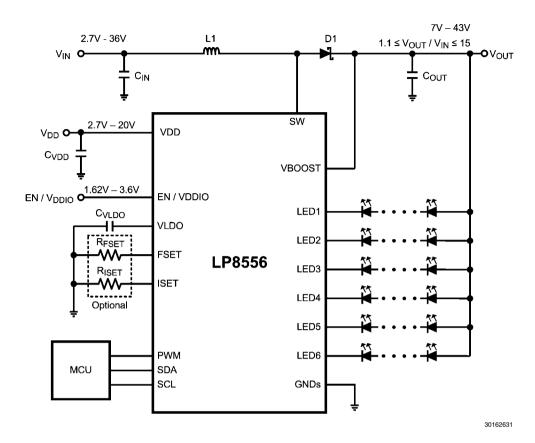
The LP8556 has a full set of safety features that ensure robust operation of the device and external components. The set consists of input under-voltage lockout, thermal shutdown, over-current protection, up to 6 levels of over-voltage protection, LED open and short detection.

The LP8556 operates over the ambient temperature range of -30°C to +85°C. It is available in space saving 20-bump micro SMD and 24-pad LLP packages.


Features

- High efficiency DC/DC boost converter with integrated 0.19Ω power MOSFET and three switching frequency options: 312 / 625 / 1250 kHz
- 2.7V to 36V boost switch input voltage range supports multi-cell Li-Ion batteries (2.7V - 20V VDD input range)
- 7V to 43V boost switch output voltage range supports as few as 3 WLEDs in series per channel and as many as 12
- Configurable channel count (1 to 6)
- Up to 50 mA per channel
- PWM and / or I2C brightness control
- Phase-Shift PWM mode reduces audible noise
- Adaptive dimming for higher LED drive optical efficiency
- Programmable edge-rate control and spread spectrum scheme minimize switching noise and improve EMI performance
- LED fault (short/open) detection, UVLO, TSD, OCP and OVP (up to 6 threshold options)
- Available in tiny 20-bump, 1.715 mm x 2.376 mm x 0.6 mm, 0.4 mm pitch, micro SMD, and 24-pad, 4 mm x 4 mm x 0.8 mm, 0.5 mm pitch, LLP packages.

Applications


Tablet LCD Display LED Backlight

Typical Application

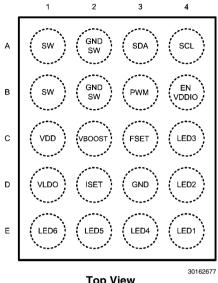
Typical Application (2)

Recommended Inductance for the Boost Power Stage

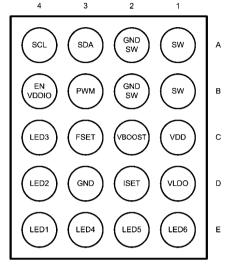
Assumes 20 mA as the maximum LED current per string and 3.3V as the maximum LED forward voltage.

Number of LED	Number of LEDs	Boost Input	L1 Inductance [μH]			
Strings	per String	Voltage Range [V]	f _{SW} = 1250 kHz	f _{SW} = 625 kHz	f _{SW} = 312 kHz	
6	6	2.7V - 4.4V	3.3 μΗ - 6.8 μΗ	6.8 μH - 15 μH	10 μΗ - 33 μΗ	
б	6	5.4V - 8.8V	10 μH - 22 μΗ	22 μΗ - 47 μΗ	47 μΗ - 100 μΗ	
	8	2.7V - 4.4V	4.7 μΗ - 10 μΗ	10 μH - 15 μΗ	22 μΗ - 33 μΗ	
6		5.4V - 8.8V	10 μH - 22 μΗ	22 μΗ - 68 μΗ	47 μΗ - 100 μΗ	
4	10	5.4V - 8.8V	6.8 μH - 22 μH	22 μΗ - 47 μΗ	47 μΗ - 100 μΗ	
4	12	5.4V - 8.8V	10 μH - 22 μΗ	22 μΗ - 47 μΗ	33 μΗ - 100 μΗ	

Recommended Capacitances for the Boost and LDO Power Stages (Note 1)


Switching Frequency [kHz]	C _{IN} [µF]	C _{OUT} [µF]	C _{VLDO} [μF]
1250	2.2	4.7	10
625	2.2	4.7	10
312	4.7	10	10

Note 1: Capacitance of Multi Layer Ceramic Capacitors (MLCC) can change significantly with the applied DC voltage. Use capacitors with good capacitance vs. DC bias characteristics. In general, MLCC in bigger packages have lower capacitance de-rating than physically smaller capacitors.



Connection Diagrams and Package Mark Information (Micro SMD)

20-bump Micro SMD Package 1.715 mm x 2.376 mm x 0.6 mm, 0.4 mm pitch **NS Package Number TMD20EQA**

Top View

Bottom View

30162678

Package Mark (Micro SMD)

XY = 2 Digit Date Code

TT = Die Traceability

ZZZZ = Product Identification

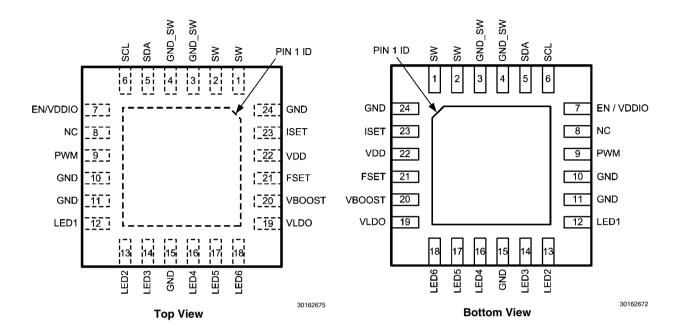
= Pin 1A

Package Mark - Top View

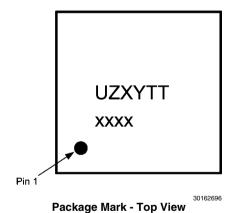
30162681

Ordering Information (Micro SMD)

Order Number	Spec / Flow	Package Marking	Supplied As
LP8556TMX-E00	S7003001	56E0	3000 units, Tape-and-Reel
LP8556TME-E01	NoPb	56E1	250 units, Tape-and-Reel
LP8556TMX-E01	NoPb	56E1	3000 units, Tape-and-Reel
LP8556TME-E02	NoPb	56E2	250 units, Tape-and-Reel
LP8556TMX-E02	NoPb	56E2	3000 units, Tape-and-Reel
LP8556TME-E03	NoPb	56E3	250 units, Tape-and-Reel
LP8556TMX-E03	NoPb	56E3	3000 units, Tape-and-Reel
LP8556TME-E04	NoPb	56E4	250 units, Tape-and-Reel
LP8556TMX-E04	NoPb	56E4	3000 units, Tape-and-Reel
LP8556TME-E05	NoPb	56E5	250 units, Tape-and-Reel
LP8556TMX-E05	NoPb	56E5	3000 units, Tape-and-Reel
LP8556TME-E06	NoPb	56E6	250 units, Tape-and-Reel
LP8556TMX-E06	NoPb	56E6	3000 units, Tape-and-Reel
LP8556TME-E07	NoPb	56E7	250 units, Tape-and-Reel
LP8556TMX-E07	NoPb	56E7	3000 units, Tape-and-Reel
LP8556TMX-E08	S7003057	56E8	3000 units, Tape-and-Reel
LP8556TMX-E09	S7003056	56E9	3000 units, Tape-and-Reel
LP8556TME-E10	NoPb	6E10	250 units, Tape-and-Reel
LP8556TMX-E10	NoPb	6E10	3000 units, Tape-and-Reel


Ordering Information (LLP)

Order Number	Spec/Flow	Package Marking	Supplied As
LP8556SQE-E00	NoPb	L8556E0	250 units, Tape-and-Reel
LP8556SQX-E00	NoPb	L8556E0	4500 units, Tape-and-Reel
LP8556SQE-E08	NoPb	L8556E8	250 units, Tape-and-Reel
LP8556SQX-E08	NoPb	L8556E8	4500 units, Tape-and-Reel
LP8556SQE-E09	NoPb	L8556E9	250 units, Tape-and-Reel
LP8556SQX-E09	NoPb	L8556E9	4500 units, Tape-and-Reel



Connection Diagrams and Package Mark Information (LLP)

24-pin Leadless Leadframe Package (LLP) 4.0 x 4.0 x 0.8mm, 0.5 mm pitch NS Package Number SQA24A

Package Mark (LLP)

U = Fab
Z = Assembly
XY = 2-Digit Date Code
TT = Die Traceability
xxxx = Product Identification

Pin Descriptions

uSMD	LLP	Name	Туре	Description
A1, B1	1, 2	SW	Α	A connection to the drain terminal of the integrated power MOSFET.
A2, B2	3, 4	GND_SW	G	A connection to the source terminal of the integrated power MOSFET.
A3	5	SDA	I/O	I ² C data input/output pin.
A4	6	SCL	- 1	I ² C clock input pin.
ВЗ	9	PWM	I	PWM dimming input. Supply a 75 Hz to 25 kHz PWM signal to control dimming. This pin must be connected to GND if unused.
B4	7	EN / VDDIO	Р	Dual purpose pin serving both as a Chip enable and as a power supply reference for PWM, SDA and SCL inputs. Drive this pin with a logic gate capable of sourcing a minimum of 1 mA.
C1	22	VDD	Р	Device power supply pin. Provide 2.7V to 20V supply to this pin. This pin is an input of the internal LDO regulator. The output of the internal LDO is what powers the device.
C2	20	VBOOST	А	Boost converter output pin. The internal Feedback (FB) and Over-voltage Protection (OVP) circuitry monitors the voltage on this pin. Connect the converter output capacitor bank close to this pin.
C3	21	FSET	A	A connection for setting the boost frequency and PWM output dimming frequency by using an external resistor. Connect a resistor, R _{FSET} , between this pin and the ground reference (See <i>Table 5</i>). This pin may be left floating if PWM_FSET_EN=0 AND BOOST_FSET_EN=0 (See <i>EPROM Memory Map</i>).
C4	14	LED3	Α	LED driver - current sink terminal. If unused, it may be left floating.
D1	19	VLDO	Р	Internal LDO output pin. Connect a capacitor, C _{VLDO} , between this pin and the ground reference.
D2	23	ISET	А	A connection for the LED current set resistor. Connect a resistor, R _{ISET} , between this pin and the ground reference. This pin may be left floating if ISET_EN=0 (See <i>EPROM Memory Map</i>).
D3	10, 11, 15, 24, DAP	GND	ı	Ground pin.
D4	13	LED2	Α	LED driver - current sink terminal. If unused, it may be left floating.
E1	18	LED6	А	LED driver - current sink terminal. If unused, it may be left floating.
E2	17	LED5	А	LED driver - current sink terminal. If unused, it may be left floating.
E3	16	LED4	А	LED driver - current sink terminal. If unused, it may be left floating.
E4	12	LED1	Α	LED driver - current sink terminal. If unused, it may be left floating.
-	8	NC	-	No Connect pin.

