

Embedded MPU with ARM926 core for industrial and consumer applications

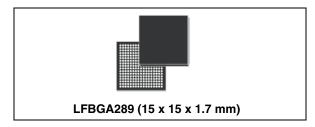
Datasheet - production data

Features

- ARM926EJ-S CPU core, up to 333 MHz
- Multilayer bus matrix, up to 166 MHz
- Internal memories: 32 KB ROM, 8 KB SRAM
- Memory interfaces:
 - DDR controller (DDR2-666, LPDDR-333), 8-/16-bit
 - Serial NOR Flash controller
 - Parallel NAND Flash controller, 8-/16-bit data bus
 - Parallel NOR Flash/FPGA interface,
 8-/16-bit data bus

■ Connectivity:

- 2 x USB 2.0 Host ports (integrated PHY)
- 1 x USB 2.0 Device port (integrated PHY)
- 2 x Fast Ethernet ports (external MII/RMII PHY)
- 1 x MMC-SD card/SDIO controller
- 2 x CAN 2.0 ports
- 7 x UART ports
- 3 x I2C ports: master/slave
- 3 x synchronous serial ports,
 SPI/Microwire/TI protocols, master/slave
- 1 x RS485 interface
- 1 x fast IrDA interface
- 1 x legacy parallel port (IEEE 1284), slave mode
- 10-bit ADC, 8 channels, 1 Msps
- Up to 102 GPIOs with interrupt capability


HMI support:

- LCD display controller, up to XGA (1024 x 768, 24 bpp)
- Resistive touchscreen interface
- JPEG codec accelerator
- 1 x I2S digital audio port

■ Security

Downloaded from Arrow.com.

Cryptographic co-processor

- Miscellaneous functions:
 - System controller, vectored interrupt controller, watchdog, real-time clock
 - Dynamic power-saving features
 - 8-channel DMA controller
 - 6 x 16-bit general purpose timers with prescaler and 4 capture inputs
 - 4 x PWM generators
 - Debug and trace interfaces: JTAG/ETM

Applications

The SPEAr320S embedded MPU is configurable for a range of industrial and consumer applications such as:

- Human machine interface (HMI) terminals
- Factory automation / PLCs
- Medical equipment
- Smart energy meters and gateways
- VoIP phones
- Small printers

The device is hardware-compliant to the support of both real-time (RTOS) and high-level (HLOS) operating systems, such as Linux and Windows Embedded Compact 7.

Table 1. Device summary

Order code	Temp range, °C	Package	Packing
SPEAR320S-2	-40 to 85	LFBGA289 (15x15 mm, pitch 0.8 mm)	Tray

September 2012 Doc ID 022508 Rev 2 1/113

This is information on a product in full production.

Contents SPEAr320S

Contents

1	Desc	ription	9
2	Devi	ce functions 1	1
	2.1	CPU subsystem	11
	2.2	Internal memories (BootROM/SRAM)	11
	2.3	Multiport DDR controller (MPMC) 1	12
	2.4	Serial NOR Flash controller (SMI)	12
	2.5	Parallel NAND Flash controller (FSMC)	14
	2.6	External memory interface (EMI)	15
	2.7	USB 2.0 Host ports (UHC)	15
	2.8	USB 2.0 Device port (UDC)	16
	2.9	Fast Ethernet ports (MII/RMII)	16
		2.9.1 MII0 Ethernet controller	16
		2.9.2 RMII0 and MII1/RMII1 Ethernet controllers	17
	2.10	MMC-SD card/SDIO controller	17
	2.11	CAN 2.0 ports	18
	2.12	Asynchronous serial ports (UART)	19
	2.13	I2C bus ports (I2C)	20
	2.14	Synchronous serial ports (SSP)	20
	2.15	RS485 port (RS485)	21
	2.16	Fast infrared port (IrDA)	21
	2.17	Legacy IEEE 1284 parallel port (SPP)	21
	2.18	A/D converter (ADC)	22
	2.19	General purpose I/Os (GPIO/XGPIO)	22
	2.20	LCD display controller (CLCD)	23
	2.21	Touchscreen interface (TOUCHSCREEN)	23
	2.22	JPEG codec accelerator (JPGC)	24
	2.23	Digital audio port (I2S)	24
	2.24	Cryptographic co-processor (C3)	
	2.25	System controller (SYSCTR)	
		2.25.1 Reset and clock generator	

	2.26	Vectored interrupt controller (VIC)
	2.27	Watchdog timer (WDT)
	2.28	Real-time clock (RTC)
	2.29	DMA controller (DMAC)
	2.30	General purpose timers (GPT)
	2.31	Pulse width modulators (PWM)
3	Pin d	lescription
	3.1	Pin/ball map
	3.2	Required external components
	3.3	Dedicated pins description
		3.3.1 Clock, reset and 3V3 comparator pins
		3.3.2 Power supply pins
		3.3.3 Debug pins
		3.3.4 Non-multiplexed pins
	3.4	Shared IO pins (PL_GPIOs)
		3.4.1 PL_GPIO / PL_CLK pins description
		3.4.2 Extended mode: RMII automation networking mode
		3.4.3 Alternate functions
		3.4.4 Legacy configuration modes
		3.4.5 Boot pins
		3.4.6 GPIOs
		3.4.7 Multiplexing scheme
		3.4.8 Multiplexed signals description
	3.5	PL_GPIO and PL_CLK pin sharing for debug and test modes 66
4	Elect	trical characteristics67
	4.1	Absolute maximum ratings 67
	4.2	Maximum power consumption 67
	4.3	Recommended operating conditions 68
	4.4	Overshoot and undershoot
	4.5	3.3V I/O characteristics
	4.6	Clocking parameters
		4.6.1 Master clock (MCLK)
		4.6.2 Real-time clock (RTC)

	4.7	LPDDR	and DDR2 pin characteristics	74
	4.8	ADC pir	n characteristics	75
	4.9	Power-u	up sequence	76
	4.10	Power-o	down sequence	76
	4.11	Reset re	elease	77
5	Timin	ıg requi	rements	78
	5.1	Externa	ll interrupt timing characteristics	78
	5.2	Reset ti	ming characteristics	78
	5.3	CAN tin	ning characteristics	79
	5.4	CLCD t	iming characteristics	80
	5.5	DDR2/L	PDDR timing characteristics	81
		5.5.1	DDR2/LPDDR read cycle timing characteristics	81
		5.5.2	DDR2/LPDDR write cycle timing characteristics	82
		5.5.3	DDR2/LPDDR command timing characteristics	82
	5.6	EMI tim	ing characteristics 8	83
	5.7	Etherne	et MII timing characteristics	85
		5.7.1	MII transmit timing characteristics	85
		5.7.2	MII receive timing characteristics	86
		5.7.3	MDC/MDIO timing characteristics	
	5.8		et RMII timing characteristics	
		5.8.1	RMII transmit timing characteristics	
		5.8.2	RMII receive timing characteristics	
	5.9		iming characteristics	
	5.10	_	GPIO timing characteristics	
	5.11		ng characteristics	
	5.12	I2S timi	ng characteristics	94
	5.13	PWM ti	ming characteristics 9	94
	5.14	SD timi	ng characteristics (96
	5.15	SMI tim	ing characteristics	97
	5.16	SSP tim	ning characteristics 9	98
		5.16.1	SPI master mode timings	98
		5.16.2	SPI slave mode timings	
	5.17	SPP tim	ning characteristics	03

SPEAr320S	Cont	ontents		
	5.18	UART timing characteristics	103	
6	Package information			
Appendix	A A	acronyms	108	
Revision	histor	ry	111	

List of tables SPEAr320S

List of tables

Table 1.	Device summary	. 1
Table 2.	NAND Flash devices supported by the BootROM firmware	14
Table 3.	SPEAr320S UART capabilities	19
Table 4.	Pixel widths and formats available for different display types	23
Table 5.	Headers/abbreviations	29
Table 6.	MCLK, RTC, Reset and 3.3 V comparator pins description	31
Table 7.	Power supply pins description	32
Table 8.	Debug pins description	33
Table 9.	SMI pins description	33
Table 10.	USB pins description	34
Table 11.	ADC pins description	34
Table 12.	DDR pins description	35
Table 13.	PL_GPIO / PL_CLK pins description	37
Table 14.	Boot pins description	41
Table 15.	PL_GPIO/PL_CLK multiplexing scheme and reset states	43
Table 16.	Table shading reference for Table 15 multiplexing scheme	48
Table 17.	FSMC signals description	49
Table 18.	EMI signals description	50
Table 19.	CLCD signals description	52
Table 20.	Touchscreen signal description	53
Table 21.	UART signals description	53
Table 22.	CAN signals description	55
Table 23.	MMC-SD/SDIO controller signals description	56
Table 24.	PWM signals description	56
Table 25.	GPT signals description	57
Table 26.	IrDA signals description	57
Table 27.	SSP signals description	58
Table 28.	I2C signals description	60
Table 29.	I2S signals description	60
Table 30.	SPP signals description	61
Table 31.	Ethernet signals description	62
Table 32.	Ball sharing during debug	
Table 33.	Absolute maximum ratings	
Table 34.	Maximum power consumption	67
Table 35.	Recommended operating conditions	
Table 36.	Overshoot and undershoot specifications	
Table 37.	Low voltage TTL DC input specification (3 V< V _{DD} <3.6 V)	
Table 38.	Low voltage TTL DC output specification (3 V< V_{DD} <3.6 V)	
Table 39.	Pull-up and pull-down characteristics	
Table 40.	MCLK oscillator characteristics	
Table 41.	MCLK external user clock source characteristics	
Table 42.	RTC oscillator characteristics	
Table 43.	RTC external user clock source characteristics	
Table 44.	DC characteristics	
Table 45.	Driver characteristics	
Table 46.	On-die termination	
Table 47.	Reference voltage	
Table 48.	ADC pin characteristics	75

Table 49.	PL_GPIO external interrupt input timing	78
Table 50.	Reset timing characteristics	78
Table 51.	CAN timing characteristics	79
Table 52.	CLCD timing requirements	80
Table 53.	DDR2/LPDDR read cycle timing requirements	81
Table 54.	DDR2/LPDDR write cycle timing requirements	82
Table 55.	DDR2/LPDDR command timing requirements	82
Table 56.	EMI timing requirements for read cycle with acknowledgement on WAIT	83
Table 57.	EMI timing requirements for write cycle with acknowledgement on WAIT	84
Table 58.	EMI signals timing requirements	85
Table 59.	MII TX timing requirements	85
Table 60.	MII RX timing requirements	86
Table 61.	MDC timing requirements	86
Table 62.	RMII TX timing requirements	87
Table 63.	RMII RX timing requirements	88
Table 64.	FSMC timing requirements	90
Table 65.	FSMC signals timing requirements	90
Table 66.	I ² C timing requirements in high-speed mode	93
Table 67.	I ² C timing requirements in fast-speed mode	93
Table 68.	I ² C timing requirements in standard-speed mode	93
Table 69.	I2S timing requirements	94
Table 70.	PWM timing characterisitics	95
Table 71.	SD timing requirements (high-speed mode, 48 MHz)	96
Table 72.	SD timing requirements (full-speed mode, 24 MHz)	96
Table 73.	SMI timing requirements	
Table 74.	SPI master mode timing characteristics (SPH = 0, SPO=0)	99
Table 75.	SPI master mode timing characteristics (SPH = 0, SPO=1)	100
Table 76.	SPI master mode timing characteristics (SPH = 1, SPO=0)	
Table 77.	SPI master mode timing characteristics (SPH = 1, SPO=1)	102
Table 78.	SSP timing characteristics (slave mode)	103
Table 79.	UART transmit timing characteristics	
Table 80.	UART receive timing characteristics	104
Table 81.	RS485_OE transmit and receive timing characteristics	105
Table 82.	LFBGA289 (15 x 15 x 1.7 mm) mechanical data	
Table 83.	LFBGA289 package thermal characteristics	107
Table 84.	List of acronyms	
Table 85.	Document revision history	111

