TDA2002 # **8W CAR RADIO AUDIO AMPLIFIER** NOT FOR NEW DESIGN The TDA2002 is a class B audio power amplifier in Pentawatt $^{\textcircled{B}}$ package designed for driving low impedance loads (down to 1.6Ω). The device provides a high output current capability (up to 3.5A), very low harmonic and cross-over distortion. In addition, the device offers the following features: - very low number of external components assembly ease, due to Pentawatt[®] power package with no electrical insulation re- - quirement - space and cost saving - high reliability - flexibility in use #### Protection against: - a) short circuit; - b) thermal over range; - c) fortuitous open ground; - d) load dump voltage surge. See TDA 2003 for more complete information. # ABSOLUTE MAXIMUM RATINGS | | | 40 | | |---------------------|---|------------|----| | | Deals symply voltage (50 ms) | 40 | V | | V _s | Peak supply voltage (50 ms) | 28 | V | | V _s | DC supply voltage | 18 | V | | V _s | Operating supply voltage | 3.5 | Α | | ام | Output peak current (repetitive) | 4.5 | Α | | 10 | Output peak current (non repetitive) | 15 | W | | P_{tot} | Power dissipation at T _{case} = 90°C | -40 to 150 | °C | | T_{stq} , T_{j} | Storage and junction temperature | -40 to 150 | | Fig. 1 - Application circuit June 1988 1/2 #### **ELECTRICAL CHARACTERISTICS** (V_s= 14.4V, T_{amb}= 25°C unless otherwise specified) | - | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------|----------------------------------|-----------------|------|------|------|------| | DC CI | HARACTERISTICS (Refer to DC tes | st circuit) | | | | | | V _s | Supply voltage | | 8 | | 18 | V | | Vo | Quiescent output voltage (pin 4) | | 6.1 | 6.9 | 7.7 | V | | l _d | Quiescent drain current (pin 5) | | | 45 | 80 | mA | ## AC CHARACTERISTICS (Refer to AC test circuit, G_v = 40 dB) | Po | Output power | | d = 10%
V _s = 16V | $f = 1 \text{ kHz}$ $R_L = 4\Omega$ $R_L = 2\Omega$ $R_L = 2\Omega$ $R_L = 2\Omega$ | 4.8 7 | 5,2
8
6.5
10 | | W
W
W | |----------------|-------------------------------|-----|--|---|--------------|-----------------------|------|----------------| | Vi (rms) | Input saturation voltage | | | | 300 | | | mV | | Vi | Input sensitivity | | P _o = 0.5W
P _o = 0.5W
P _o = 5.2W
P _o = 8W | f = 1 kHz
R _L = 4Ω
R _L = 2Ω
R _L = 4Ω
R _L = 2Ω | | 15
11
55
50 | | mV
mV
mV | | В | Frequency response
(-3 dB) | | R_= 4Ω | P _o = 1W | 40 to 15 000 | | | Hz | | d | Distortion | • | P _o = 0.05 to 3
P _o = 0.05 to 9 | f = 1 kHz
3.5W $R_{\perp} = 4\Omega$
5W $R_{\perp} = 2\Omega$ | | 0.2
0.2 | | %
% | | Ri | Input resistance (pin 1) | | f = 1 kHz | | 70 | 150 | | kΩ | | G _V | Voltage gain (open loop) | | R _L = 4Ω | f = 1 kHz | | 80 | | dB | | G _V | Voltage gain (closed loop) | | R _L = 4Ω | f = 1 kHz | 39.3 | 40 | 40.5 | dB | | e _N | Input noise voltage | (*) | | | | 4 | | μV | | iN | Input noise current | (*) | | | | 60 | | pΑ | | η | Efficiency | | P _o = 5.2W
P _o = 8W | f = 1 kHz
R _L = 4Ω
R _L = 2Ω | | 68
58 | | %
% | | SVR | Supply voltage rejection | | $R_L = 4\Omega$ $R_g = 10 \text{ k}\Omega$ $f_{ripple} = 100$ | Hz | 30 | 35 | | dB | ^(*) Filter with noise bandwidth: 22 Hz to 22 KHz.