A: Analog Pin, G: Ground Pin, P: Power Pin, I: Digital Input Pin, I/O: Digital Input/Output Pin

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

	Min	Max	Units
V_{DD}	-0.3	24	V
Voltage on Logic Pins (SCL, SDA, PWM)	-0.3	6	V
Voltage on Analog Pins (VLDO, EN / VDDIO)	-0.3	6	V
Voltage on Analog Pins (FSET, ISET)	-0.3	VLDO+0.3	V
V (LED1LED6,SW, VBOOST)	-0.3	50	V
Junction Temperature (T _{J-MAX}) (<i>Note 6</i>)		125	°C
Storage Temperature Range	-65	150	°C
Maximum Lead Temperature (Soldering)		260	°C
HBM (Note 2)	2		kV
CDM (Note 3)	500		V

Note 2: Human Body Model, applicable std. JESD22-A114C

Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C

Operating Ratings (Note 4, Note 5)

	Min	Max	Units
VDD Range	2.7	20	V
EN / VDDIO Range	1.62	3.6	V
V (LED1LED6, SW, VBOOST)	0	48	V
Junction Temperature Range (T _J)	-30	125	°C
Ambient Temperature Range (T _A)	-30	85	°C

Thermal Properties (Note 7)

	Min	Max	Units
Junction-to-Ambient Thermal Resistance (θ _{JA}), TMD Package	40	73	°C/W
Junction-to-Ambient Thermal Resistance (θ _{JA}), SQA Package	35	50	°C/W

Electrical Characteristics (Note 5, Note 8)

Limits in standard typeface are for $T_A = 25$ °C. Limits in **boldface** type apply over the full operating ambient temperature range (-30 °C $\leq T_A \leq +85$ °C). Unless otherwise specified: VDD=12V, EN / VDDIO = 1.8V

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{DDIO}	Supply voltage for digital I/Os		1.62		3.6	V
V _{DD}	Input voltage for the internal LDO		2.7		20	V
	Standby Supply Current	EN / VDDIO=0V, LDO disabled			1.6	μΑ
I_{DD}	Normal Mada Supply Current	LDO enabled, Boost disabled		0.9	1.5	m A
	Normal Mode Supply Current	LDO enabled, Boost enabled, no load		2.2	3.65	mA
f	Internal Oscillator Frequency		-4		+4	%
f _{osc}	Accuracy		-7		+7	/6
V	LDO Output Voltage	V _{DD} ≥ 3.1V	2.95	3.05	3.15	\ \ \
V_{LDO}		2.7V ≤ V _{DD} < 3.1V		V _{DD} - 0.05		V
T _{TSD}	Thermal Shutdown Threshold	(Note 9)		150		°C
T _{TSD_hyst}	Thermal Shutdown Hysteresis			20		°C

Note 4: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 5: All voltages are with respect to the potential at the GND pins.

Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature $(T_{J-MAX-OP} = 125 \, ^{\circ}C)$, the maximum power dissipation of the device in the application (P_{D-MAX}) , and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}) , as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$.

Note 7: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.

Note 9: Guaranteed by design and not tested in production.

Boost Converter Electrical Characteristics (Note 12)

Symbol	Parameter	Condition	า	Min	Тур	Max	Units
R _{DS_ON}	Switch ON resistance	I _{SW} = 0.5A			0.19		Ω
V _{BOOST_MIN}	Boost minimum output voltage	VBOOST_RANGE = 0 VBOOST_RANGE = 1			7 16		V
		VBOOST_MAX = 100, VBOOST_RANGE = 0 VBOOST_MAX = 101, VBOOST_RANGE = 0 VBOOST_MAX = 110, VBOOST_RANGE = 0 VBOOST_MAX = 111, VBOOST_RANGE = 0			21 25 30 34	22 27 32 37	V
V _{BOOST_MAX}	Boost maximum output voltage	VBOOST_MAX = 010, VBOOST_ VBOOST_MAX = 011, VBOOST_ VBOOST_MAX = 100, VBOOST_ VBOOST_MAX = 101, VBOOST_ VBOOST_MAX = 110, VBOOST_ VBOOST_MAX = 111, VBOOST_	RANGE = 1 RANGE = 1 RANGE = 1 RANGE = 1	17.9 22.8 27.8 32.7 37.2 41.8	21 25 30 34.5 39 43	23.1 27.2 31.5 36.6 40.8 44.2	V
I _{LOAD_MAX}	Maximum continuous output load current	$V_{IN} = 3V, V_{OUT} = 18V$ $V_{IN} = 3V, V_{OUT} = 24V$ $V_{IN} = 3V, V_{OUT} = 30V$			220 160 120		mA
V _{OUT} /V _{IN}	Conversion ratio (Note 13)	f _{SW} = 625 kHz				15 12	
f _{SW}	Switching frequency	BOOST_FREQ = 00 BOOST_FREQ = 01 BOOST_FREQ = 10	BOOST_FREQ = 01		312 625 1250	12	kHz
V _{OVP}	Over-voltage protection voltage	VBOOST_RANGE = 1			V _{BOOST} + 1.6V		V
V _{UVLO}	V _{IN} under-voltage lockout threshold	UVLO_EN=1 UVLO_TH = 0, falling UVLO_TH = 1, falling			2.5 5.2		V
V _{UVLO_hyst}	V _{UVLO} hysteresis	V _{UVLO} [rising] - V _{UVLO} [falling]	UVLO_TH = 0 UVLO_TH = 1		50 100		mV
t _{PULSE}	Switch minimum pulse width	no load	•		50		ns
t _{STARTUP}	Startup time	(Note 10)			8		ms

Boost Converter Electrical Characteristics (Continued)

Symbol	Parameter	Cond	lition	Min	Тур	Max	Units
			IBOOST_LIM = 00	0.66	0.9	1.16	
		IBOOST_LIM_2X = 0	IBOOST_LIM = 01	0.88	1.2	1.40	A
	CIM min oursent limit	IBOO31_LIIVI_ZX = 0	IBOOST_LIM = 10	1.12	1.5	1.73	_ ^
I _{SW LIM}	SW pin current limit (Note 11)		IBOOST_LIM = 11	1.35	1.8	2.07	
	(Note 11)	IBOOST_LIM_2X = 1	IBOOST_LIM = 00		1.6		
			IBOOST_LIM = 01		2.1		Α
			IBOOST_LIM = 10		2.6		
	OW sin alove water there are OFF to	EN_DRV3 = 0 AND EN	_DRV2 = 0		3.7		
ΔV_{SW} / $t_{off\ on}$	SW pin slew rate during OFF to ON transition	EN_DRV3 = 0 AND EN	_DRV2 = 1		5.3		V / ns
$\Delta V_{SW} / t_{off_on}$ $\Delta V_{SW} / t_{on_off}$ $\Delta t_{ON} / t_{SW}$	ON transition	EN_DRV3 = 1 AND EN	_DRV2 = 1		7.5		
	CM sin claw rate during ON to	EN_DRV3 = 0 AND EN	_DRV2 = 0		1.9		
$\Delta V_{SW} / t_{on off}$	SW pin slew rate during ON to OFF transition	EN_DRV3 = 0 AND EN	_DRV2 = 1		4.4		V / ns
	OFF transition	EN_DRV3 = 1 AND EN	_DRV2 = 1		4.8		
	Peak to peak switch ON time						
$\Delta t_{ON} / t_{SW}$	deviation to SW period ratio	SSCLK_EN = 1			1		%
	(Spread spectrum feature)						

Note 10: Startup time is measured from the moment boost is activated until the VBOOST crosses 90% of its target value.

Note 11: 1.8A is the maximum I_{SW_LIM} supported with the Micro SMD package. For applications requiring the I_{SW_LIM} to be greater than 1.8A and up to 2.6A, LLP package should be considered.

Note 12: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.

Note 13: Guaranteed by design and not tested in production.

LED Driver Electrical Characteristics (Note 16)

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LED_LEAKAGE}	Leakage current	Outputs LED1LED6, V _{OUT} = 48V		0.1	1	μΑ
I _{LED_MAX}	Maximum Sink Current LED1LED6			50		mA
I _{LED}	LED Current Accuracy (Note 14)	Output current set to 23 mA	-3 -4	1	+3 +4	%
I _{MATCH}	Matching	Output current set to 23 mA		0.5		%
		100 Hz < f _{PWM} ≤ 200 Hz	0.02		100	
		200 Hz < f _{PWM} ≤ 500 Hz	0.02		100	
		500 Hz < f _{PWM} ≤ 1 kHz	0.02		100	
		1 kHz < f _{PWM} ≤ 2 kHz	0.04		100	
PWM_{DUTY}	LED PWM output pulse duty cycle (<i>Note 17</i>)	2 kHz < f _{PWM} ≤ 5 kHz	0.1		100	%
	Cycle (Note 17)	5 kHz < f _{PWM} ≤ 10 kHz	0.2		100	
		10 kHz < f _{PWM} ≤ 20 kHz	0.4		100	
		20 kHz < f _{PWM} ≤ 30 kHz	0.6		100	
		30 kHz < f _{PWM} ≤ 39 kHz	0.8		100	
f _{LED}	PWM output frequency	PWM_FREQ = 1111		38.5		kHz
V _{SAT}	Saturation Voltage (Note 15)	Output current set to 23 mA		200		mV

Note 14: Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current sinks on the part (OUT1 to OUT6), the following are determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Two matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN/AVG). The largest number of the two (worst case) is considered the matching figure. The typical specification provided is the most likely norm of the matching figure for all parts. Note that some manufacturers have different definitions in use.

Note 15: Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1V.

Note 16: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.

Note 17: Guaranteed by design and not tested in production.