List of figures SPEAr320S

List of figures

rigure i.	SPEAI320S architectural block diagram	
Figure 2.	SPEAr320S pin/ball map	
Figure 3.	Hierarchical multiplexing scheme	
Figure 4.	MCLK crystal connection	
Figure 5.	RTC crystal connection	
Figure 6.	Power-up sequence	
Figure 7.	Cold reset release	
Figure 8.	Warm reset release	
Figure 9.	CLCD waveform	
Figure 10.	DDR2/LPDDR read cycle waveform	
Figure 11.	DDR2/LPDDR write cycle waveform	
Figure 12.	DDR2/LPDDR command waveform	
Figure 13.	EMI read cycle waveform with acknowledgement on EMI_WAIT	
Figure 14.	EMI write cycle waveform with acknowledgement on EMI_WAIT	
Figure 15.	EMI read cycle waveform without acknowledgement on EMI_WAIT	
Figure 16.	EMI write cycle waveform without acknowledgement on EMI_WAIT	
Figure 17.	MII TX waveform	
Figure 18.	MII RX waveform	
Figure 19.	MDC waveform	
Figure 20.	RMII TX waveform	
Figure 21.	RMII RX waveform	
Figure 22.	Output command signal waveform	
Figure 23.	Output address signal waveform	
Figure 24.	In/out data address signal waveform	
Figure 25.	Output signal waveform for I ² C signals	92
Figure 26.	RC delay circuit	
Figure 27.	I2S waveform	
Figure 28.	PWM timing waveforms	
Figure 29.	SD timing waveform	
Figure 30.	SMI input/output waveform	
Figure 31.	SSP_SCK waveform	
Figure 32.	SPI master mode external timing waveform (SPH= 0, SPO =0)	
Figure 33.	SPI master mode external timing waveform (SPH= 0, SPO =1)	
Figure 34.	SPI master mode external timing waveform (SPH = 1, SPO = 0)	
Figure 35.	SPI master mode external timing waveform (SPH = 1, SPO = 1)	
Figure 36.	SPP timing waveform	
Figure 37.	UART transmit and receive waveform	
Figure 38.	RS485_OE transmit and receive waveform	
Figure 39.	LFBGA289 package dimensions	107

SPEAr320S Description

1 Description

SPEAr320S is a member of the SPEAr family of embedded MPUs and is optimized for industrial automation and consumer markets. The device is based on the ARM926EJ-S processor (up to 333 MHz), widely used in applications where the processing performance is required to be higher than the one achievable with microcontrollers.

SPEAr320S provides an integrated MMU (memory management unit) which enables to support high-level operating systems (HLOS), such as Linux and Windows Embedded Compact 7. In addition, a rich set of integrated peripherals (memory interfaces, connectivity, HMI, cryptography) allows the device to be used in a wide range of embedded applications.

The SPEAr320S architecture is based on multiple functional blocks interacting through a multilayer interconnection bus matrix. The switch matrix structure allows different subsystem data flows to be executed in parallel improving the core platform efficiency. High performance master agents are directly interconnected with the memory controller reducing the memory access latency. The overall memory bandwidth assigned to each master port can be programmed and optimized through an internal efficient weighted round-robin arbitration mechanism.

The SPEAr320S device is fully backward-compatible with the previous SPEAr320 product at both hardware and software programming levels. The extended functionality is achieved by enhanced I/O multiplexing, preserving the same pinout and ball map, as well as by a new software-definable configuration mode.

Description SPEAr320S

JTAG Trace Memory interfaces Low-speed connectivity DDR2/LPDDR CPU CAN (2x) 32 KB Ctrl Subsystem Boot ROM Debug I/F ETM I/F Serial Flash I/F UART (7x) 8 KB Static RAM Static Memory Ctrl I2C (3x) ARM9EJ-S Core MMU External Memory SSP (3x) 16 KB 16 KB I-Cache D-Cache RS485 **HMI** features Bus Interfaces Display Ctrl Fast IrDA JPEG Codec SPP ADC I2S Audio I/F Config Regs (MISC) Vectored Interrupt Controller GPIO Touchscreen I/F System Controller **High-speed connectivity** XGPIO Watchdog Reset & clock USB 2.0 Host (2x) Generator PWM (4x) Timers (6x) USB 2.0 Device Cryptographic DMA Ctrl Co-processor Fast Ethernet (2x)

BUSMATRIX Interconnect

Figure 1. SPEAr320S architectural block diagram

SDIO/MMC

Battery

RTC

2 Device functions

2.1 CPU subsystem

The core of the SPEAr320S is an ARM926EJ-S reduced instruction set computer (RISC) processor.

Main features:

- Supports the 32-bit ARM and 16-bit Thumb instruction sets, enabling the user to trade
 off between high performance and high code density. It also includes features for
 efficient execution of Java byte codes.
- The ARM CPU can be clocked at a frequency up to 333 MHz and includes both an instruction (16 KB) and a data cache (16 KB). In addition to the capability of running any real-time operating system (RTOS) available for ARM9 processors, the ARM926EJ-S subsystem also provides a memory management unit (MMU) that enables to support high-level operating systems (HLOS) like Linux and Windows Embedded Compact 7.
- Includes an embedded trace module (ETM Medium+) for real-time CPU activity tracing and debugging. It supports 4-bit and 8-bit normal trace mode and 4-bit demultiplexed trace mode, with normal or half-rate clock.

For detailed information, please refer to the following public documents available from the ARM Ltd. website:

CPU Core:

ARM9EJ-S, Technical Reference Manual, Revision: r1p2 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0222b/DDI0222.pdf

• CPU Subsystem:

ARM926EJ-S, Technical Reference Manual, Revision: r0p5 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0198e/DDI0198E_arm926ejs_r0p5_trm.pdf

2.2 Internal memories (BootROM/SRAM)

SPEAr320S integrates two embedded memories:

- 32 KB ROM (BootROM), storing a factory-defined device bootstrap firmware.
- 8 KB Static RAM (SRAM), partly used by bootstrap firmware, but also available as general-purpose memory after system startup.

The firmware in BootROM is automatically executed after SPEAr320S reset and supports the following bootstrap modes:

- Boot from serial NOR Flash
- Boot from parallel NAND Flash
- Boot from parallel NOR Flash
- Boot from USB Device port
- Boot from UART0
- Boot from Ethernet (MII0)

The BootROM firmware selects the boot mode from the boot pin settings (see *Section 3.4.5: Boot pins*). A setting is also available to allow the BootROM execution to be bypassed.

The first three modes support alternate ways of locating and starting the selected operating system or target custom software. Such modes require a second-level boot firmware to be stored in external Flash memory. A reference code for such boot loader (called "XLoader") is provided by STMicroelectronics in source and binary formats for the SPEAr320S evaluation boards. Such code must be adapted according to the specific DDR memory components found on target customer systems.

The fourth mode can be used for installing and updating the software on external Flash memories through a PC-based software utility provided by STMicroelectronics exploiting a USB link between a PC and a target SPEAr320S board.

The sixth mode used the MII0 port and is based on two standard protocols: DHCP (to get an IP address over the network) and TFTP (for receiving xloader and u-boot binary images).

2.3 Multiport DDR controller (MPMC)

SPEAr320S integrates a high-performance controller able to manage DDR2 (double data rate) and LPDDR (low power DDR) external dynamic memory devices.

Main features:

- Support for DDR2 up to 333 MHz (666 MT/sec)
- Support for LPDDR up to 166 MHz (333 MT/sec)
- Support for 8-/16-bit external data bus
- Support for up to 1 GByte DDR2/LPDDR memory address space
- Full initialization of memories on controller reset
- 6 independent internal ports: five of them are used to access the external memory while one is reserved for programming the controller configuration registers
- Programmable built-in port arbitration scheme to ensure high memory bandwidth utilization
- Fully pipelined read and write commands
- Self-refresh mode for power saving
- Integrated physical layer (PHY) and delay locked loops (DLLs) for fine tuning of the timing parameters, maximizing the data valid windows at different frequencies

2.4 Serial NOR Flash controller (SMI)

SPEAr320S integrates a Flash memory controller able to manage serial, SPI-compatible, NOR Flash and EEPROM external memory devices.

- Support for up to 32 MByte external serial memory storage capacity (2 x 16 MB addressable banks by independent chip select signals)
- SMI clock up to 50 MHz (fast read mode) or 20 MHz (normal mode), with software configurable 7-bit prescaler

The bootstrap requires that the external serial Flash is located at bank 0 (enabled after power-on reset). During the boot phase, a sequence of instructions is automatically sent to bank 0. Refer to the SPEAr320S reference manuals for more details.

The BootROM firmware has been tested with the following external serial memory components:

- Micron M25P and M45P families (SPI Flash)
- STMicroelectronics M95 family (SPI EEPROM), except for M95040, M95020 and M95010
- ATMEL AT25F family (SPI Flash)
- YMC Y25F family (SPI Flash)
- Microchip/SST SST25LF family (SPI Flash)

2.5 Parallel NAND Flash controller (FSMC)

SPEAr320S integrates a flexible static memory controller able to manage external parallel NAND Flash memories.

Main features:

- 8-/16-bit external data bus; 16-bit only supported when Mode 3 (expanded automation mode) chip configuration is selected by software.
- Support for up to 4 memory banks
- Independent timing configuration and chip select signal for each memory bank
- Fully programmable timings:
 - wait states (up to 31)
 - bus turnaround cycles (up to 15)
 - output enable and write enable delays (up to 15)
- External asynchronous wait control
- Internal AHB bus burst transfer support to reduce Flash memory access time

The BootROM firmware directly supports the external NAND Flash components shown in *Table 2*.

Table 2. NAND Flash devices supported by the BootROM firmware

Part number	Vendor	Density	Capacity	Bus width	Page size
K9F1208V0A	Samsung	64 Mb	8 MB	x8	512 + 16 bytes
NAND128W3A28N6	Micron	128 Mb	16 MB	x8	512 + 16 bytes
NAND256W3A2BN6	Micron	256 Mb	32 MB	x8	512 + 16 bytes
KM29U256	Samsung	256 Mb	32 MB	x8	512 + 16 bytes
NAND512W3A2C2A6	Micron	512 Mb	64 MB	x8	512 + 16 bytes
NAND01GW3B2BN6	Micron	1 Gb	128 MB	x8	2048 + 64 bytes
NAND01GW4B2AN6	Micron	1 Gb	128 MB	x16	1024 words + 32 bytes
K9F1G16U0M	Samsung	1 Gb	128 MB	x16	1024 words + 32 bytes
NAND01GR3B	Micron	1 Gb	128 MB	x8	2048 + 64 bytes
NAND02GW3B2CN6	Micron	2 Gb	256 MB	x8	2048 + 64 bytes

Bus Vendor Part number Density Capacity Page size width NAND02GW3A 2 Gb Micron 256 MB x8 2048 + 64 bytes K9F2G08V0A 2 Gb Samsung 256 MB х8 512 + 16 bytes NAND04GW3B2BN6 Micron 4 Gb 512 MB х8 2048 + 64 bytes 4 Gb K9F4G08V0A Samsung 512 MB х8 512 + 16 bytes NAND08GW3B2CN6 Micron 8 Gb 1 GB х8 2048 + 64 bytes K9K8G08V0A Samsung 8 Gb 1 GB х8 512 + 16 bytes K9F8G08V0M 8 Gb 1 GB х8 Samsung 512 + 16 bytes

Table 2. NAND Flash devices supported by the BootROM firmware (continued)

2.6 External memory interface (EMI)

SPEAr320S integrates an additional external memory interface that can be used to manage external parallel NOR Flash memories as well as FPGA devices. This interface is available only when Mode 3 (expanded automation mode) chip configuration is selected by software.

Main features:

- 24-bit address bus
- 16-bit data bus
- 4 chip select signals
- Support for single asynchronous transfers
- Support for peripherals using Byte Lane procedure

The external Flash component must be in read mode at reset. Usually, this is true for most parallel NOR devices.

2.7 USB 2.0 Host ports (UHC)

SPEAr320S provides two USB 2.0 Host ports with integrated PHYs.

- Each port can be independently configured for high-speed mode (USB 2.0, up to 480 Mbps); in this case, the corresponding controller is programmed according to standard EHCI specifications.
- Each port can be independently configured for full-speed mode (USB 1.1, up to 12 Mbps) or low-speed mode (USB 1.1, up to 1.5 Mbps); in this case, the corresponding controller is programmed according to standard OHCI specifications.
- Internal 2 KB FIFO queues
- Internal DMA support
- Dedicated output control signals to manage external power switches
- Dedicated input signals to sense any over-current condition detected by external power switches

2.8 USB 2.0 Device port (UDC)

SPEAr320S provides a USB 2.0 Device port with integrated PHY.

Main features:

- Support for all standard modes:
 - high-speed mode (USB 2.0, up to 480 Mbps)
 - full-speed mode (USB 1.1, up to 12 Mbps)
 - low-speed mode (USB 1.1, up to 1.5 Mbps)
- Up to 16 physical endpoints, configurable as different logical endpoints
- Internal 4 KB FIFO queue (shared among all the endpoints)
- DMA mode, with descriptor-based structures in application memory
- Slave-only mode
- Support for 8-, 16- and 32-bit wide data transactions on the internal bus
- Support for USB plug detection (UPD)

2.9 Fast Ethernet ports (MII/RMII)

SPEAr320S features three multiplexed Ethernet MACs, supporting up to two ports concurrently.

The three controllers are named:

- MII0
- RMII0
- MII1/RMII1

2.9.1 MII0 Ethernet controller

- Media independent interface (MII) to an external PHY as defined in the IEEE 802.3u specification
- Support for 10 and 100 Mbps data transfer rates
- Support for both full-duplex and half-duplex (CSMA/CD protocol) operating modes
- Integrated FIFO queues (4 KB RX, 2 KB TX)
- Native DMA with single-channel transmit and receive engines, providing 32-/64-/128-bit data transfers; DMA provides ring-buffer or linked-list descriptor options.
- Programmable Ethernet frame length to support both standard and jumbo frames (with size up to 16 KB)
- Flexible address filtering modes
- Statistics counter registers for RMON/MIB
- Support for 802.1Q VLAN tagging
- Wake-on-LAN support
- Automatic padding and CRC generation on transmitted frames

2.9.2 RMII0 and MII1/RMII1 Ethernet controllers

These functional blocks extend Ethernet capability by covering the Media independent interface (MII) and Reduced media independent interface (RMII) standards.

They can be used in two ways:

- as a single additional MAC controller with Media independent interface (MII1)
- as two MAC controllers with Reduced media independent interface (RMII0, RMII1)

In *RMII configuration*, each controller has an independent set of data and control lines. The reference clock (50 MHz) is shared by the controllers.

Main features:

- Compatible with IEEE Standard 802.3
- UNH tested
- 10 and 100 Mbit/s operation
- Full and half duplex operation
- Statistics counter registers for RMON/MIB
- Automatic pad and CRC generation on transmitted frames
- Automatic discard of frames received with errors
- Address checking logic supports up to four specific 48-bit addresses
- Supports promiscuous mode where all valid received frames are copied to memory
- Hash matching of unicast and multicast destination addresses
- External address matching of received frames
- Supports serial network interface operation
- Half-duplex flow control by forcing collisions on incoming frames
- Full-duplex flow control with recognition of incoming pause frames and hardware generation of transmitted pause frames
- Support for 802.1Q VLAN tagging with recognition of incoming VLAN and priority tagged frames
- Multiple buffers per receive and transmit frame
- Jumbo frames of up to 10240 bytes supported

2.10 MMC-SD card/SDIO controller

The MMC-SD card /SDIO controller conforms to the SD Host Controller Standard Specification, version 2.0. It handles SD/SDIO protocol at transmission level by packing data, adding cyclic redundancy check (CRC) and start/end bit as well as checking for transaction format correctness.

The controller is designed to work with I/O cards, read-only cards and read/write cards, and can operate either in SD mode (1-bit, 4-bit, 8-bit) or in SPI mode.

The interface is compliant to the following standards:

- SD Host Controller Standard Specification, version 2.0
- SDIO Card Specification, version 2.0
- SD Memory Card Specification Draft, version 2.0
- SD Memory Card Security Specification, version 1.01
- MMC Specification, version 3.31 and 4.2

Main features:

- Up to 100 Mbps data rate using 4 parallel data lines (SD4 bit mode)
- Up to 416 Mbps data rate using 8-bit parallel data lines (SD8 bit mode)
- DMA-based and non-DMA modes of operation
- Support for MMC Plus and MMC Mobile
- Card detection (insertion / removal)
- Card password protection
- Host clock rate variable between 0 and 48 MHz
- Multimedia card interrupt mode
- Cyclic redundancy check: CRC7 (command) and CRC16 (data integrity)
- Error correction code (ECC) support for MMC4.2 cards
- Supports for Read Wait Control and Suspend/Resume
- FIFO overrun and under-run handling by stopping SD clock

2.11 CAN 2.0 ports

SPEAr320S provides two independent CAN (controller area network) bus ports, typically used in automotive, industrial and medical applications. For the connection to the physical layer, an additional transceiver per port is required.

For communication on a CAN network, the controller enables to configure individual message objects. The message objects and identifier masks for acceptance filtering of received messages are stored in an integrated message RAM. All functions concerning the handling of messages are implemented by a message handler. Those functions are the acceptance filtering, the transfer of messages between the CAN core and the message RAM, the handling of transmission requests as well as the generation of interrupts.

Main features:

Downloaded from Arrow.com.

- Support for CAN protocol, version 2.0 part A and B
- Transfer rate up to 1 Mbps
- Internal RAM storage for up to 16 message objects (16 x 136 bytes memory)
- Identifier mask per message object
- Maskable interrupts
- Programmable loop-back mode for self-test operation
- Disabled automatic retransmission mode for time triggered CAN applications

2.12 Asynchronous serial ports (UART)

The SPEAr320S has 7 UART ports. The actual number of concurrently exploitable ports depends on the selected chip operating mode. The different capabilities of each port are summarized in *Table 3* below.

Table 3. SPEAr320S UART capabilities

Port	Speed	Hardware flow control	Modem signals
UART0	Up to 3 Mbps	Yes	Yes (as alternate function)
UART1	Up to 7 Mbps	Yes (except for Mode 1 and 2)	Yes (except for Mode 1 and 2)
UART2 - 6	Up to 7 Mbps	No	No

- Programmable baud rate generator
- Transmit FIFO queue (8-bit data, 16 entries) and receive FIFO queue (12-bit data/status, 16 entries) with disabling option (1-byte buffer depth)
- Supports for DMA operation
- Hardware flow control (RTS,CTS) for some ports and configurations
- Modem control signals (DCD, DSR, DTS, RI) for some ports and configurations
- Fully programmable serial interface with following parameters:
 - data bits: 5, 6, 7 or 8
 - parity: even, odd, stick or none (generation and detection)
 - stop bits: 1 or 2
 - line break handling (generation and detection)
- Flexible interrupt handing and masking

2.13 **I2C** bus ports (**I2C**)

The SPEAr320S provides three independent I2C bus ports. Each port can be configured as I2C bus master or slave.

Main features:

- Compliant to the I2C bus specification (Philips)
- Support for the 3 standard speeds:
 - Standard (100 Kbps)
 - Fast (400 kbps)
 - High-speed
- Support for direct memory access (DMA)
- Clock synchronization
- Support for slave operation in multimaster environment
- 7-bit or 10-bit addressing
- 7-bit or 10-bit combined format transfers
- Slave bulk transfer mode
- Transmit and receive buffers
- Interrupt or polled-mode operation
- Handling of bit and byte waiting at all bus speeds
- Digital filter for the received SDA and SCL lines
- Filtering out of legacy CBUS addresses

2.14 Synchronous serial ports (SSP)

SPEAr320S provides three independent synchronous serial ports. Each port can be configured as master or slave.

- Support for the following protocols:
 - SPI (Motorola)
 - Microwire (National Semiconductor)
 - SSI (Texas Instruments)
- Programmable parameters:
 - Clock bit rate and prescale
 - Data frame size (from 4 to 16 bits)
- Separate transmit and receive FIFO queues (8 x 16-bit entries)
- Independent masking of transmit FIFO, receive FIFO, and receive overrun interrupts
- Internal loopback test mode available
- DMA interface

2.15 RS485 port (RS485)

SPEAr320S provides an additional UART port specialized for the RS485 standard.

Main features:

- Transmit FIFO queue (8-bit data, 16 entries) and receive FIFO queue (12-bit data/status, 16 entries) with disabling option (1-byte buffer depth)
- Speed up to 7 Mbps

2.16 Fast infrared port (IrDA)

SPEAr320S provides an infrared interface compliant to the IrDA (Infrared Data Association) standard specification. An external infrared transceiver is assumed. The Fast IrDa controller performs the modulation and demodulation of the infrared signals as well as the wrapping of IrDA link access protocol (IrLAP) frames.

Main features:

- Support for the following standards:
 - IrDA serial infrared physical layer specification (IrPHY), version 1.3
 - IrDA link access protocol (IrLAP), version 1.1
- Support for the following modes and baud rates:
 - Serial infrared (SIR): 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, 115.2 Kbps
 - Medium infrared (MIR): 576 Kbps, 1152 Kbps
 - Fast infrared (FIR): 4 Mbps
- Support for half-duplex infrared frame transmission and reception
- Interface compliant to all IrDA transceivers with configurable polarity of TX and RX signals
- Integrated CRC algorithm: 16-bit (SIR, MIR), 32-bit (FIR)
- Automatic generation of preamble, start and stop flags
- RZI (return-to-zero inverted) modulation/demodulation scheme for SIR and MIR modes
- 4PPM (4-pulse position modulation) modulation/demodulation scheme for FIR mode
- Synchronization by DPLL in FIR mode
- Payload data transfer controllable by either CPU or DMA controller
- Two clock domains:
 - Dedicated clock (IRDA_CLK signal) for accurate signal generation (48 MHz)
 - Independent and variable clock for the bus interface (13 MHz)

2.17 Legacy IEEE 1284 parallel port (SPP)

SPEAr320S provides a parallel port (slave mode only) compliant to the legacy IEEE 1284 standard.

Main features:

- Unidirectional 8-bit data transfer from external host to SPEAr320S slave
- Additional 9th bit for parity/data/command
- Maskable interrupts for data, device reset, auto line feed

Doc ID 022508 Rev 2

21/113

2.18 A/D converter (ADC)

SPEAr320S provides an integrated analog-to-digital converter.

Main features:

- Successive approximation conversion method
- 8 x analog input channels, ranging from 0 to 2.5 V
- 10-bit resolution
- Sampling rate up to 1 Msamples/s
- Support for 13.5-bit resolution at 8 Ksamples/s by oversampling and accumulation
- INL ± 1 LSB, DNL ± 1 LSB
- Programmable conversion speed (minimum conversion time is 1 μs)
- Programmable averaging of multiple values from 1 (no averaging) up to 128
- Programmable auto scan for all the 8 channels

2.19 General purpose I/Os (GPIO/XGPIO)

Up to 102 GPIOs are available in SPEAr320S when some embedded IPs are not needed in the customer application (see *Section 3.4: Shared IO pins (PL_GPIOs)*).