PWM Interface Characteristics (Note 18)

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{PWM}	PWM Frequency Range (Note 19)		75		25000	Hz
t _{MIN_ON}	Minimum Pulse ON time			1		
t _{MIN_OFF}	Minimum Pulse OFF time			1		μs
t _{STARTUP}	Turn on delay from standby to backlight on	PWM input active, VDDIO pin transitions from 0V to 1.8V.		10		ms
t _{STBY}	Turn off delay	PWM input low time for turn off		50		ms
PWM _{RES}	PWM Input Resolution	f _{IN} < 9.0 kHz		8		bits

Logic Interface Characteristics (Note 18)

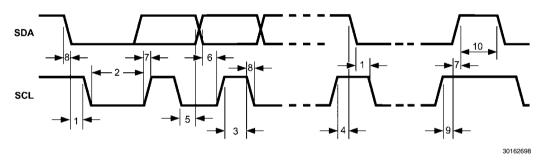
Symbol	Parameter	Condition	Min	Тур	Max	Units	
Logic Inp	Logic Inputs (PWM, SDA, SCL)						
V _{IL}	Input Low Level				0.3 X VDDIO	V	
V _{IH}	Input High Level		0.7 X VDDIO			V	
I _I	Input Current	$(V_{DDIO} = 0V \text{ or } 3.6V) \text{ AND}$ $(V_{I} = 0V \text{ or } 3.6V)$	-1.0		1.0	μΑ	
Logic Ou	Logic Outputs (SDA)						
V_{OL}	Output Low Level	I _{OUT} = 3 mA (pull-up current)		0.3	0.4	٧	
IL	Output Leakage Current	V _{OUT} = 5V	-1.0		1.0	μΑ	

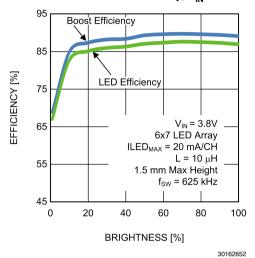
Note 18: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 19: Guaranteed by design and not tested in production.

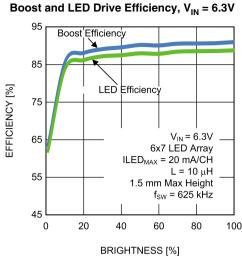
I²C Serial Bus Timing Parameters (SDA, SCL) (Note 21)

Cumbal	Devemeter	Lin	Limit	
Symbol	Parameter	Min	Max	Units
f _{SCL}	Clock Frequency		400	kHz
1	Hold Time (repeated) START Condition	0.6		μs
2	Clock Low Time	1.3		μs
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time	50		ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	20+0.1C _b	300	ns
8	Fall Time of SDA and SCL	15+0.1C _b	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		μs
C _b	Capacitive Load Parameter for Each Bus Line Load of 1 pF corresponds to 1 ns.	10	200	ns

Note 20: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. **Note 21:** Guaranteed by design and not tested in production.

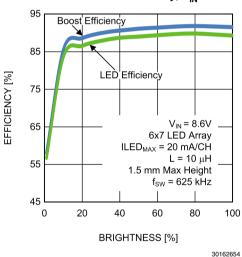


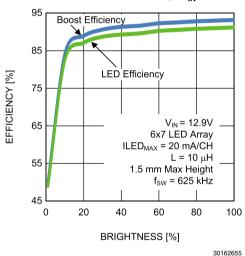

FIGURE 1. I2C Compatible Timing



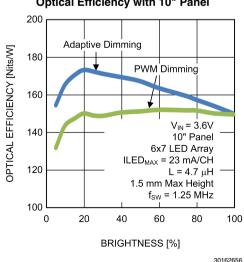
Typical Performance Characteristics

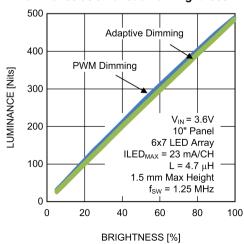
Unless otherwise specified: V_{IN} = 3.8V, C_{VLDO} = 10 μ F, L1 = 4.7 μ H, C_{IN} = 2.2 μ F, C_{OUT} = 4.7 μ F, f_{SW} = 1.25 MHz


Boost and LED Drive Efficiency, V_{IN} = 3.8V

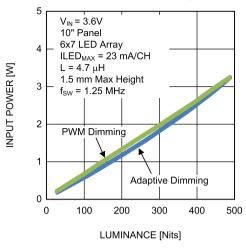


30162653

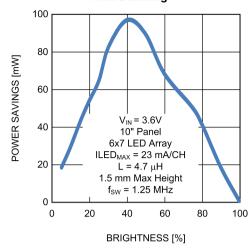

Boost and LED Drive Efficiency, $V_{IN} = 8.6V$


Boost and LED Drive Efficiency, V_{IN} = 12.9V

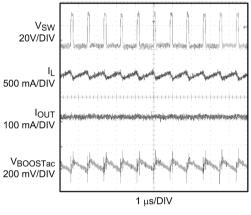
Optical Efficiency with 10" Panel


Luminance as a Function of Brightness

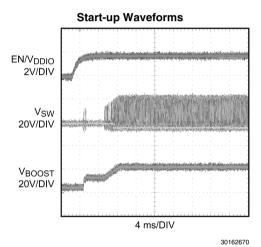
30162657



Input Power as a Function of Brightness


30162658

Power Savings with Adaptive Dimming When Compared to PWM Dimming



30162659

Steady State Operation Waveforms

30162660

Functional Overview

LP8556 is a white LED driver featuring an asynchronous boost converter and six high precision current sinks that can be controlled by a PWM signal or an I²C master.

The boost converter uses adaptive output voltage control for setting the optimal LED driver voltages as high as 43V. This feature minimizes the power consumption by adjusting the voltage to the lowest sufficient level under all conditions. The converter can operate at three switching frequencies: 312, 625 and 1250 kHz pre-configured via EPROM or settable via an external resistor. Programmable slew rate control and spread spectrum scheme minimize switching noise and improve EMI performance.

LED current sinks can be set with the PWM dimming resolution of up to 15 bits. Proprietary adaptive dimming mode allows higher system power saving. In addition, phase shifted LED PWM dimming allows reduced audible noise and smaller boost output capacitors.

The LP8556 has a full set of safety features that ensure robust operation of the device and external components. The set consists of input under-voltage lockout, thermal shutdown, over-current protection, up to six levels of over-voltage protection, LED open and short detection.

Block Diagram



FIGURE 2. LP8556 Block Diagram

Boost Converter Overview

OPERATION

The LP8556 boost DC/DC converter generates a 7V to approximately 43V boost output voltage from a 2.7V to 36V boost input voltage. The boost output voltage minimum, maximum value and range can be set digitally by pre-configuring EPROM memory (VBOOST_RANGE, VBOOST_and VBOOST_MAX fields).

The converter is a magnetic switching PWM mode DC/DC boost converter with a current limit. It uses CPM (current programmed mode) control, where the inductor current is measured and controlled with the feedback. During startup, the soft-start function reduces the peak inductor current. LP8556 has an internal 20 MHz oscillator which is used for clocking the boost. The following figure shows the boost block diagram.

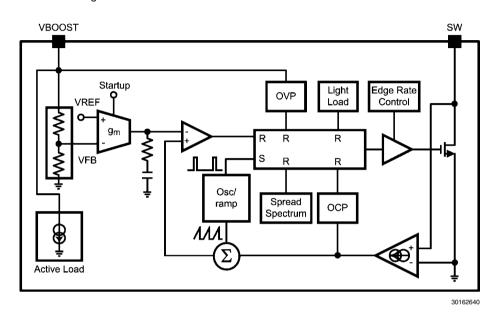


FIGURE 3. LP8556 Boost Converter Block Diagram

SETTING BOOST SWITCHING FREQUENCY

The LP8556 boost converter switching frequency can be set either by an external resistor (BOOST_FSET_EN = 1 selection), R_{FSET} , or by pre-configuring EPROM memory with the choice of boost frequency (BOOST_FREQ field). *Table 1* summarizes setting of the switching frequency. Note that the R_{FSET} is shared for setting the PWM dimming frequency in addition to setting the boost switching frequency. Setting the boost switching frequency and PWM dimming frequency using an external resistor is separately shown in *Table 5*.

TABLE 1. Configuring Boost Switching Frequency via EPROM

R _{FSET} [Ω]	BOOST_FSET_EN	BOOST_FREQ[1:0]	f _{SW} [kHz]
don't care	0	00	312
don't care	0	01	625
don't care	0	10	1250
don't care	0	11	undefined
(Note 22)	1	don't care	(Note 22)

Note 22: See Table 5

OUTPUT VOLTAGE CONTROL

LP8556 supports two modes of controlling the Boost output voltage, Adaptive Boost Voltage Control and Manual Boost Output Control. Each of the two modes are detailed below.

ADAPTIVE CONTROL:

LP8556 supports a mode of output voltage control called Adaptive Boost Control mode. In this mode, the voltage at the LED pins is periodically monitored by the control loop and adaptively adjusted to the optimum value based on the comparator thresholds set using LED DRIVER_HEADROOM, LED_COMP_HYST, BOOST_STEP_UP, BOOST_STEP_DOWN fields in the EPROM. Settings under LED DRIVER_HEADROOM along with LED_COMP_HYST fields determine optimum boost voltage for a given condition. Boost voltage will be raised if the voltage measured at any of the LED strings falls below the threshold setting determined with LED DRIVER_HEADROOM field. Likewise, boost voltage will be lowered if the voltage measured at any of the LED strings is above the combined setting determined under LED DRIVER_HEADROOM and LED_COMP_HYST fields. LED_COMP_HYST field serves to fine tune the headroom voltage for a given peak LED current. The boost voltage up/down step size can be controlled with the BOOST_STEP_UP and BOOST_STEP_DN fields.

The initial boost voltage is configured with the VBOOST field. This field also sets the minimum boost voltage. The VBOOST_MAX field sets the maximum boost voltage. When an LED pin is open, the monitored voltage will never have enough headroom and the adaptive mode control loop will keep raising the boost voltage. The VBOOST_MAX field allows the boost voltage to be limited to stay under the voltage rating of the external components.

Note: Only LED strings that are enabled are monitored and PS_MODE field determines which LED strings are enabled.

This Adaptive mode is selected using ADAPTIVE bit set to 1 (CFGA EPROM Register) and is the recommended mode of boost control.

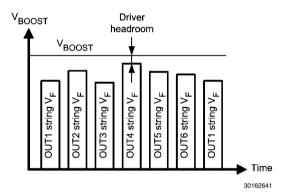


FIGURE 4. Boost Adaptive Control Principle

MANUAL CONTROL:

User can control the boost output voltage with the VBOOST EPROM field when adaptive mode is not used. The following expression shows the relationship between the boost output voltage and the VBOOST field: $V_{BOOST} = V_{BOOST_MIN} + 0.42*VBOOST[dec]$. The expression is only valid when the calculated values are between the minimum boost output voltage and the maximum boost output voltage. The minimum boost output voltage is set with the VBOOST_RANGE field. The maximum boost output voltage is set with the VBOOST_MAX EPROM field.