SPEAr320S provides two mechanisms:

- a basic GPIO module (called "basGPIO"): this functional block provides 6 pins, each one programmable by software with the following features:
 - Programmable direction: input (default at reset) or output
 - Progammable edge-sensitive and level-sensitive interrupt triggering
- extended GPIOs (XGPIO): this capability allows any PL_GPIO pin to be configured and used as an alternative to the corresponding predefined signal purpose. XGPIOs have a different register programming model from basic GPIOs with the following features:
 - Programmable direction: input or output
 - Progammable edge-sensitive interrupt triggering

2.20 LCD display controller (CLCD)

SPEAr320S has an integrated display controller able to directly interface a variety of color and monochrome LCD panels.

Main features:

- Programmable resolution up to 1024 x 768 (XGA)
- Programmable timing parameters
- Support for TFT (thin film transistor) color displays
- Supports for STN (super twisted nematic) displays (single and dual panel) with 4- or 8bit interfaces
- AC bias signal for STN and data enable signal for TFT panels
- Gray scaling algorithm

The set of supported pixel widths and formats for each display type is shown in Table 4.

Table 4. Pixel widths and formats available for different display types

Display	1 bpp	2 bpp	4 bpp	8 bpp	16 bpp	24 bpp
Color TFT	Palette of 2 colors over 64K	Palette of 4 colors over 64K	Palette of 16 colors over 64K	Palette of 256 colors over 64K	RGB 5:5:5 + intensity (64K colors)	RGB 8:8:8 (16M colors)
Color STN	Palette of 2 colors over 3375	Palette of 4 colors over 3375	Palette of 16 colors over 3375	Palette of 256 colors over 3375	RGB 4:4:4 (4096 colors)	-
Mono STN	Palette of 2 gray levels over 15	Palette of 4 gray levels over 15	Palette of 16 gray levels over 15	Palette of 256 colors over 3375	-	-

2.21 Touchscreen interface (TOUCHSCREEN)

SPEAr320S provides a toggling output signal (TOUCHSCREEN_X) that can be connected to an external touchscreen panel. This interface operates in combination with the A/D converter (ADC). Two coordinates can be read by software from the ADC: one at the end of the high period and one at the end of the low period of TOUCHSCREEN_X signal.

2.22 JPEG codec accelerator (JPGC)

SPEAr320S provides an integrated hardware accelerator for decoding and encoding standard JPEG images.

JPEG data streams to be decoded must be compliant with the interchange format syntax specified in the ISO/IEC 10918-1. The JFIF image file format is also supported through header processing.

The output format for decoding (and input format for encoding) is a MCU stream, not a conventional bitmap format like RGB. Displaying a decoded JPEG still picture would require further steps and algorithms like color space conversion and scaling.

Main features:

- Compliance with the baseline JPEG standard (ISO/IEC 10918-1)
- Single-clock per pixel encoding/decoding
- Support for up to four channels of component color
- 8-bit/channel pixel depths
- Programmable quantization tables (up to four)
- Programmable Huffman tables (two AC and two DC)
- Programmable minimum coded unit (MCU)
- Configurable JPEG header processing
- Support for restart marker insertion
- Use of two DMA channels and two 8 x 32-bit FIFOs (local to the JPEG) for efficient transferring and buffering of encoded/decoded data from/to the Codec core.

2.23 Digital audio port (I2S)

The SPEAr320S integrates a digital audio port compliant to standard I2S (Philips) specifications.

Main features:

- I2S master mode
- Stereo (2.0) playback and recording
- Support for standard sampling rates (8, 16, 32, 44.1, 48, 96, 192 kHz); the clock input is 24 MHz, so the rate precision depends on the chosen rate and divider.
- Support of a range of audio samples: 12 / 16 / 20 / 24/ 32 bits
- Programmable thresholds for internal FIFO queues
- Capability of using DMA transfer

2.24 Cryptographic co-processor (C3)

SPEAr320S provides an embedded cryptographic co-processor (C3). C3 is a high-performance instruction-driven DMA-based engine that can be used to accelerate the processing of security algorithms.

After its initial configuration by the main CPU, it runs in a completely autonomous way (DMA data in, data processing, DMA data out), until the completion of all the requested operations. C3 firmware is fetched from system memory.

24/113 Doc ID 022508 Rev 2

Main features:

- Supported cryptographic algorithms:
 - Advanced encryption standard (AES) cipher in ECB, CBC, CTR modes
 - Data encryption standard (DES) cipher in ECB and CBC modes
 - SHA-1, HMAC-SHA-1, MD5, HMAC-MD5 digests
- Hardware chaining of cryptographic stages for optimized data flow when multiple algorithms are required to process the same set of data (for example, encryption and hashing on the fly)

2.25 System controller (SYSCTR)

The system controller provides an interface for controlling the operation of the overall system.

Main features:

- Power saving system mode control
- Crystal oscillator and PLL control
- Configuration of system response to interrupts
- Reset status capture and soft reset generation
- Watchdog and timer module clock enable

Using three mode control bits, the system controller switches the SPEAr320S to any of the four different modes: DOZE, SLEEP, SLOW and NORMAL.

- SLEEP mode: in this mode, the system clocks, HCLK and CLK, are disabled and the
 system controller clock, SCLK, is driven by a low-speed oscillator (nominally
 32768 Hz). When either a FIQ or an IRQ interrupt is generated (through the VIC), the
 system enters DOZE mode. Additionally, the operating mode setting in the system
 control register automatically changes from SLEEP to DOZE.
- DOZE mode: in this mode, the system clocks, HCLK and CLK, and the system controller clock are driven by a crystal oscillator (24 MHz) or a low-frequency oscillator (32 KHz). The system controller moves into SLEEP mode from DOZE mode only when none of the mode control bits are set and the processor is in wait-for-interrupt state. If SLOW mode or NORMAL mode is required, the system moves into the XTAL control transition state to initialize the crystal oscillator.
- **SLOW mode**: during this mode, both the system clocks and the system controller clock are driven by the crystal oscillator. If NORMAL mode is selected, the system goes into the "PLL control" transition state. If neither the SLOW nor the NORMAL mode control bits are set, the system goes into the "Switch from XTAL" transition state.
- **NORMAL mode**: in NORMAL mode, both the system clocks and the system controller clock are driven by the PLL output. If the NORMAL mode control bit is not set, then the system goes into the "Switch from PLL" transition state.

2.25.1 Reset and clock generator

The reset and clock generator is a fully programmable block that generates all the clocks necessary to the chip.

The default operating clock frequencies are:

- Clock @ 333 MHz for the CPU.
- Clock @ 166 MHz for AHB bus and AHB peripherals.
- Clock @ 83 MHz for, APB bus and APB peripherals.
- Clock @ 333 MHz for DDR memory interface.

The default values give the maximum allowed clock frequencies. The clock frequencies are fully programmable through dedicated registers.

The reset and clock generator consists of 2 main parts:

- Multiclock generator block
- 3 internal PLLs

The multiclock generator block receives a reference signal (which is usually delivered by the PLL) and generates all clocks for SPEAr320S IPs according to dedicated programmable registers.

Each PLL uses an oscillator input of 24 MHz to generate a clock signal at a frequency corresponding at the highest of the group. This is the reference signal used by the multiclock generator block to obtain all the other requested clocks for the group. Its main feature is the electromagnetic interference reduction capability.

You can set up PLL1 and PLL2 in order to modulate the VCO with a triangular wave. The resulting signal has a spectrum (and power) spread over a small programmable range of frequencies centered on F0 (the VCO frequency), obtaining minimum electromagnetic emissions. This method replaces all the other traditional methods of EMI reduction, such as filtering, ferrite beads, chokes, adding power layers and ground planes to PCBs, metal shielding and so on. This offers important cost savings.

2.26 Vectored interrupt controller (VIC)

Downloaded from Arrow.com.

SPEAr320S integrates a vectored interrupt controller which provides a software interface to the interrupt system. In any system with an interrupt controller, the software has to determine the source that requests service and where its service routine is loaded. The VIC inside SPEAr320S does both of these in hardware. It supplies the starting address, or vector address, of the service routine corresponding to the highest priority requesting interrupt source.

As in any ARM9-based system, two levels of interrupts are available:

- fast interrupt requests (FIQ), for fast, low latency interrupt handling
- normal interrupt requests (IRQ), for more general interrupts

The interrupt inputs must be level sensitive, active HIGH, and held asserted until the interrupt service routine clears the interrupt. Edge-triggered interrupts are not compatible. The interrupt inputs do not have to be synchronous to HCLK. The VIC does not handle interrupt sources with transient behavior. For example, an interrupt is asserted and then deasserted before software can clear the interrupt source. In this case, the CPU acknowledges the interrupt and obtains the vectored address for the interrupt from the VIC, assuming that no other interrupt has occurred to overwrite the vectored address. However, when a

26/113 Doc ID 022508 Rev 2

transient interrupt occurs, the priority logic of the VIC is not set, and lower priority interrupts can interrupt the transient interrupt service routine, assuming interrupt nesting is permitted.

There are 32 interrupt lines. The VIC uses a bit position for each different interrupt source. The software can control each request line to generate software interrupts. There are 16 vectored interrupts. These interrupts can only generate an IRQ interrupt. The vectored and non-vectored IRQ interrupts provide an address for an interrupt service routine (ISR). The FIQ interrupt has the highest priority, followed by interrupt vector 0 to interrupt vector 15. Non-vectored IRQ interrupts have the lowest priority.

The specific interrupt map for the SPEAr320S device is documented in the companion reference manuals.

2.27 Watchdog timer (WDT)

The ARM watchdog module consists of a 32-bit down counter with a programmable time-out interval that has the capability to generate an interrupt and a reset signal on timing out. The watchdog module is intended to be used to apply a reset to a system in the event of a software failure.

2.28 Real-time clock (RTC)

The real-time clock provides an 1-second resolution clock. This keeps time when the system is inactive and can be used to wake the system up when a programmed alarm time is reached.

Main features:

- Time-of-day clock in 24 hour mode
- Calendar
- Alarm capability
- Isolation mode, allowing RTC to work even if power is not supplied to the rest of the device.

2.29 DMA controller (DMAC)

SPEAr320S provides one DMA controller.

- Able to service up to 8 independent DMA channels for serial data transfers between single source and destination (for instance, memory-to-memory, memory-to-peripheral, peripheral to- memory, and peripheral-to-peripheral).
- Each DMA channel can support a unidirectional transfer, with internal four-word FIFO per channel.

2.30 General purpose timers (GPT)

SPEAr320S provides 6 general purpose timers.

Main features:

 Each timer provides a programmable 16-bit counter and a dedicated prescaler able to perform a clock division by 1 up to 256 (different input frequencies can be chosen through configuration registers, in the range from 3.96 Hz to 48 MHz)

- Operating modes:
 - Auto-reload mode: when a software-defined value is reached, an interrupt is triggered and the counter automatically restarts from zero
 - Single-shot mode: when a software-defined value is reached, an interrupt is triggered, the counter is stopped and the timer is disabled
- Capture capability (only for 4 timers)

2.31 Pulse width modulators (PWM)

SPEAr320S integrates 4 PWM (pulse width modulation) signal generators.

- Prescaler to define the input clock frequency to each timer
- Programmable duty cycle from 0% to 100%
- Programmable pulse length

3 Pin description

This chapter provides a full description of the ball characteristics and the signal multiplexing of SPEAr320S device.

Section 3.1 shows the pin/ball map of SPEAr320S.

Section 3.2 lists the required external components to connect.

Section 3.3 describes some dedicated pins, such as:

- Clock, reset and 3V3 comparator pins
- Power supply pins
- Debug pins
- Non-multiplexed pins

Section 3.4 provides a complete description of the shared IO pins (PL_GPIOs) and their configuration modes, as well as detailed information on all multiplexed signals, grouped by IP.

Section 3.5 explains the available debug modes.

The following table defines the table headers and abbreviations used in this chapter.

Table 5. Headers/abbreviations

Header	Description	Abbreviations
Group	Grouping of signals of the same type/functional block.	_
Signal name	Name of signal multiplexed on each ball.	-
Direction (Dir.)	Indicates the direction of the signal.	I= Input O= Output IO= Input/output
PL_GPIO_# /Ball	PL_GPIO and ball number associated with each signal on the package.	_
Configuration mode	Indicates the available configuration mode among the following ones: - Mode 1 - Mode 2 - Mode 3 - Mode 4 - Alternate function - Extended mode See Section 3.4.2 for the description of each mode.	_
Pin type	Pad type information	PU= Pull Up PD= Pull Down GND= Ground
Value	Indicates the electrical value on the ball.	_

Pin/ball map

Figure 2. SPEAr320S pin/ball map

			,		,												
17	PL_GPIO_73	PL_GPIO_77	PL_GPIO_81	PL_GPIO_84	PL_GPIO_86	PL_GPIO_89	PL_GPIO_93	PL_CLK4	PL_CLK2	PL_CLK1	TOK	MRESET	SMI_CLK	AIN_2	AIN_5	DDR_MEM_ DQ_8	DDR_MEM_ DQ_10
16	PL_GPIO_69	PL_GPIO_72	PL_GPIO_74	PL_GPIO_80	PL_GPIO_83	PL_GPIO_88	PL_GPIO_92	PL_GPIO_97	PL_CLK3	TEST_0	nTRST	SMI_CS_1	AIN_0	AIN_3	AIN_6	DDR_MEM_ DQ_9	DDR_MEM_ DQ_11
15	PL_GPIO_62	PL_GPIO_68	PL_GPIO_70	PL_GPIO_78	PL_GPIO_82	PL_GPIO_85	PL_GPIO_91	PL_GPIO_96	TEST_4	TEST_1	ТБО	SMI_CS_0	AIN_1	AIN_4	AIN_7	nDDR_MEM_ DQS_1	DDR_MEM_ DQS_1
14	PL_GPIO_60	PL_GPIO_65	PL_GPIO_67	PL_GPIO_71	PL_GPIO_75	PL_GPIO_79	PL_GPIO_90	PL_GPIO_95	BOOT_SEL	TEST_2	IDI	SMI_DATAOUT	ADC_VREFN	ADC_VREFP	DDR_MEM_ GATE_OPEN _1	DDR_MEM_ DM_1	DDR_MEM_ DQ_12
13	PL_GPIO_55	PL_GPIO_59	PL_GPIO_63	PL_GPIO_64	PL_GPIO_66	PL_GPIO_76	PL_GPIO_87	PL_GPIO_94	DDR2_EN	TEST_3	TMS	SMI_DATAIN	ADC_avdd	DDR_MEM_ DQ_7	DDR_MEM_ DQ_15	DDR_MEM_ DQ_14	DDR_MEM_ DQ_13
12	PL_GPIO_50	PL_GPIO_52	PL_GPIO_56	PL_GPIO_58	PL_GPIO_61	digital_vdde 3v3	vdd	vdd	digital_vdde 3v3	digital_vdde 3v3	digital_vdde 3v3	digital_vdde 3v3	ADC_agnd	DDR_MEM_ DQ_6	DDR_MEM_ DQ_5	DDR_MEM_ DQ_4	DDR_MEM_ DM_0
11	PL_GPIO_46	PL_GPIO_48	PL_GPIO_49	PL_GPIO_53	PL_GPIO_57	digital_vdde 3v3	gnd	gnd	gnd	gnd	pp^	vdd	DDR_vdde1v8	DDR_MEM_ DQ_0	DDR_MEM_ DQ_1	DDR_MEM_ DQ_2	DDR_MEM_ DQ_3
10	PL_GPIO_44	PL_GPIO_45	PL_GPIO_47	PL_GPIO_51	PL_GPIO_54	digital_vdde 3v3	gnd	gnd	gnd	gnd	pub	gnd	DDR_vdde1v8	DDR_MEM_ VREF	DDR_MEM_ GATE_OPEN _0	nDDR_MEM_ DQS_0	DDR_MEM_ DQS_0
6	PL_GPIO_39	PL_GPIO_40	PL_GPIO_41	PL_GPIO_42	PL_GPIO_43	ndd	gnd	gnd	gnd	gnd	gnd	gnd	DDR_vdde1v8	DDR_MEM_ CS_0	DDR_MEM_ CS_1	DDR_MEM_ CLKP	DDR_MEM_ CLKN
8	PL_GPIO_38	PL_GPIO_37	PL_GPIO_36	PL_GPIO_35	PL_GPIO_34	vdd	gnd	gnd	gnd	gnd	bug	gnd	DDR_vdde1v8	DDR_MEM_ BA_1	DDR_MEM_ BA_2	DDR_MEM_ CAS	DDR_MEM_ RAS
7	PL_GPIO_29	PL_GPIO_30	PL_GPIO_31	PL_GPIO_32	PL_GPIO_33	digital_vdde 3v3	gnd	gnd	gnd	gnd	gnd	vdd	DDR_vdde1v8	DDR_MEM_ BA_0	DDR_MEM_ ADDR_14	DDR_MEM_ WE	DDR_MEM_ CLKEN
9	PL_GPIO_28	PL_GPIO_27	PL_GPIO_25	PL_GPIO_22	PL_GPIO_16	digital_vdde 3v3	gnd	gnd	gnd	gnd	pub	vdd	DDR_vdde1v8	DDR_MEM_ ADDR_10	DDR_MEM_ ADDR_11	DDR_MEM_ ADDR_12	DDR_MEM_ ADDR_13
9	PL_GPIO_26	PL_GPIO_24	PL_GPIO_21	PL_GPIO_18	PL_GPIO_11	digital_vdde 3v3	digital_vdde 3v3	vdd	vdd	USB_TXR TUNE	gnd	DDR_vdde1v8	DDR_vdde1v8	DDR_MEM_ ADDR_9	DDR_MEM_ ADDR_8	DDR_MEM_ ADDR_7	DDR_MEM_ ADDR_6
4	PL_GPIO_23	PL_GPIO_20	PL_GPIO_17	PL_GP10_12	PL_GPIO_2	DIGITAL_ GNDBG COMP	DIGITAL_ REXT	USB_HOST0_ OVERCUR	USB_HOST1_ OVERCUR	USB_HOST0_ vdd3v3	USB_ANALOG TEST	dith_vdd2v5	dith_vss2v5	DDR_MEM_ COMP2V5_ REXT	DDR_MEM_ COMP2V5_ GNDBGCOMP	DDR_MEM_ ODT_1	DDR_MEM_ ADDR_5
3	PL_GPIO_19	PL_GPIO_15	PL_GPIO_10	PL_GPIO_7	PL_GPIO_1	PL_GPIO_0	JSB_DEVICE VBUS	USB_HOST1_ VBUS	USB_HOSTO_I VBUS	USB_HOST1_I	puß	USB_HOST1_ HOST0_ DEVICE_ Dvdd1v2	USB_DEVICE -	MCLK_GND	MCLK_ GNDSUB	DDR_MEM_ ODT_0	DDR_MEM_ ADDR_4
2	PL_GPIO_14	PL_GPIO_9	PL_GPIO_8	PL_GPIO_5	RTC_XI	RTC_gnd	DITH_pll_vdd ana	JSB_HOST1_ DM	pub	JSB_HOST0_ DM	USB_HOST0_ vdd2v5	JSB_DEVICE	pub	MCLK_XO	MCLK_ VDD2V5	DDR_MEM_ ADDR_0	DDR_MEM_ ADDR_3
1	PL_GPIO_13	PL_GPIO_6	PL_GPIO_4	PL_GPIO_3	RTC_XO	RTC_vdd1v5	DITH_pll_vss_ ana	USB_HOST1_I DP	USB_HOST1_	USB_HOSTO_ DP	puß	USB_DEVICE_I	USB_DEVICE _vdd2v5	MCLK_XI	MCLK_VDD	DDR_MEM_ ADDR_1	DDR_MEM_ ADDR_2
	A	В	ပ	D	В	F	G	Н	J	К	-	М	z	Ь	В	Т	n

57

Doc ID 022508 Rev 2

30/113

3.2 Required external components

Some pads require the use of an external component. Please follow the instructions below to ensure the proper functioning of the device:

- 1. DDR_COMP_1V8: place an external 121 $k\Omega$ resistor between ball P4 and ball R4
- 2. USB_TX_RTUNE: connect an external 43.2 Ω pull-down resistor to ball K5
- 3. DIGITAL_REXT: place an external 121 k Ω resistor between ball G4 and ball F4
- 4. DITH_VDD_2V5: add a ferrite bead to ball M4

3.3 Dedicated pins description

3.3.1 Clock, reset and 3V3 comparator pins

Table 6. MCLK, RTC, Reset and 3.3 V comparator pins description

Group	Signal name	Description	Dir.	Pin type	Ball
Master clock	MCLK_XI	24 MHz (typical) crystal in	Į	Oscillator 2 E V canabla	P1
(MCLK)	MCLK_XO	24 MHz (typical) crystal out	0	Oscillator 2.5 V capable	P2
Real-time clock	RTC_XI	32 kHz crystal in	I	Oscillator 1V5 capable	E2
(RTC)	RTC_XO	32 kHz crystal out	0	Oscillator 1 v3 capable	E1
Reset	MRESET	Main reset	I	TTL Schmitt trigger input buffer, 3.3 V tolerant	M17
3.3 V	DIGITAL_REXT	Configuration	0	Analog, 3.3 V capable	G4
comparator	DIGITAL_GNDBGCOMP	Power	Power	Power	F4

Pin description SPEAr320S

3.3.2 Power supply pins

Table 7. Power supply pins description

Group	Signal name	Value	Ball
Digital ground	GND	0 V	G6 G7 G8 G9 G10 G11 H6 H7 H8 H9 H10 H11 J6 J7 J8 J9 J10 J11 K6 K7 K8 K9 K10 K11 L6 L7 L8 L9 L10 M8 M9 M10
	USB_HOST1_HOST0_DEVICE_DVSS		L5
	RTC_GND		F2
	DITH_PLL_VSS_ANA		G1
	USB_HOST1_VSSA		J2
	USB_HOST0_VSSA		L1
Analog graund	USB_COMMON_VSSAC	o v	L3
Analog ground	USB_DEVICE_VSSA	0 v	N2
	DITH_VSS2V5		N4
	MCLK_GND		P3
	MCLK_GNDSUB		R3
	ADC_AGND		N12
Ю	DIGITAL_VDDE3V3	3.3 V	F5 F6 F7 F10 F11 F12 G5 J12 K12 L12 M12
Core	VDD	1.2 V	F8 F9 G12 H5 H12 J5 L11 M6 M7 M11
LIOD LLto DUIV	USB_HOST0_VDD2V5	2.5 V	L2
USB Host0 PHY	USB_HOST0_VDD3V3	3.3 V	K4
LIOD LIE -HA DUN	USB_HOST1_VDD2V5	2.5 V	K3
USB Host1 PHY	USB_HOST1_VDD3V3	3.3 V	J1
	USB_DEVICE_VDD2V5	2.5 V	N1
USB Device PHY	USB_DEVICE_VDD3V3	3.3 V	N3
	USB_HOST1_HOST0_DEVICE_DVDD1V2	1.2 V	M3
OCCL (MCLIC)	MCLK_VDD	1.2 V	R1
OSCI (MCLK)	MCLK_VDD2V5	2.5 V	R2
PLL1	DITH_PLL_VDD_ANA	2.5 V	G2
PLL2	DITH_VDD_2V5	2.5 V	M4
DDR IO	DDR_VDDE1V8	1.8 V	M5 N5 N6 N7 N8 N9 N10 N11
ADC	ADC_AVDD	2.5 V	N13
OSCI (RTC)	RTC_VDD1V5	1.5 V	F1

Note: All the VDD 2V5 power supplies are analog VDD.