EMI REDUCTION

The LP8556 features two EMI reduction schemes.

First scheme, Programmable Slew Rate Control, uses a combination of three drivers for boost switch. Enabling all three drivers allows boost switch on/off transition times to be the shortest. On the other hand, enabling just one driver allows boost switch on/off transition times to be the longest. The longer the transition times, the lower the switching noise on the SW terminal. It should also be noted that the shortest transition times bring the best efficiency as the switching losses are the lowest.

EN_DRV2 and EN_DRV3 bits in the EPROM determine the boost switch driver configuration. Refer to the SW pin slew rate parameter listed under Boost Converter Electrical Characteristics for the slew rate options.

The second EMI reduction scheme is the spread spectrum scheme which deliberately spreads the frequency content of the boost switching waveform, which inherently has a narrow bandwidth, makes the switching waveform's bandwidth wider and ultimately reduces its EMI spectral density.

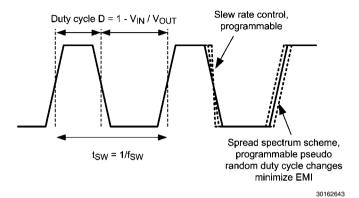


FIGURE 5. Principles of EMI Reduction Schemes

Brightness Control

LP8556 enables various methods of brightness control. The brightness can be controlled using an external PWM signal or the Brightness register accessible by users via an I²C interface or both. How these two input sources are selected and combined is set by the BRT_MODE EPROM bits and described in the following sections, *Figure 6*, and *Table 2*. The LP8556 can also be preconfigured via EPROM memory to allow direct and unaltered brightness control by an external PWM signal. This mode of operation is obtained by setting PWM_DIRECT EPROM bit to '1' (CFG5[7] = 1).

BRT_MODE = 00

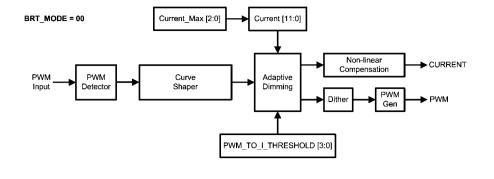
With BRT_MODE = 00, the LED output is controlled by the PWM input duty cycle. The PWM detector block measures the duty cycle at the PWM pin and uses this 16-bit value to generate an internal to the device PWM data. Before the output is generated, the PWM data goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.

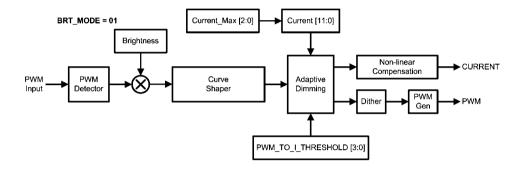
BRT MODE = 01

With BRT_MODE = 01, the PWM output is controlled by the PWM input duty cycle and the Brightness register. The PWM detector block measures the duty cycle at the PWM pin and uses this 16-bit value to generate the PWM data. Before the output is generated, the PWM data is first multiplied with BRT[7:0] register, then it goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.

BRT MODE = 10

With BRT_MODE = 10, the PWM output is controlled only by the Brightness register. From BRT[7:0] register, the data goes through the PWM Curve Shaper block. Then, the data goes into the Adaptive Dimming function which determines the range of the PWM and Current control as described in *OUTPUT DIMMING SCHEMES*. The outcome of the Adaptive Dimming function is 12-bit Current and / or up to 6 PWM output signals. The current is then passed through the non-linear compensation block while the output PWM signals are channeled through the Dither block.


BRT MODE = 11


With BRT_MODE = 11, the PWM control signal path is similar to the path when BRT_MODE = 01 except that the PWM input signal is multiplied with BRT[7:0] data after the Curve Shaper block.

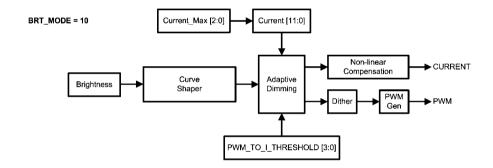

PWM_DIRECT	BRT_MODE [1:0]	Brightness Control Source	Output ILED Form
0	00	External PWM Signal	
0	01	External PWM Signal and Brightness Register (multiplied before Curve Shaper)	Adaptive. See <i>OUTPUT</i>
0	10	Brightness Register	DIMMING SCHEMES
0	11	External PWM Signal and Brightness Register (multiplied after Curve Shaper)	
1	don't care	External PWM Signal	Same as the external PWM input

TABLE 2. Brightness Control Methods Truth Table

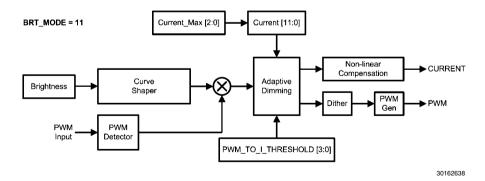


FIGURE 6. Brightness Control Signal Path Block Diagrams

OUTPUT DIMMING SCHEMES

The LP8556 supports three types of output dimming control methods: PWM Control, Pure Current Control and Adaptive Dimming (Hybrid PWM & Current) Control.

PWM Control

PWM control is the traditional way of controlling the brightness using PWM of the outputs with a same LED current across the entire brightness range. Brightness control is achieved by varying the duty cycle proportional to the input PWM. PWM frequency is set either using an external set Resistor (R_{FSET}) or using the PWM_FREQ EPROM field. The maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits. Note that the output PWM signal is de-coupled and generated independent of the input PWM signal eliminating display flicker issues and allowing better noise immunity

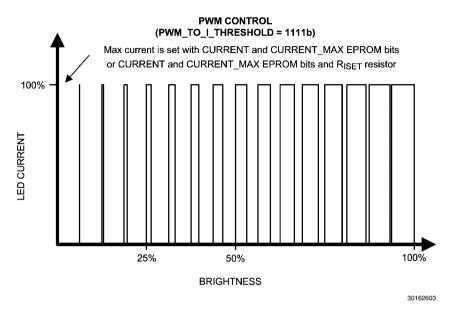


FIGURE 7. PWM Only Output Dimming Scheme

Pure Current Control

In Pure Current Control mode, brightness control is achieved by changing the LED current proportionately from maximum value to a minimum value across the entire brightness range. Like in PWM Control mode, the maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits. Current resolution in this mode is 12-bits.

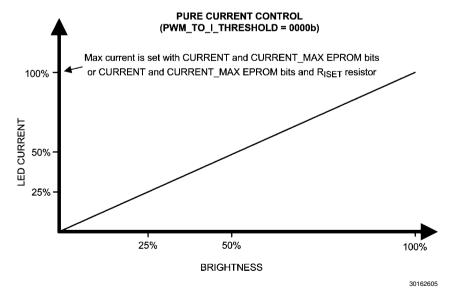


FIGURE 8. Pure Current / Analog Output Dimming Scheme

Adaptive Control

Adaptive dimming control combines PWM Control and Pure Current Control dimming methods. With the adaptive dimming, it is possible to achieve better optical efficiency from the LEDs compared to pure PWM control while still achieving smooth and accurate control at low brightness levels. Current resolution in this mode is 12-bits. Switch point from Current to PWM control can be set with the PWM_TO_I_THRESHOLD EPROM field from 0% to 100% of the brightness range to get good compromise between good matching of the LEDs brightness/white point at low brightness and good optical efficiency.

PWM frequency is set either using an external set Resistor (R_{FSET}) or using the PWM_FREQ EPROM bits. The maximum LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits.

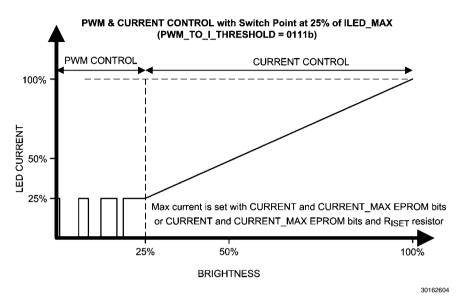


FIGURE 9. Adaptive Output Dimming Scheme

SETTING FULL SCALE LED CURRENT

The maximum or full scale LED current is set either using an external set Resistor (R_{ISET}) and CURRENT and CURRENT_MAX EPROM bits or just using the CURRENT and CURRENT_MAX EPROM bits. *Table 3* summarizes setting of the full scale LED current.

TABLE 3. Setting Full Scale LED Current

R _{ISET} [Ω]	ISET_EN	CURRENT_MAX	CURRENT[11:0]	Full Scale ILED [mA]
don't care	0	000	FFFh	5
don't care	0	001	FFFh	10
don't care	0	010	FFFh	15
don't care	0	011	FFFh	20
don't care	0	100	FFFh	23
don't care	0	101	FFFh	25
don't care	0	110	FFFh	30
don't care	0	111	FFFh	50
don't care	0	000 - 111	001h - FFFh	(Note 23)
24k	1	000	FFFh	5
24k	1	001	FFFh	10
24k	1	010	FFFh	15
24k	1	011	FFFh	20
24k	1	100	FFFh	23
24k	1	101	FFFh	25
24k	1	110	FFFh	30
24k	1	111	FFFh	50
12k - 100k	1	000 - 111	001h - FFFh	(Note 23)

Note 23: See CFG0

SETTING PWM DIMMING FREQUENCY

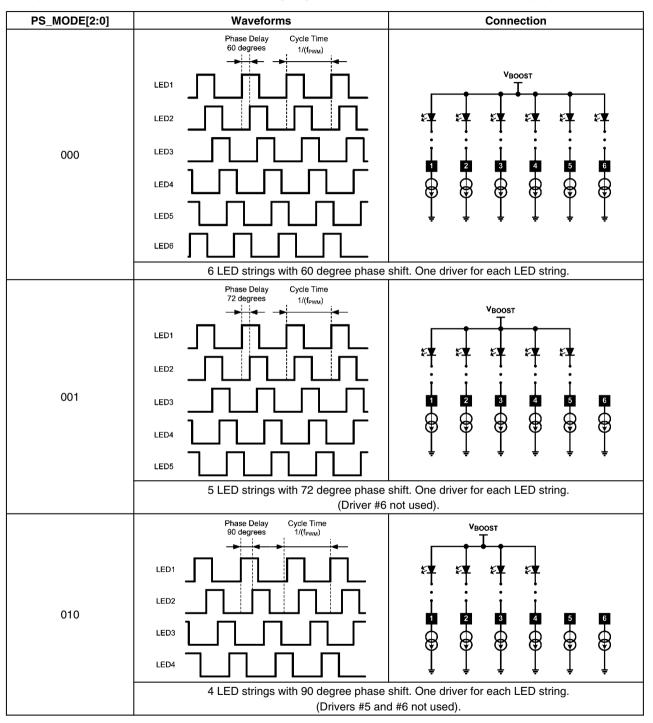
LP8556 PWM dimming frequency can be set either by an external resistor, R_{FSET} , or by pre-configuring EPROM Memory (CFG5 register, PWM_FREQ[3:0] bits). *Table 4* summarizes setting of the PWM dimming frequency. Note that the R_{FSET} is shared for setting the boost switching frequency, too. Setting the boost switching frequency and PWM dimming frequency using an external resistor is shown in *Table 5*.