32/113 Doc ID 022508 Rev 2

3.3.3 Debug pins

Table 8. Debug pins description

	bag pino accomplicit		,	
Signal name	Description	Dir.	Pin type	Ball
TEST_0				K16
TEST_1	Debug mode configuration ports. See			K15
TEST_2	also Section Table 32.: Ball sharing		TTI input buffer 2.2 V telerent BD	K14
TEST_3	during debug.		TTL input buffer, 3.3 V tolerant, PD	K13
TEST_4		-		J15
BOOT_SEL	Reserved, to be fixed at high level			J14
nTRST	Test reset input	I	TTL Schmitt trigger input buffer, 3.3 V tolerant, PU	L16
TDO	Test data output	0	TTL output buffer, 3.3 V capable 4 mA	L15
TCK	Test clock	I		L17
TDI	Test data input	I	TTL Schmitt trigger input buffer, 3.3 V tolerant, PU	L14
TMS	Test mode select	I	1,	L13

3.3.4 Non-multiplexed pins

Table 9. SMI pins description

Signal name	Description	Dir.	Pin type	Ball
SMI_DATAIN	Serial Flash input data	I	TTL Input Buffer 3.3 V tolerant, PU	M13
SMI_DATAOUT	Serial Flash output data	0		M14
SMI_CLK	Serial Flash clock	Ю	TTL output buffer 2.2 V capable 4 mA	N17
SMI_CS_0	Carial Flack ship calest		TTL output buffer 3.3 V capable 4 mA	M15
SMI_CS_1	Serial Flash chip select	0		M16

Pin description SPEAr320S

Table 10. USB pins description

Group	Signal name	Description	Dir.	Pin type	Ball
	USB_DEVICE_DP	USB Device D+	10	Bidirectional analog buffer	M1
USB	USB_DEVICE_DM	USB Device D-	Ю	5 V tolerant	M2
Device	USB_DEVICE_VBUS	USB Device VBUS	I	TTL input buffer 3.3 V tolerant, PD	G3
	USB_HOST1_DP	USB Host1 D+	10	Bidirectional analog buffer	H1
	USB_HOST1_DM	USB Host1 D-	Ю	5 V tolerant	H2
	USB_HOST1_VBUS	USB Host1 VBUS	0	TTL output buffer 3.3 V capable, 4 mA	НЗ
USB Host	USB_HOST1_OVERCUR	USB Host1 Over-Current	I	TTL input buffer 3.3 V tolerant, PD	J4
OSBTIOSE	USB_HOST0_DP	USB Host0 D+	Ю	Bidirectional analog buffer 5 V tolerant	K1
	USB_HOST0_DM	USB Host0 D-	Ю		K2
	USB_HOST0_VBUS	USB Host0 VBUS	0	TTL output buffer 3.3 V capable, 4 mA	J3
	USB_HOST0_OVERCUR	USB Host0 Over-current	I	TTL Input Buffer 3.3 V tolerant, PD	H4
USB	USB_TXRTUNE	Reference resistor	0	Analog	K5
036	USB_ANALOG_TEST	Analog test output	0	Analog	L4

Table 11. ADC pins description

Signal name	Description	Dir.	Pin type	Ball
AIN_0				N16
AIN_1				N15
AIN_2				P17
AIN_3	ADC analog input shapped			P16
AIN_4	ADC analog input channel		Analas buffer 0.5 V talayant	P15
AIN_5		I	Analog buffer 2.5 V tolerant	R17
AIN_6				R16
AIN_7				R15
ADC_VREFN	ADC negative voltage reference			N14
ADC_VREFP	ADC positive voltage reference			P14

Table 12. DDR pins description

Signal name	Description	Dir.	Pin type	Ball
DDR_MEM_ADD_0				T2
DDR_MEM_ADD_1				T1
DDR_MEM_ADD_2				U1
DDR_MEM_ADD_3				U2
DDR_MEM_ADD_4				U3
DDR_MEM_ADD_5				U4
DDR_MEM_ADD_6				U5
DDR_MEM_ADD_7	Address Line	0		T5
DDR_MEM_ADD_8				R5
DDR_MEM_ADD_9				P5
DDR_MEM_ADD_10			SSTL_2/SSTL_18	P6
DDR_MEM_ADD_11				R6
DDR_MEM_ADD_12	Bank select O			T6
DDR_MEM_ADD_13				U6
DDR_MEM_ADD_14				R7
DDR_MEM_BA_0				P7
DDR_MEM_BA_1	Bank select	0		P8
DDR_MEM_BA_2				R8
DDR_MEM_RAS	Row address strobe	0		U8
DDR_MEM_CAS	Column address strobe	0		T8
DDR_MEM_WE	Write enable	0		T7
DDR_MEM_CLKEN	Clock enable	0		U7
DDR_MEM_CLKP	- Differential clock	0	Differential SSTL_2/	Т9
DDR_MEM_CLKN	Differential clock		SSTL_18	U9
DDR_MEM_CS_0	Chip select	0		P9
DDR_MEM_CS_1	Onip select		SSTL_2/ SSTL_18	R9
DDR_MEM_ODT_0	On-die termination enable	IO	331L_2/ 331L_10	Т3
DDR_MEM_ODT_1	lines	10		T4

Pin description SPEAr320S

Table 12. DDR pins description (continued)

Signal name	Description	Dir.	Pin type	Ball
DDR_MEM_DQ_0				P11
DDR_MEM_DQ_1				R11
DDR_MEM_DQ_2]			T11
DDR_MEM_DQ_3	Data lines	10	CCTL 0/CCTL 10	U11
DDR_MEM_DQ_4	(lower byte)	Ю	SSTL_2/ SSTL_18	T12
DDR_MEM_DQ_5				R12
DDR_MEM_DQ_6	Data lines (lower byte) Lower data strobe Lower data mask Lower gate open Data lines (upper byte) Upper data strobe Upper data mask Upper gate open Reference voltage Return for external resistors			P12
DDR_MEM_DQ_7				P13
DDR_MEM_DQS_0	Lower data atraba	0	Differential SSTL_2/	U10
nDDR_MEM_DQS_0	Lower data strope		SSTL_18	T10
DDR_MEM_DM_0	Lower data mask	0		U12
DDR_MEM_GATE_OPEN_0	Lower gate open	Ю		R10
DDR_MEM_DQ_8	Lower gate open			T17
DDR_MEM_DQ_9				T16
DDR_MEM_DQ_10			CCTI 2/ CCTI 10	U17
DDR_MEM_DQ_11	Data lines	Ю	SSTL_2/ SSTL_18	U16
DDR_MEM_DQ_12	(upper byte)			U14
DDR_MEM_DQ_13				U13
DDR_MEM_DQ_14				T13
DDR_MEM_DQ_15				R13
DDR_MEM_DQS_1	Unnor data etrobo	10	Differential SSTL_2/	U15
nDDR_MEM_DQS_1	Opper data strobe	10	SSTL_18	T15
DDR_MEM_DM_1	Upper data mask	10	SSTI 2/SSTI 10	T14
DDR_MEM_GATE_OPEN_1	Upper gate open	10	SSTL_2/ SSTL_18	R14
DDR_MEM_VREF	Reference voltage	- 1	Analog	P10
DDR_MEM_COMP2V5_GNDBGCOMP		Power	Power	R4
DDR_MEM_COMP2V5_REXT	External resistor	Power	Analog	P4
DDR2_EN	Configuration	I	TTL Input Buffer 3.3 V Tolerant, PU	J13

36/113 Doc ID 022508 Rev 2

3.4 Shared IO pins (PL_GPIOs)

The 98 PL_GPIO and 4 PL_CLK pins have the following characteristics:

- Output buffer: TTL 3.3 V capable up to 10 mA
- Input buffer: TTL, 3.3 V tolerant, selectable internal pull up/pull down (PU/PD)

The PL_GPIOs can be configured in different modes. This allows SPEAr320S to be tailored for use in various applications like:

- Metering concentrators
- Large power supply controllers
- Small printers

3.4.1 PL_GPIO / PL_CLK pins description

Table 13. PL_GPIO / PL_CLK pins description

Group	Signal name	Ball	Dir.	Description	Pin type
PL_GPIOs	PL_GPIO_97 PL_GPIO_0	(See Table 15)	Ю	General purpose IO or multiplexed pins (see <i>Table 15</i>)	(See the introduction of Section 3.4 here
	PL_CLK1 PL_CLK4	Table 13)		Programmable logic external clocks	above)

Note:

The I/O direction depends on the currently configured multiplexing option and can be different from the I/O direction at reset. Refer to Table 15: PL_GPIO/PL_CLK multiplexing scheme and reset states.

3.4.2 Extended mode: RMII automation networking mode

When Extended mode is selected the I/O functions can be selected individually from the columns of *Table 15* using 11 RAS_iosel_regx registers which provide 3-bit configuration fields for selecting the I/O functions on each of the 102 GPIO I/O pins. (see *Table 15:* PL_GPIO/PL_CLK multiplexing scheme and reset states).

This mode provides a fully flexible way of configuring the I/O functions for different applications. It is forward compatible with the 4 legacy configuration modes and features enhanced interrupt management with programmable edge polarity.

For example:

- 3 independent SSP synchronous serial ports (SPI, Microwire or TI protocol)
- 2 RMII interfaces
- Standard parallel port (SPP device implementation)
- 3 independent I2C interfaces
- 7 UARTs
 - 1 with hardware flow control (up to 3 Mbps)
 - 1 with hardware flow control (baud rate up to 7 Mbps)
 - 5 with software flow control (baud rate up to 7 Mbps)
- 4 PWM outputs

3.4.3 Alternate functions

Other peripheral functions are listed in the Alternate Functions column of *Table 13:* PL_GPIO/PL_CLK pins description and can be individually enabled/disabled configuring the bits of a dedicated control register.

3.4.4 Legacy configuration modes

This section describes the legacy operating modes created by using a selection of the embedded IPs. These 4 modes provide for backward-compatibility with existing SPEAr320 hardware applications. Mode 1 is the default mode for SPEAr320S.

The following modes can be selected by software through programming of dedicated configuration registers (see *Figure 3: Hierarchical multiplexing scheme*).

- Mode 1: HMI automation mode
- Mode 2: MII automation networking mode
- Mode 3: Expanded automation mode
- Mode 4: Printer mode

Table 15 shows the IO functions available in each mode.

Mode 1 is the default mode for SPEAr320S.

Mode 1: HMI automation mode

In this example, HMI automation networking operating mode provides the following features with Mode 1 selected and alternate functions for UART0, SSP0 and I2C0 enabled. Other feature combinations are possible using different alternate functions.

- LCD interface (up to 1024x768, 24-bit LCD controller, TFT and STN panels)
- NAND Flash interface (8 bits, 4 chip selects)
- 2 CAN 2.0 interfaces
- 3 UARTs
 - 1 with hardware flow control (up to 3 Mbps)
 - 2 with software flow control (baud rate up to 7 Mbps)
- Touchscreen facilities
- 3 independent SSP synchronous serial ports (SPI, Microwire or TI protocol)
- 2 independent I2C interfaces
- GPIOs with interrupt capability
- SDIO interface supporting SPI, SD1, SD4 and SD8 mode
- 1 PWM output (PWM3)

Mode 2: MII automation networking mode

In this example, MII automation networking operating mode provides the following features with Mode 2 selected and alternate functions for UARTO, MIIO, SSPO, I2CO enabled. Other feature combinations are possible using different alternate functions.

- NAND Flash interface (8 bits, 4 chip selects)
- 2 CAN 2.0 interfaces
- 2 MII interfaces
- 7 UARTs
 - 1 with hardware flow control (up to 3 Mbps)
 - 6 with software flow control (baud rate up to 7 Mbps)
- 3 independent SSP synchronous serial ports (SPI, Microwire or TI protocol) with 3 independent CS.
- 2 independent I2C interfaces
- GPIOs with interrupt capability
- SDIO interface supporting SPI, SD1, SD4 and SD8 mode

Mode 3: Expanded automation mode

In this example, Expanded automation operating mode provides the following features with Mode 3 selected and alternate functions for MII0, UART0, I2C0 and SSP0 enabled. Some features are mutually exclusive. Note that if UART0 alternate functions with software flow control are enabled, UART3/4/5 are available, but not if UART0 alternate functions are enabled with hardware flow control. If SSP0 alternate functions are enabled, PWM0/1/2/3 are not available. This is also the case for EMI with respect to the NAND Flash interface (FSMC). Other feature combinations are possible using different alternate functions.

- External memory interface (16 data bits, 24 address bits and 4 chip selects)
- FSMC NAND Flash interface (8-16 bits and 4 chip selects shared with EMI)
- 2 CAN 2.0 interfaces
- MII interface
- 6 UARTs
 - 1 with hardware flow control (up to 3 Mbps)
 - 1 with hardware flow control (baud rate up to 7 Mbps)
 - 4 with software flow control (baud rate up to 7 Mbps)
- 1 SSP port
- 2 independent I2C interfaces
- Up to 4 PWM outputs
- GPIOs with interrupt capabilities

Mode 4: Printer mode

In this example, Printer mode provides the following features with Mode 4 selected and alternate functions for UARTO, I2CO and SSPO enabled. Other feature combinations are possible using different alternate functions.

- NAND Flash interface (8 bits, 4 chip selects)
- 4 PWM outputs
- 7 UARTs
 - 1 with hardware flow control (up to 3 Mbps)
 - 1 with hardware flow control (baud rate up to 7 Mbps)
 - 5 with software flow control (baud rate up to 7 Mbps)
- SDIO interface supporting SPI, SD1, SD4 and SD8 mode
- Standard parallel port (SPP device implementation)
- 2 independent SSP synchronous serial ports (SPI, Microwire or TI protocol)
- 2 independent I2C interfaces
- GPIOs with interrupt capabilities

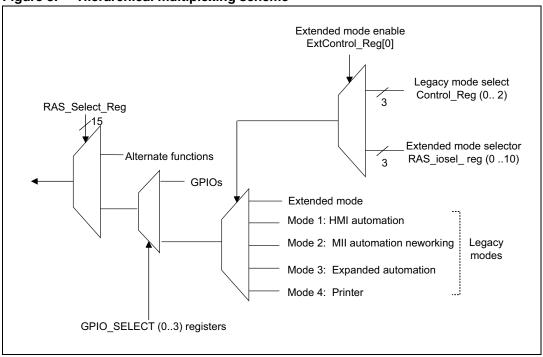
3.4.5 Boot pins

The status of the boot pins is read at startup by the BootROM.

The H[7:0] pins are user-definable strapping option pins. The values of the pins are latched at startup and are readable from a register.

Table 14. Boot pins description

B3 B2 B1 B0	Boot device
0000	USB Device
0001	Ethernet MII0 (MAC address in I2C non-volatile memory)
0010	Ethernet MII0 (MAC address in SPI non-volatile memory)
0011	Serial NOR Flash (SMI interface)
0100	Parallel 8-bit NOR Flash (EMI interface)
0101	Parallel 16-bit NOR Flash (EMI interface)
0110	Parallel 8-bit NAND Flash (FSMC interface)
0111	Parallel 16-bit NAND Flash (FSMC interface)
1010	UART0
1011	Bypass BootROM and boot from serial NOR Flash (SMI interface)
Other	Reserved


3.4.6 **GPIOs**

The PL_GPIO pins can be used as software-controlled general purpose I/Os if they are not used by the interfaces of embedded IPs mapped on same pins.

3.4.7 Multiplexing scheme

To provide the best I/O multiplexing flexibility and the higher number of GPIOs for ARM controlled input-output function, the following hierarchical multiplexing scheme has been implemented.

Note: 3 selection bits per pin are available in RAS_iosel_reg (0..10).

Table 15. PL_GPIO/PL_CLK multiplexing scheme and reset states

			* O		0	Legal	Legacy configuration mode (SW defined)	node (SW defined)	
PL_GPIO_# / ball number	Extended mode primary function (SW defined)	Alternate function (SW defined)	Full debug mode	Aeset state	Boot pins Function in GPI	Mode 1 (Default configuration after reset)	Mode 2	Mode 3	Mode 4
PL_GPIO_97/H16	SSP1_MOSI		ARM_TRACE_CLK	OL	GPIO_97	CLD0	MII1_TXCLK	EMI_A0	I2C2_SDA
PL_GPIO_96/H15	SSP1_CLK		ARM_TRACE_PKTA[0]	ОГ	GPIO_96	CLD1	MII1_TXD0	EMI_A1	I2C2_SCL
PL_GPIO_95/H14	SSP1_SS0		ARM_TRACE_PKTA[1]	ОГ	GPIO_95	CLD2	MII1_TXD1	EMI_A2	UART3_TX
PL_GPIO_94/H13	SSP1_MISO		ARM_TRACE_PKTA[2]	ОГ	GPIO_94	CLD3	MII1_TXD2	EMI_A3	UART3_RX
PL_GPIO_93/G17	SSP2_MOSI		ARM_TRACE_PKTA[3]	ОГ	GPIO_93	CLD4	MII1_TXD3	EMI_A4	UART4_TX
PL_GPIO_92/G16	SSP2_CLK		ARM_TRACE_PKTB[0]	ОГ	GPIO_92	CLD5	MII1_TXEN	EMI_A5	UART4_RX
PL_GPIO_91/G15	SSP2_SS0		ARM_TRACE_PKTB[1]	ОГ	GPIO_91	CLD6	MII1_TXER	EMI_A6	UART5_TX
PL_GPIO_90/G14	SSP2_MISO		ARM_TRACE_PKTB[2]	ОГ	GPIO_90	CLD7	MII1_RXCLK	EMI_A7	UART5_RX
PL_GPIO_89/F17	PWM0		ARM_TRACE_PKTB[3]	OL	GPIO_89	CLD8	MII1_RXDV	EMI_A8	UART6_TX
PL_GPIO_88/F16	PWM1		ARM_TRACE_SYNCA	OL	GPIO_88	CLD9	MII1_RXER	EM_A9	UART6_RX
PL_GPIO_87/G13	PWM2		ARM_TRACE_SYNCB	OL	GPIO_87	CLD10	MII1_RXD0	EMI_A10	0
PL_GPIO_86/E17	PWM3		ARM_PIPESTATA[0]	OL	GPIO_86	CLD11	MII1_RXD1	EMI_A11	0
PL_GPIO_85/F15	UART1_CTS		ARM_PIPESTATA[1]	OL	GPIO_85	CLD12	MII1_RXD2	EMI_A12	SPP_DATA0
PL_GPIO_84/D17	UART1_DTR		ARM_PIPESTATA[2]	OL	GPIO_84	CLD13	MII1_RXD3	EMI_A13	SPP_DATA1
PL_GP10_83/E16	UART1_RI		ARM_PIPESTATB[0]	OL	GPIO_83	CLD14	MII1_COL	EMI_A14	SPP_DATA2
PL_GPIO_82/E15	UART1_DCD		ARM_PIPESTATB[1]	OL	GPIO_82	CLD15	MII1_CRS	EMI_A15	SPP_DATA3
PL_GPIO_81/C17	UART1_DSR		ARM_PIPESTATB[2]	OL	GPIO_81	CLD16	MII1_MDIO	EMI_A16	SPP_DATA4
PL_GPIO_80/D16	UART1_RTS		ARM_TRACE_PKTA[4]	OL	GPIO_80	CLD17	MII1_MDC	EMI_A17	SPP_DATA5
PL_GPIO_79/F14	UART_RS485_TX		ARM_TRACE_PKTA[5]	OL	GPIO_79	CLD18	0	EMI_A18	SPP_DATA6
PL_GPIO_78/D15	UART_RS485_RX		ARM_TRACE_PKTA[6]	OL	GPIO_78	CLD19	0	EMI_A19	SPP_DATA7
PL_GPIO_77/B17	UART_RS485_OE		ARM_TRACE_PKTA[7]	OL	GPIO_77	CLD20	0	EMI_A20	SPP_STRBn
PL_GPIO_76/F13	I2C2_SDA		ARM_TRACE_PKTB[4]	OL	GPIO_76	CLD21	0	EMI_A21	SPP_ACKn
PL_GPIO_75/E14	I2C2_SCL		ARM_TRACE_PKTB[5]	OL	GPIO_75	CLD22	0	EMI_A22	SPP_BUSY

PL GPIO/PL CLK multiplexing scheme and reset states (continued)

		9.4	ROR	ECT	OFDn	ULTn	IITn	LINn	DO.	D1	D2	D3	D4	D5	D6	D7	DR_LE	WE	RE	4D_LE	Y/ BSY	080	CS1	282
		Mode 4	SPP_PERROR	SPP_SELECT	SPP_AUTOFDn	SPP_FAULTn	SPP_INITn	SPP_SELINn	FSMC_D0	FSMC_D1	FSMC_D2	FSMC_D3	FSMC_D4	FSMC_D5	FSMC_D6	FSMC_D7	FSMC_ADDR_LE	FSMC_WE	FSMC_RE	FSMC_CMD_LE	FSMC_RDY/ BSY	FSMC_CS0	FSMC_CS1	FSMC_CS2
	Legacy configuration mode (SW defined)	Mode 3	EMI_A23	EMI_D8/ FSMC_D8	EMI_D9/ FSMC_D9	EMI_D10/ FSMC_D10	EMI_D11/ FSMC_D11	EMI_WAIT	EMI_D0/ FSMC_D0	EMI_D1/FSMC_D1	EMI_D2/ FSMC_D2	EMI_D3/ FSMC_D3	EMI_D4/ FSMC_D4	EMI_D5/ FSMC_D5	EMI_D6/ FSMC_D6	EMI_D7/ FSMC_D7	FSMC_ADDR_LE	EMI_WE/ FSMC_WE	EMI_OE/ FSMC_RE	FSMC_CMD_LE	FSMC_RDY/BSY	EMI_CE0/ FSMC_CS0	EMI_CE1/ FSMC_CS1	EMI_CE2/ FSMC_CS2
	acy configuration	Mode 2	0	0	0	0	0	0	FSMC_D0	FSMC_D1	FSMC_D2	FSMC_D3	FSMC_D4	FSMC_D5	FSMC_D6	FSMC_D7	FSMC_ADDR_LE	FSMC_WE	FSMC_RE	FSMC_CMD_LE	FSMC_RDY/ BSY	PSMC_CS0	FSMC_CS1	FSMC_CS2
ontinued)	Leg	Mode 1 (Default configuration after reset)	CLD23	CLAC	CLFP	CLLP	CLLE	CLPOWER	FSMC_D0	FSMC_D1	FSMC_D2	FSMC_D3	FSMC_D4	FSMC_D5	FSMC_D6	FSMC_D7	FSMC_ADDR_LE	FSMC_WE	FSMC_RE	FSMC_CMD_LE	FSMC_RDY/BSY	FSMC_CS0	FSMC_CS1	FSMC_CS2
states (c		D ni noitonuT alternate mo	GPIO_74	GPIO_73	GPIO_72	GPIO_71	GPIO_70	GPIO_69	GPIO_68	GPIO_67	GPIO_66	GPIO_65	GPIO_64	GPIO_63	GPIO_62	GPIO_61	GPIO_60	GPIO_59	GPIO_58	GPIO_57	GPIO_56	GPIO_55	GPIO_54	GPIO_53
set	,	sniq food													H7	9Н	H5	H H	НЗ	H2	Ξ	НО	B3	B2
ıd re	Э	Reset stat	ОГ	ОГ	Ы	Ы	О	О	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU
PL_GPIO/PL_CLK multiplexing scheme and reset states (continued)		Full debug mode	ARM_TRACE_PKTB[6]	ARM_TRACE_PKTB[7]											Functional mode									
LK multiple		Alternate function (SW defined)																						
GPIO/PL_C	Extended	mode primary function (SW defined)	UART3_TX	UART3_RX	UART4_TX	UART4_RX	UART5_TX	UART5_RX	SSP1_MOSI	SSP1_CLK	SSP1_SS0	SSP1_MISO	SSP2_MOSI	SSP2_CLK	SSP2_SS0	SSP2_MISO	PWM0	PWM1	PWM2	PWM3				UART3_TX
Table 15. PL		PL_GPIO_# / ball number	PL_GPIO_74/C16	PL_GPIO_73/A17	PL_GPIO_72/B16	PL_GPIO_71/D14	PL_GPIO_70/C15	PL_GPIO_69/A16	PL_GPIO_68/B15	PL_GPIO_67/C14	PL_GPIO_66/E13	PL_GPIO_65/B14	PL_GPIO_64/D13	PL_GPIO_63/C13	PL_GPIO_62/A15	PL_GPIO_61/E12	PL_GPIO_60/A14	PL_GPIO_59/B13	PL_GPIO_58/D12	PL_GPIO_57/E11	PL_GPIO_56/C12	PL_GPIO_55/A13	PL_GPIO_54/E10	PL_GPIO_53/D11