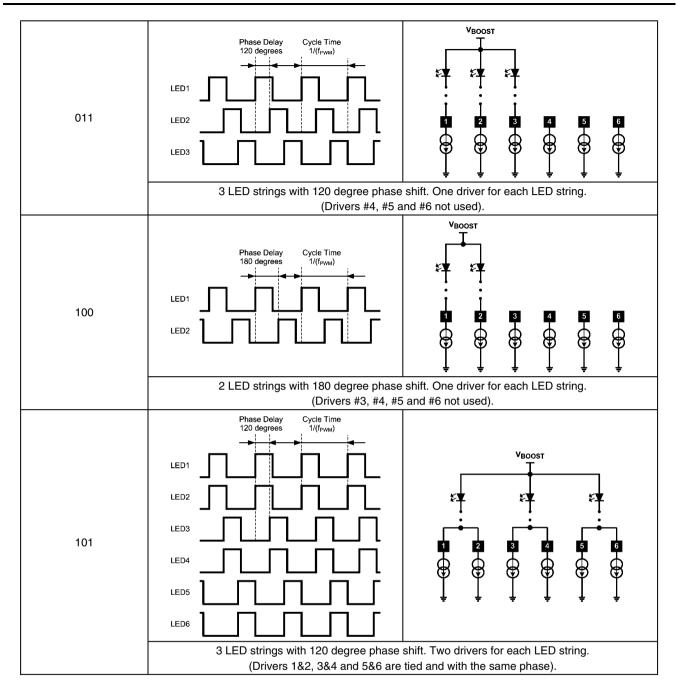
TABLE 4. Configuring PWM Dimming Frequency via EPROM

$R_{FSET}\left[k\Omega ight]$	PWM_FSET_EN	PWM_FREQ[3:0]	f _{PWM} [Hz] (Resolution)
		0000	4808 (12-bit)
		0001	6010 (11-bit)
		0010	7212 (11-bit)
		0011	8414 (11-bit)
		0100	9616 (11-bit)
		0101	12020 (10-bit)
		0110	13222 (10-bit)
don't care		0111	14424 (10-bit)
	0	1000	15626 (10-bit)
		1001	16828 (10-bit)
		1010	18030 (10-bit)
		1011	19232 (10-bit)
		1100	24040 (9-bit)
		1101	28848 (9-bit)
		1110	33656 (9-bit)
		1111	38464 (9-bit)
(Note 24)	1	don't care	(Note 24)

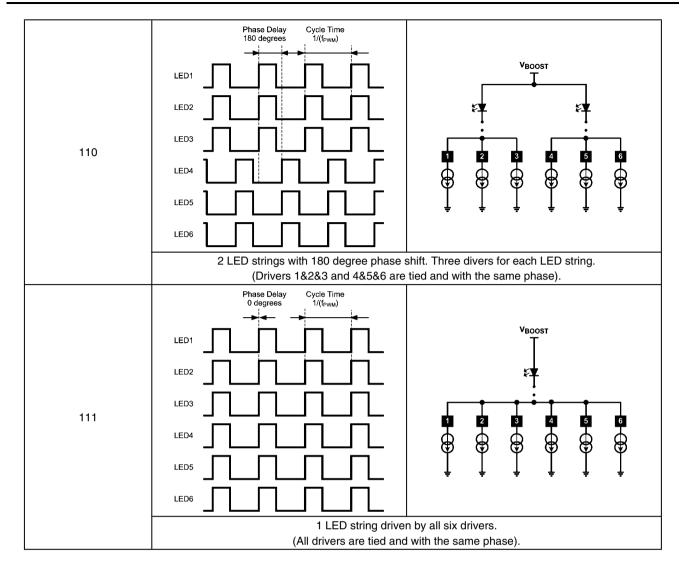
Note 24: See Table 5

TABLE 5. Setting Switching and PWM Dimming Frequency with an External Resistor


R _{FSET} [kΩ] (Tolerance)	f _{SW} [kHz]	f _{PWM} [Hz] (Resolution)
Floating or FSET pin pulled HIGH	1250	9616 (11-bit)
470k - 1M (±5%)	312	2402 (12-bit)
300k, 330k (±5%)	312	4808 (12-bit)
200k (±5%)	312	6010 (11-bit)
147k, 150k, 154k, 158k (±1%)	312	9616 (11-bit)
121k (±1%)	312	12020 (10-bit)
100k (±1%)	312	14424 (10-bit)
86.6k (±1%)	312	16828 (10-bit)
75.0k (±1%)	312	19232 (10-bit)
63.4k (±1%)	625	2402 (12-bit)
52.3k, 53.6k (±1%)	625	4808 (12-bit)
44.2k, 45.3k (±1%)	625	6010 (11-bit)
39.2k (±1%)	625	9616 (11-bit)
34.0k (±1%)	625	12020 (10-bit)
30.1k (±1%)	625	14424 (10-bit)
26.1k (±1%)	625	16828 (10-bit)
23.2k (±1%)	625	19232 (10-bit)
20.5k (±1%)	1250	2402 (12-bit)
18.7k (±1%)	1250	4808 (12-bit)
16.5k (±1%)	1250	6010 (11-bit)
14.7k (±1%)	1250	9616 (11-bit)
13.0k (±1%)	1250	12020 (10-bit)
11.8k (±1%)	1250	14424 (10-bit)
10.7k (±1%)	1250	16828 (10-bit)
9.76k (±1%)	1250	19232 (10-bit)
FSET pin shorted to GND	1250	Same as PWM input


PHASE SHIFT PWM SCHEME

Phase shift PWM scheme allows delaying the time when each LED driver is active. When the LED drivers are not activated simultaneously, the peak load current from the boost output is greatly decreased. This reduces the ripple seen on the boost output and allows smaller output capacitors. Reduced ripple also reduces the output ceramic capacitor audible ringing. PSPWM scheme also increases the load frequency seen on the boost output six times and therefore transfers the possible audible noise to the frequencies outside of the audible range.


Description of the PSPWM mode is seen in the following diagrams. PSPWM mode is set with <PS_MODE[2:0]> bits.

SLOPE AND ADVANCED SLOPE

Transition time between two brightness values can be programmed with EPROM bits <PWM_SLOPE[2:0]> from 0 to 500 ms. Same slope time is used for sloping up and down. With advanced slope the brightness changes can be made more pleasing to a human eye.

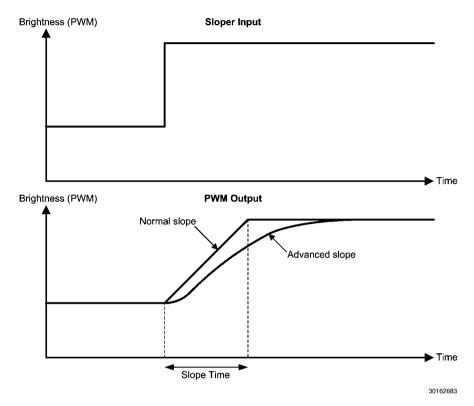


FIGURE 10. Sloper Operation

DITHERING

Special dithering scheme can be used during brightness changes and in steady state condition. It allows increased resolution and smaller average steps size during brightness changes. Dithering can be programmed with EPROM bits <DITHER[1:0]> from 0 to 3 bits. <STEADY_DITHER> EPROM bit sets whether the dithering is used also in steady state or only during slopes. Example below is for 1-bit dithering. E.g. for 3-bit dithering, every 8th pulse is made 1 LSB longer to increase the average value by 1/8th.

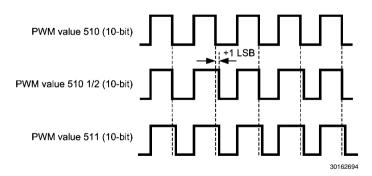


FIGURE 11. Example of the Dithering, 1-bit dither, 10-bit resolution

Fault Detection

LP8556 has fault detection for LED open and short conditions, UVLO, over-current and thermal shutdown. The cause for the fault can be read from status register. Reading the fault register will also reset the fault.

LED FAULT DETECTION

With LED fault detection, the voltages across the LED drivers are constantly monitored. Shorted or open LED strings are detected.

OPEN DETECT: The logic uses the LOW comparators and the requested boost voltage to detect the OPEN condition. If the logic is asking the boost for the maximum allowed voltage and a LOW comparator is asserted, then the OPEN bit is set in the STATUS register (ADDR=02h). In normal operation, the adaptive headroom control loop raises the requested boost voltage when the LOW comparator is asserted. If it has raised it as high as it can and an LED string still needs more voltage, then it is assumed to be disconnected from the boost voltage (open or grounded). The actual boost voltage is not part of the OPEN condition decision; only the requested boost voltage and the LOW comparators.

SHORT DETECT: The logic uses all three comparators (HIGH, MID and LOW) to detect the SHORT condition. When the MID and LOW comparators are de-asserted, the headroom control loop considers that string to be optimized - enough headroom, but not excessive. If at least one LED string is optimized and at least one other LED string has its HIGH comparator asserted, then the SHORT condition is detected. It is important to note that the SHORT condition requires at least two strings for detection: one in the optimized headroom zone (LOW/MID/HIGH comparators all de-asserted) and one in the excessive headroom zone (HIGH comparator asserted).

Fault is cleared by reading the fault register.

UNDER-VOLTAGE DETECTION

LP8556 has detection for too-low VIN voltage. Threshold level for the voltage is set with EPROM register bits as shown in the following table:

UVLO_EN	UVLO_TH	Threshold (V)
0	don't care	OFF
1	0	2.5V
1	1	5.2\/

TABLE 6. UVLO Truth Table

When under voltage is detected the LED outputs and the boost will shutdown and the corresponding fault bit is set in the fault register. The LEDs and the boost will start again when the voltage has increased above the threshold level. Hysteresis is implemented to threshold level to avoid continuous triggering of fault when threshold is reached.

Fault is cleared by setting the EN / VDDIO pin low or by reading the fault register.

OVER-CURRENT PROTECTION

LP8556 has detection for too-high loading on the boost converter. When over-current fault is detected, the the boost will shutdown and the corresponding fault bit is set in the fault register. The boost will start again when the current has dropped below the OCP threshold.

Fault is cleared by reading the fault register.

THERMAL SHUTDOWN

If the LP8556 reaches thermal shutdown temperature (150 °C) the LED outputs and boost will shut down to protect it from damage. Device will re-activate again when temperature drops below 130 °C degrees.

Fault is cleared by reading the fault register.

I²C Compatible Serial Bus Interface

INTERFACE BUS OVERVIEW

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCL). These lines should be connected to a positive supply via a pull-up resistor and remain HIGH even when the bus is idle.

Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the SCL. The LP8556 can operate as an I²C slave.

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock SCL. Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

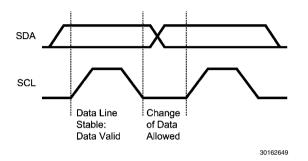


FIGURE 12. Bit Transfer

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following sections provide further details of this process.

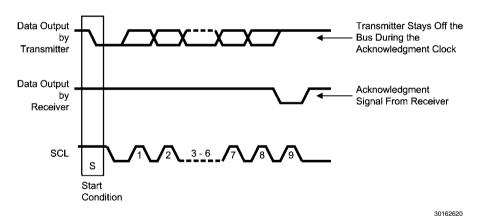


FIGURE 13. Start and Stop

The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.

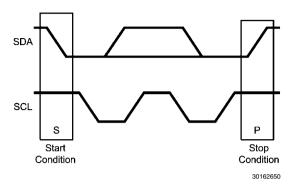


FIGURE 14. Start and Stop Conditions

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a register read cycle.

ACKNOWLEDGE CYCLE

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device.

The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to receive the next byte.

"ACKNOWLEDGE AFTER EVERY BYTE" RULE

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received.

There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

ADDRESSING TRANSFER FORMATS

Each device on the bus has a unique slave address. The LP8556 operates as a slave device with 7-bit address combined with data direction bit. Slave address is 2Ch as 7-bit or 58h for write and 59h for read in 8-bit format.

Before any data is transmitted, the master transmits the the slave I.D. The slave device should send an acknowledge signal on the SDA line, once it recognizes its address.

The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave address — the eighth bit.

When the slave address is sent, each device in the system compares this slave address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.

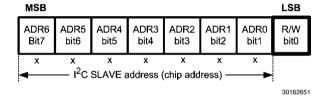


FIGURE 15. I²C Chip Address (0x2C)

Control Register Write Cycle

- · Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- · Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master will send further data bytes the control register address will be incremented by one after acknowledge signal.
- · Write cycle ends when the master creates stop condition.

Control Register Read Cycle

- · Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- · Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit (r/w = 1).
- · Slave sends acknowledge signal if the slave address is correct.
- · Slave sends data byte from addressed register.
- If the master device sends acknowledge signal, the control register address will be incremented by one. Slave device sends
 data byte from addressed register.
- · Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition.

TABLE 7. Data Read and Write Cycles

	Address Mode
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
	<register addr.="">[Ack]</register>
Data Read	<repeated condition="" start=""></repeated>
Data Neau	<slave address=""><r w="1">[Ack]</r></slave>
	[Register Data] <ack nack="" or=""></ack>
	additional reads from subsequent register address possible
	<stop condition=""></stop>
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
Data Write	<register addr.="">[Ack]</register>
Data Write	<register data="">[Ack]</register>
	additional writes to subsequent register address possible
	<stop condition=""></stop>

<>Data from master [] Data from slave

Register Read and Write Detail

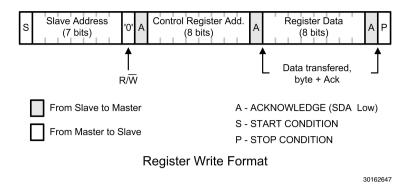


FIGURE 16. Register Write Format

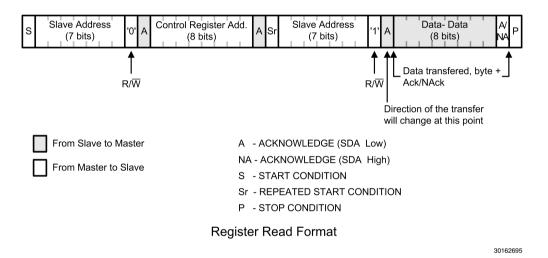


FIGURE 17. Register Read Format

Regis	Register Map									
ADDR	REGISTER	D7	D6	D2	D4	D3	D2	10	D0	RESET
H00	Brightness Control				BRT	BRT[7:0]				0000 0000
01H	Device Control	FAST					_TA8	BRT_MODE	BL_CTL	0000 0000
02H	Status	OPEN	SHORT	VREF_OK	VREF_OK VBOOST_OK OVP	OVP	dOO	TSD	ΠΛΓΟ	0000 0000
HE0	QI	PANEL		2	MFG			REV		1111 1100
04H	Direct Control					TE	LED			0000 0000
16H	LED Enable					LED_EN	_EN			0011 1111

EPRC	EPROM Memory Map				,		i		
ADDR	REGISTER	D7	90	D2	D4	D3	D2	D1 D0	
H86	CFG98	IBOOST_LIM_2X		RESERVED			RE	RESERVED	
9ЕН	GFG9E	RESERVED	ΈD	VBOOST_RANGE	RESERVED		HEADRO	HEADROOM_OFFSET	
AOH	CFG0				CUF	CURRENT LSB			
А1Н	CFG1	PDET_STDBY		CURRENT_MAX			CURI	CURRENT MSB	
A2H	CFG2	RESERVED	ΈD	UVLO_EN	UVLO_TH	BL_ON	NB_TEN	BOOST_FSET_EN PWM_FSET_EN	Z U
АЗН	CFG3	RESERVED		SLOPE		H	FILTER	PWM_INPUT_HYSTERESIS	
А4Н	CFG4		PWM_TO_	PWM_TO_I_THRESHOLD		RESERVED	STEADY_DITHER	DITHER	
A5H	CFG5	PWM_DIRECT		PS_MODE			Md	PWM_FREQ	
А6Н	CFG6	BOOST_FREQ	REQ				VBOOST		
А7Н	CFG7	RESERVED	ΈD	EN_DRV3	EN_DRV2	RES	RESERVED	IBOOST_LIM	
А8Н	CFG8	RESERVED	Ē	RESERVED	ΞD	RES	RESERVED	RESERVED	
Н6Р	CFG9		VBOOST_MAX	×	JUMP_EN	T_AMUL	JUMP_THRESHOLD	JUMP_VOLTAGE	
ААН	CFGA	SSCLK_EN	RESERVED	RESERVED	ED	ADAPTIVE		DRIVER_HEADROOM	
АВН	CFGB				RE	RESERVED			
АСН	CFGC		RES	SERVED			RE	RESERVED	
АДН	CEGD				RE	RESERVED			
АЕН	CFGE	STEP_UP	ЛР	STEP_DN	z	LED_F	LED_FAULT_TH	LED_COMP_HYST	
AFH	CFGF				æ	REVISION			

Register Bit Explanations

BRIGHTNESS CONTROL

Address 00h

Reset value 0000 0000b

Brightness Co	ntrol register						
7	6	5	4	3	2	1	0
		•	BRT[7	:0]			
Name	Bit	Access	Description				
BRT	7:0	R/W	Backlight PWM	18-bit linear cor	ntrol.		

DEVICE CONTROL

Address 01h

Reset value 0000 0000b

Device Control	register	1		i	1	1	1
7	6	5	4	3	2	1	0
FAST					BRT_M	ODE[1:0]	BL_CTL
Name	Bit	Access	Description				
FAST	7		low power STA 0 = read EPRC	NDBY mode. Ms before retu	uration registers rning to the ACT on initial power-u		hen exiting the
BRT_MODE	2:1	R/W	10b = Brightne	out only out and Brightness register only	ess register (cor	mbined before sh	. ,
BL_CTL	0	R/W	(BRT_MODE : 0 = Backlight d 1 = Backlight e This bit has no	= 10). isabled and chi nabled and chip effect when PV	p turned off p turned on VM pin control is	used to control b s selected for brig PWM pin enable	ghtness contro

STATUS

Address 02h

Reset value 0000 0000b

Fault register			.,				
7	6	5	4	3	2	1	0
OPEN	SHORT	VREF_OK	VBOOST_OK	OVP	OCP	TSD	UVLO
Name	Bit	Access	Description				
OPEN	7	R	LED open fault dete	ection			
			0 = No fault				
			1 = LED open fault	detected. The va	lue is not latch	ed.	
SHORT	6	R	LED short fault dete	ection			
			0 = No fault				
			1 = LED short fault	detected. The va	lue is not latch	ed.	
VREF_OK	5	R	Internal VREF node	monitor status			
			1 = VREF voltage is	s OK.			
VBOOST_OK	4	R	Boost output voltag	e monitor status			
			0 = Boost output vo	ltage has not rea	ched its target	(VBOOST < '	√target - 2.5
			1 = Boost output vo	Itage is OK. The	value is not lat	ched.	
OVP	3	R	Overvoltage protect	tion			
			0 = No fault				
			1 = Overvoltage cor	ndition occurred. I	Fault is cleared	by reading th	e register 02
OCP	2	R	Over current protect	tion			
			0 = No fault				
			1 = Over current de		•		
			boost output and if t	•			
			generate OCP fault 02h. After clearing t			=	ing the regist
TSD	1	R	Thermal shutdown	ine rault boost wil	startup agairi	•	
100	•	"	0 = No fault				
			1 = Thermal fault ge	nerated 150 °C	reached Boos	t converter an	d LED outou
			will be disabled unti				
			cleared by reading	•			
UVLO	0	R	Under voltage deter				
			0 = No fault				
			1 = Under voltage d	etected on the $V_{\scriptscriptstyle D}$	_D pin. Boost co	nverter and L	ED outputs w
			be disabled until V _D				
			voltage is set with E	PROM bits. Faul	It is cleared by	reading this r	egister.

IDENTIFICATION

Address 03h

Reset value 1111 1100b

Identification	register						
7	6	5	4	3	2	1	0
PANEL		MF	G[3:0]			REV[2:0]	
Name	Bit	Access	Description				
PANEL	7	R	Panel ID code				
MFG	6:3	R	Manufacturer ID	code			
REV	2:0	R	Revision ID code	Э			

DIRECT CONTROL

Address 04h

Reset value 0000 0000b

Direct Contro	ol register						
7	6	5	4	3	2	1	0
			•	OUT	[5:0]	•	•
Name	Bit	Access	Description				
OUT	5:0	R/W	Direct control of	the LED outputs			
			0 = Normal oper	ation. LED outpu	ıt are controlled w	vith the adaptive	dimming block
			1 = LED output i	s forced to 100%	PWM.		

LED String Enable

Address 16h

Reset value 0011 1111b

Temp LSB re	gister						
7	6	5	4	3	2	1	0
			•	LED_E	N[5:0]		•
Name	Bit	Access	Description				
LED_EN	5:0	R/W	Bits 5:0 corresp	ond to LED String	s 6:1 respective	ely.	
			Bit value 1 = LE	D String Enabled			
			Bit value 0 = LE	D String Disabled			
			Note: To disable	e string(s), it is red	commended to	disable higher or	der string(s). For
			example, - for 5	String configurati	on, disable 6th	String for 4 str	ing configuration,
			disable 6th and	5th string. These	bits are ANDed	with the internal	LED enable bits
			that are general	ted with the PS_M	ODE logic.		

EPROM Bit Explanations

LP8556TM (Micro SMD) Configurations and Pre-configured EPROM Settings

ADDRESS	LP8556-E00	LP8556-E01	LP8556-E02	LP8556-E03	LP8556-E04	LP8556-E05 (<i>Note 25</i>)
98h[7]	0b	0b	0b	0b	0b	0b
9Eh	22h	22h	22h	24h	24h	22h
A0h	FFh	FFh	FFh	FFh	FFh	
A1h	CFh	4Fh	5Fh	BFh	3Fh	
A2h	2Fh	20h	20h	28h	2Fh	
A3h	5Eh	03h	5Eh	5Eh	5Eh	
A4h	72h	12h	72h	72h	72h	
A5h	14h	0Ch	04h	14h	04h	
A6h	80h	80h	80h	80h	80h	
A7h	FFh	FFh	FFh	FFh	FFh	
A8h	00h	00h	00h	00h	00h	
A9h	A0h	80h	80h	A0h	60h	
AAh	0Fh	0Fh	0Fh	0Fh	0Fh	
ABh	00h	00h	00h	00h	00h	
ACh	00h	00h	00h	00h	00h	
ADh	00h	00h	00h	00h	00h	
AEh	0Fh	0Fh	0Fh	0Fh	0Fh	
AFh	02h	02h	04h	02h	02h	

Note 25: LP8556-E05 is a device option with un-configured EPROM settings. This option is for users that desire programming the device by themselves. Bits 98h [7] and 9Eh[5] are always pre-configured.

LP8556TM (Micro SMD) Configurations and Pre-configured EPROM Settings Continued

ADDRESS	LP8556-E06	LP8556-E07	LP8556-E08	LP8556-E09	LP8556-E10	LP8556-E11
98h[7]	0b	0b	0b	0b	0b	
9Eh	22h	04h	22h	22h	24h	
A0h	FFh	FFh	FFh	FFh	EBh	
A1h	DBh	BFh	CFh	CFh	3Dh	
A2h	2Fh	0Dh	2Fh	2Fh	2Fh	
A3h	02h	02h	5Eh	02h	37h	
A4h	72h	72h	72h	72h	77h	
A5h	14h	20h	24h	04h	1Bh	
A6h	40h	4Eh	80h	80h	40h	
A7h	FFh	FEh	FFh	FFh	FEh	
A8h	21h	21h	00h	00h	21h	
A9h	DBh	C0h	A0h	A0h	9Bh	
AAh	0Fh	0Fh	0Fh	0Fh	3Fh	
ABh	00h	00h	00h	00h	00h	
ACh	00h	00h	00h	00h	00h	
ADh	00h	00h	00h	00h	00h	
AEh	0Fh	0Fh	0Fh	0Fh	0Fh	
AFh	02h	02h	02h	03h	00h	

LP8556SQ (LLP) Configurations and Pre-configured EPROM Settings

ADDRESS	LP8556-E00	LP8556-E08	LP8556-E09
98h[7]	1b	1b	1b
9Eh	22h	22h	22h
A0h	FFh	FFh	FFh
A1h	CFh	CFh	CFh
A2h	2Fh	2Fh	2Fh
A3h	5Eh	5Eh	02h
A4h	72h	72h	72h
A5h	14h	24h	04h
A6h	80h	80h	80h
A7h	FEh	FEh	FEh
A8h	00h	00h	00h
A9h	A0h	A0h	A0h
AAh	0Fh	0Fh	0Fh
ABh	00h	00h	00h
ACh	00h	00h	00h
ADh	00h	00h	00h
AEh	0Fh	0Fh	0Fh
AFh	00h	00h	00h

Address 98h

CFG98 register							
7	6	5	4	3	2	1	0
IBOOST_LIM_2X							
				•			
Name	Bit	Access			Description		
IBOOST_LIM_2X	7	R/W	Select the inductor When IBOOST_LIM 1.8A. When IBOOST_LIM This option is supp (Note 11).	$M_2X = 0$, the i $M_2X = 1$, the i	inductor current limi	t can be set to 1.	6A, 2.1A, or 2.6A .

CFG9E

Address 9Eh

CFG9E register		_								
7	6	5	4	3	2	1	0			
		VBOOST_RANGE			HEADROC	M_OFFSET				
Name Bit Access Description										
VBOOST_RANGE	5	R/W	Select VBOOST range. When VBOOST_RANGE = 0, the output voltage range is from 7V to 34V When VBOOST_RANGE = 1, the output voltage range is from 16V to 43V							
HEADROOM_ OFFSET	3:0	R/W	1	ith LED_HEAI) mV) mV) mV) mV	fset. This adjusts the	•				

Address A0h

CFG0 register											
7	6	5	4	3	2	1	0				
			CURRE	NT LSB[7:0]	-						
Name	Bit	Access			Description						
CURRENT LSB	7:0	R/W	The 8-bits in this register (LSB) along the 4-bits defined in CFG1 Register (MSB allow LED current to be set in 12-bit fine steps. These 12-bits further scale the								
			maximum LED current set using CFG1 Register, CURRENT_MAX bits (denoted as IMAX). If ISET_EN = 0, the LED current is defined with the bits as shown								
	below. If ISET_EN = 1, then the external resistor connected to the ISET pin scales										
	the LED current as shown below.										
					ISET_EN = 0	ISET_	_EN = 1				
			0000 00	00 0000	0A		0A				
			0000 00	00 0001	(1/4095) x I _{MAX}		x 20000 x 1.2V /				
			0000 00	00 0010	(2/4095) x I _{MAX}	(2/4095) x I _{MAX}	x 20000 x 1.2V /				
			0111 11	11 1111	(2047/4095) x I _{MAX}		(I _{MAX} x 20000 x / R _{ISET}				
			1111 11	11 1101	(4093/4095) x	(4093/4095) >	(I _{MAX} x 20000 x				
					I _{MAX}	1.2V	/ R _{ISET}				
			1111 11	11 1110	(4094/4095) x	(4094/4095) >	(I _{MAX} x 20000 x				
					I _{MAX}	1.2V	/ R _{ISET}				
			1111 11	11 1111	(4095/4095) x	(4095/4095) >	(I _{MAX} x 20000 x				
					I _{MAX}	1.2V	/ R _{ISET}				

Address A1h

CFG1 register									
7	6	5	4 3 2 1 0						
PDET_STDBY	Cl	JRRENT_MAX[2:0]		CURRENT	MSB[11:8]			
				•					
Name	Bit	Access	Description						
PDET_STDBY	7	R/W	Enable Stand	by when PWN	Input is constant I	ow (approx. 50	ms timeout).		
CURRENT_MAX	6:4	R/W		the CFG0 Reg	as shown below. Ti jister.	nis maximum cu	rrent is scaled as		
CURRENT MSB	3:0	R/W	These bits fo	rm the 4 MSB	bits for LED Currer	nt as described i	n CFG0 Register		

Address A2h

CFG2 register									
7	6	5	4	3	2	1	0		
RESERVED		UVLO_EN	UVLO_TH	BL_ON	ISET_EN	BOOST_ _FSET_EN	PWM_ _FSET_EN		
Nama	D:	A	Danaminatian						
Name	Bit	Access	Description						
RESERVED	7:6	R/W							
UVLO_EN	5	R/W		e lockout prote	ection enable.				
UVLO_TH	4	R/W	UVLO thresh 0 = 2.5V 1 = 5.2V	old levels:					
BL_ON	3	R/W	Enable backlight. This bit must be set for PWM only control. 0 = Backlight disabled. This selection is recommended for systems with a I2C master. With an I2C master, the backlight can be controlled by writin to the register 01h. 1 = Backlight enabled. This selection is recommended for systems with PWM only control.						
ISET_EN	2	R/W	0 = Resistor CURRENT_I 1 = Resistor	MAX EPROM is enabled and	d current is se register bits. d current is set	t with CURREN t with the R _{ISET} DM register bits	resistor AND		
BOOST_FSET_EN	1	R/W	Enable configuration of the switching frequency via FSET pin. 0 = Configuration of the switching frequency via FSET pin is disabled. The switching frequency is set with BOOST_FREQ EPROM register bits. 1 = Configuration of the switching frequency via FSET pin is is enabled.						
PWM_FSET_EN	0	R/W	Enable configuration of the PWM dimming frequency via FSET pin. 0 = Configuration of the switching frequency via FSET pin is is disabled. The switching frequency is set with PWM_FREQ EPROM register bits. 1 = Configuration of the PWM dimming frequency via FSET pin is is enabled.						

Address A3h

CFG3 register								
7	6	5	4	3	2	1	0	
RESERVED		SLOPE[2:0]		FILTE	R[1:0]		M_INPUT_HYSTERESIS [1:0]	
Name	Bit	Access	Description					
RESERVED	7	R/W						
SLOPE	6:4	R/W	000 = 0 ms (001 = 1 ms 010 = 2 ms 011 = 50 ms 100 = 100 m 101 = 200 m 110 = 300 m 111 = 500 m	ns ns ns	ange)			
FILTER	3:2	R/W	Select brightness change transition filtering strength 00 = No filtering. 01 = light smoothing 10 = medium smoothing 11 = heavy smoothing					
PWM_INPUT_ _HYSTERESIS	1:0	R/W	00 = OFF 01 = 1-bit hy 10 = 1-bit hy	nysteresis func esteresis with 1 esteresis with 1 esteresis with 8	3-bit resoluti 2-bit resoluti	on		

Address A4h

CFG4 register	FG4 register											
7	6	5	4	3	2	1	0					
PWM	_TO_I_THI	RESHOLD[3:0]	RESERVED STEADY_ DITHER[1:0] _DITHER				HER[1:0]					
		<u> </u>	I									
Name	Bit	Access	Description									
PWM_TO_I_	7:4	R/W		n point betweer			ming					
_THRESHOLD				nt dimming acr	_							
			0001 = switch point at 10% of the maximum LED current.									
0010 = switch point at 12.5% of the maximum LED currer												
			0011 = switch point at 15% of the maximum LED current.									
				h point at 17.5 9								
				h point at 20%								
				h point at 22.5 9								
				h point at 25%	of the maximur	n LED currer	nt. This is a					
			recommende									
				h point at 33.3 3								
				h point at 41.6 7								
				h point at 50%			nt.					
			1011 to 1111	I = PWM dimm	ing across enti	re range						
RESERVED	3	R/W										
STEADY_DITHER	2	R/W	Dither function	on method sele	ct:							
			0 = Dither or	nly on transition	s							
			1 = Dither at	all times								
DITHER	1:0	R/W	V Dither function control									
			00 = Ditherin	ıg disabled								
			01 = 1-bit dithering									
			10 = 2-bit dithering									
			11 = 3-bit dit	hering								

Address A5h

FG5 register			,				1	
7	6	5	4	3	2	1	0	
PWM_DIRECT		PS_MODE[2:0]	:0] PWM_FREQ[3:0]					
	-							
Name	Bit	Access	Description					
PWM_DIRECT	7	R/W	Intended for	certain test mo	de purposes. \	When enabled,	the entire pipeli	
			is bypassed	and PWM out	out is connecte	ed with PWM in	nput.	
PS_MODE	6:4	R/W	Select PWM	output phase	configuration:			
			000 = 6-phas	se, 6 drivers (0)°, 60°, 120°, 1	180°, 240°, 320)°)	
			001 = 5-phas	se, 5 drivers (0)°, 72°, 144°, 2	216°, 288°, OF	F)	
			010 = 4-phas	se, 4 drivers (0)°, 90°, 180°, 2	270°, OFF, OF	F)	
			011 = 3-phas	se, 3 drivers (0)°, 120°, 240°,	OFF, OFF, OF	FF)	
			100 = 2-phas	se, 2 drivers (0	°, 180°, OFF,	OFF, OFF, OF	FF)	
						20°, 240°, 240°)	
)°, 0°, 0°, 180°			
			111 = 1-phas	se, 6 drivers (0	0°, 0°, 0°, 0°, 0)°, 0°)		
PWM_FREQ	3:0	R/W	0h = 4,808H	z (11-bit)				
			1h = 6,010H	z (10-bit)				
			2h = 7,212H	` '				
			3h = 8,414H	z (10-bit)				
			4h = 9,616H	z (10-bit)				
			5h = 12,020h	, ,				
			6h = 13,222H	` '				
			7h = 14,424h	` ,				
			8h = 15,626H	` '				
			9h = 16,828H	` '				
			Ah = 18,030I	, ,				
			Bh = 19,232I	, ,				
			Ch = 24,040					
			Dh = 28,848	,				
			Eh = 33,656l	, ,				
			Fh = 38,464H	HZ(8-bit)				

CFG6

Address A6h

CFG6 register							
7	6	5	4	3	2	1	0
BOOST_FREQ[1:0]			VBOOS	ST[5:0]		•
Name	Bit	Access	Description				
BOOST_FREQ	7:6	R/W	Set boost sw	itching frequer	ncy when BOO	DST_FSET_EN	N = 0.
			00 = 312 kHz	<u>z</u>			
			01 = 625 kHz	Z			
			10 = 1250 kH	łz			
			11 = undefine	ed			
VBOOST	5:0	R/W	Boost output	voltage. When	ADAPTIVE =	1, this is the bo	oost minimum and
			initial voltage).			

Address A7h

CFG7 register							
7	6	5	4	3	2	1	0
RESERVED		EN_DRV3	EN_DRV2	RESE	RVED	IBOOS	ST_LIM[1:0]
						-	
Name	Bit	Access	Description				
RESERVED	7:6						
EN_DRV3	5	R/W	Selects boos	t driver streng	th to set boost	slew rate. See	e EMI Reduction
			section for m	ore detail.			
			0 = Driver3 d	isabled			
			1 = Driver3 e	nabled			
EN_DRV2	4	R/W	Selects boos	t driver streng	th to set boost	slew rate. See	e EMI Reduction
			section for m	ore detail.			
			0 = Driver2 d				
			1 = Driver2 e	nabled			
RESERVED	3:2	R/W					
IBOOST_LIM	1:0	R/W	Select boost	inductor curre	nt limit		
			(IBOOST_LII	$M_2X = 0 / IBC$	OOST_LIM_2	(= 1)	
			00 = 0.9A / 1	.6A			
			01 = 1.2A / 2	.1A			
			10 = 1.5A / 2	.6A			
			11 = 1.8A / n	ot permitted			

Address A9h

CFG9 register									
7	6	5	4	3	2	1	0		
VBOO	ST_MAX[2:0)]	JUMP_EN	JUMP_THRE	SHOLD[1:0]	JUMP_V	OLTAGE[1:0]		
Name	Bit	Access	Description						
VBOOST_MAX	7:5	R/W	Select the maximum boost voltage (typ values) (VBOOST_RANGE = 0 / VBOOST_RANGE = 1) 010 = NA / 21V 011 = NA / 25V 100 = 21V / 30V 101 = 25V / 34.5V 110 = 30V / 39V 111 = 34V / 43V						
JUMP_EN	4	R/W	Enable JUMI	detection on	the PWM inpu	t.			
JUMP_THRESHOLD	3:2	R/W	Select JUMP 00 = 10% 01 = 30% 10 = 50% 11 = 70%	threshold:					
JUMP_VOLTAGE	1:0	R/W	Select JUMP 00 = 0.5V 01 = 1V 10 = 2V 11 = 4V	voltage:					

CFGA

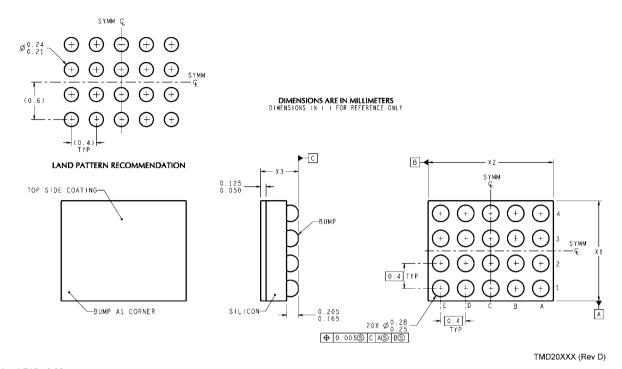
Address AAh

CFGA register									
7	6	5	4	3	2	1	0		
SSCLK_EN	RESERVED	RESE	RVED	ADAPTIVE	DR	IVER_HEADR	OOM[2:0]		
Name	Bit	Access	Description						
SSCLK_EN	7	R/W	Enable sprea	ad spectrum fur	ction.				
RESERVED	6	R/W							
RESERVED	5:4	R/W							
ADAPTIVE	3	R/W	Enable adap	tive boost contr	ol.				
DRIVER_HEADROOM	2:0	R/W	LED driver he	eadroom contro	I. This sets th	e LOW compai	rator threshold and		
			contributes to	o the MID comp	arator thresh	nold.			
			000 = HEAD	ROOM_OFFSE	T + 875 mV				
			001 = HEAD	ROOM_OFFSE	T + 750 mV				
			010 = HEAD	ROOM_OFFSE	T + 625 mV				
			011 = HEAD	ROOM_OFFSE	T + 500 mV				
			100 = HEAD	ROOM_OFFSE	T + 375 mV				
			101 = HEAD	ROOM_OFFSE	T + 250 mV				
			110 = HEAD	ROOM_OFFSE	T + 125 mV				
			111 = HEAD	ROOM_OFFSE	T mV				

CFGE

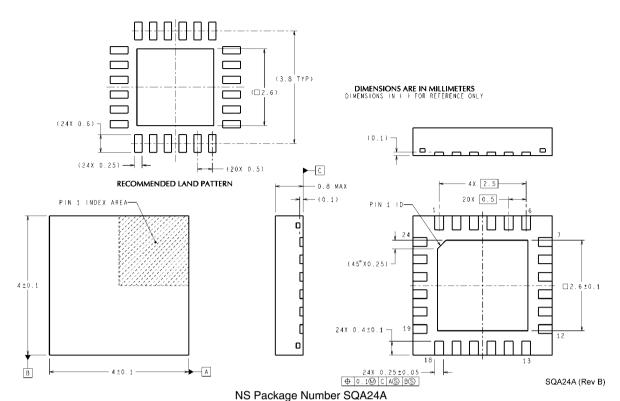
Address AEh

CFGE register								
7	6	5	4	3	2	1	0	
STEP_UP[1:0]	STEP_DN	N[1:0]	LED_FAUL	T_TH[2:0]	LED_CON	/IP_HYST[1:0]	
Name	Bit	Access	Description					
STEP_UP	7:6	R/W	Adaptive hea	droom UP ste	o size			
			00 = 105 mV	,				
			01 = 210 mV	•				
			10 = 420 mV	•				
			11 = 840 mV	•				
STEP_DN	5:4	R/W	Adaptive hea	droom DOWN	step size			
			00 = 105 mV	,				
			01 = 210 mV	,				
			10 = 420 mV	,				
			11 = 840 mV	•				
LED_FAULT_TH	3:2	R/W	LED headroo	om fault thresh	old. This sets	the HIGH com	parator threshold.	
			00 = 5V					
			01 = 4V					
			10 = 3V					
			11 = 2V					
LED_COMP_HYST	1:0	R/W	LED headror	n comparison l	nysteresis. Th	is sets the MID	comparator	
			threshold.					
			00 = DRIVER	R_HEADROON	1 + 1000 mV			
			01 = DRIVER	R_HEADROON	1 + 750 mV			
			10 = DRIVER	R_HEADROON	1 + 500 mV			
			11 = DRIVER	R_HEADROON	1 + 250 mV			


CFGF

Address AFh

CFGF register							
7	6	5	4	3	2	1	0
REVISION							
Name	Bit	Access	Description				
REV	7:0	R/W	EPROM Settings Revision ID code				


Physical Dimensions inches (millimeters) unless otherwise noted

 $X1 = 1.715 \pm 0.03 \text{ mm}$ $X2 = 2.376 \pm 0.03 \text{ mm}$ $X3 = 0.600 \pm 0.075 \text{ mm}$

NS Package Number TMD20EQA (See AN-1112 for PCB Design and Assembly Recommendations)

(See AN-1187 for PCB Design and Assembly Recommendations)

56

Notes

Notes

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products Applications

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps

DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface Medical www.ti.com/medical interface.ti.com Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>