577

Doc ID 022508 Rev 2 44/113

Table 15. PL_GPIO/PL_CLK multiplexing scheme and reset states (continued)

				<u> </u>	0		(Society (SW) abom notice (SW) defined)	(bediad) (SW defined)	
PL_GPIO_# / ball number	Extended mode primary function (SW defined)	Alternate function (SW defined)	Full debug mode	Reset state	Boot pins Function in GPI alternate mode	Mode 1 (Default configuration after reset)	Mode 2	Mode 3	Mode 4
PL_GPIO_52/B12	UART3_RX			IPU B	B1 GPIO_52	FSMC_CS3	FSMC_CS3	EMI_CE_3/ FSMC_CS3	FSMC_CS3
PL_GPIO_51/D10	SSP1_MOSI		•	IPU B	B0 GPIO_51	SD_CD	SD_CD	EMI_BYTEN0	SD_CD
PL_GPIO_50/A12	SSP1_CLK	TMR_CPTR4		IPU	GPIO_50	SD_DAT7	SD_DAT7	EMI_BYTEN1	SD_DAT7
PL_GPIO_49/C11	SSP1_SS0	TMR_CPTR3		IPU	GPIO_49	SD_DAT6	SD_DAT6	EMI_D12/ FSMC_D12	SD_DAT6
PL_GPIO_48/B11	SSP1_MISO	TMR_CPTR2		IPU	GPIO_48	SD_DAT5	SD_DAT5	EMI_D13/ FSMC_D13	SD_DAT5
PL_GPIO_47/C10	SSP2_MOSI	TMR_CPTR1		IPU	GPIO_47	SD_DAT4	SD_DAT4	EMI_D14/ FSMC_D14	SD_DAT4
PL_GPIO_46/A11	SSP2_CLK	TMR_CLK4		OL	GPIO_46	SD_DAT3	SD_DAT3	EMI_D15/ FSMC_D15	SD_DAT3
PL_GPIO_45/B10	SSP2_SS0	TMR_CLK3		OL	GPIO_45	SD_DAT2	SD_DAT2	UART1_DCD	SD_DAT2
PL_GPIO_44/A10	SSP2_MISO	TMR_CLK2		OL	GPIO_44	SD_DAT1	SD_DAT1	UART1_DSR	SD_DAT1
PL_GPIO_43/E9	PWM0	TMR_CLK1		OL	GPIO_43	SD_DAT0	SD_DAT0	UART1_RTS	SD_DAT0
PL_GPIO_42/D9	PWM1	UARTO_DTR		Н	GPIO_42	I2S_RX	I2S_RX	UART3_TX	0
PL_GPIO_41/C9	PWM2	UART0_RI	Functional mode	IPD	GPIO_41	I2S_TX	I2S_TX	UART3_RX	0
PL_GPIO_40/B9	PWM3	UARTO_DSR		IPD	GPIO_40	I2S_LR	I2S_LR	UART4_TX	0
PL_GPIO_39/A9	SSP1_MOSI	UART0_DCD		IPD	GPIO_39	I2S_CLK	ISS_CLK	UART4_RX	0
PL_GPIO_38/A8	SSP1_CLK	UART0_CTS		IPD	GPIO_38	PWM0	PWM0	UART5_TX	0
PL_GPIO_37/B8	SSP1_SS0	UARTO_RTS		НО	GPIO_37	PWM1	PWM1	UART5_RX	0
PL_GPIO_36/C8	SSP1_MISO	SSP0_CS4		НО	GPIO_36	TOUCHSCREEN X	0	UART1_CTS	UART1_CTS
PL_GPIO_35/D8	SSP2_MOSI	SSP0_CS3		Н	GPIO_35	audio_over_samp_ clk	audio_over_samp_ clk	UART1_DTR	UART1_DTR
PL_GPIO_34/E8	SSP2_CLK	SSP0_CS2		НО	GPIO_34	SD_LED / PWM2	SD_LED / PWM2	UART1_RI	UART1_RI
PL_GPIO_33/E7	SSP2_SS0	basGPI05		IPU	GPIO_33	CAN0_TX	CAN0_TX	CAN0_TX	UART1_DCD
PL_GPIO_32/D7	SSP2_MISO	basGPIO4		IPU	GP10_32	CAN0_RX	CAN0_RX	CAN0_RX	UART1_DSR
PL_GPIO_31/C7	PWM0	basGPIO3		IPU	GPIO_31	CAN1_TX	CAN1_TX	CAN1_TX	UART1_RTS
PL_GPIO_30/B7	PWM1	basGPI02		IPU	GPIO_30	CAN1_RX	CAN1_RX	CAN1_RX	0

PL_GPIO/PL_CLK multiplexing scheme and reset states (continued)

		Mode 4	UART1_TX	UART1_RX	Reserved	SSP1_MOSI	SSP1_CLK	SSP1_SS0	SSP1_MISO	0	PWM0	PWM1	PWM2	PWM3	Reserved	Reserved	0	0	0	0						
	ode (SW defined	Mode 3	UART1_TX	UART1_RX	Reserved	Reserved	0	0	Reserved	Reserved	Reserved	0	0	0	0	0	PWM0	PWM1	PWM2	PWM3	Reserved	Reserved	PWM0	PWM1	PWM2	PWM3
	Legacy configuration mode (SW defined)	Mode 2	UART1_TX	UART1_RX	0	0	0	0	0	0	0	I2C2_SDA	I2C2_SCL	0	0	UART3_TX	UART3_RX	UART4_TX	UART4_RX	0	0	0	UART3_TX	UART3_RX	UART4_TX	UART4_RX
ontinued)	Lega	Mode 1 (Default configuration after reset)	UART1_TX	UART1_RX	Reserved	SSP1_MOSI	SSP1_CLK	SSP1_SS0	SSP1_MISO	SSP2_MOSI	SSP2_CLK	SSP2_SS0	SSP2_MISO	PWM3	Reserved	Reserved	0	0	0	0						
t states (co	Old	Function in G	GPIO_29	GPIO_28	GPIO_27	GPIO_26	GPIO_25	GPIO_24	GPIO_23	GP10_22	GPIO_21	GPIO_20	GPIO_19	GPIO_18	GPIO_17	GPIO_16	GPIO_15	GPIO_14	GPIO_13	GPIO_12	GPIO_11	GPIO_10	6_OIAD	GPIO_8	GPIO_7	GPIO_6
reset		Ists teseR Boot pins	IPU	IPU	IPU	OL OL	OL	OL	OL	OL	OL	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	IPU	OL	IPD	IPU	OL	НО	IPU
exing scheme and reset states (continued)		Full debug mode		<u> </u>	<u> </u>								_	- chom lonoitonia		_	_					1	1			
-K multiple		Alternate function (SW defined)	basGPIO1	basGPI00	MII0_TXCLK	MII0_TXD0	MII0_TXD1	MII0_TXD2	MII0_TXD3	MIIO_TXEN	MII0_TXER	MII0_RXCLK	MII0_RXDV	MIIO_RXER	MII0_RXD0	MII0_RXD1	MII0_RXD2	MII0_RXD3	MII0_COL	MII0_CRS	MII0_MDC	MII0_MDIO	SSP0_MOSI	SSP0_CLK	SSP0_SS0	SSP0_MISO
PL_GPIO/PL_CLK multiple	Extended	mode primary function (SW defined)	5MW4	PWM3	RMII0_TXD0	RMII0_RXD0	RMII1_TXD0	RMI1_RXD0	RMII1_TX_EN	RMII_REF_CLK	RMII1_TXD1	RMII1_RXD1	RMII1_CRS_DV	RMII1_RX_ER	RMII0_TXD1	RMIIO_TX_EN	RMII0_RXD1	RMII0_CRS_DV	RMIIO_RX_ER	ao-as	RMII_MDC	RMII_MDIO	I2C1_SDA	I2C1_SCL	UART1_CTS	UART1_DTR
Table 15. PL		PL_GPIO_# / ball number	PL_GPIO_29/A7	PL_GPIO_28/A6	PL_GPIO_27/B6	PL_GPIO_26/A5	PL_GPIO_25/C6	PL_GPIO_24/B5	PL_GPIO_23/A4	PL_GPIO_22/D6	PL_GPIO_21/C5	PL_GPIO_20/B4	PL_GPIO_19/A3	PL_GPIO_18/D5	PL_GPIO_17/C4	PL_GPIO_16/E6	PL_GPIO_15/B3	PL_GPIO_14/A2	PL_GPIO_13/A1	PL_GPIO_12/D4	PL_GPIO_11/E5	PL_GPIO_10/C3	PL_GPIO_9/B2	PL_GPIO_8/C2	PL_GPIO_7/D3	PL_GPIO_6/B1

Doc ID 022508 Rev 2

46/113

Table 15. PL_GPIO/PL_CLK multiplexing scheme and reset states (continued)

	Extended				Old	Legi	Legacy configuration mode (SW defined)	node (SW defined)	
PL_GPIO_# / ball number	mode primary function (SW defined)	Alternate function (SW defined)	Full debug mode	Reset state	aniq tood and in noitonu7 and in an	Mode 1 (Default configuration after reset)	Mode 2	Mode 3	Mode 4
PL_GPIO_5/D2	UART1_RI	I2C0_SDA		IPU	GPIO_5	0	UART5_TX	0	0
PL_GPIO_4/C1	UART1_DCD	I2C0_SCL		IPU	GPIO_4	0	UART5_RX	0	0
PL_GPIO_3/D1	UART1_DSR	UART0_RX		IPD	GPIO_3	I2C2_SDA	UART6_TX	0	0
PL_GPIO_2/E4	UART1_RTS	UART0_TX		HO	GPIO_2	I2C2_SCL	UART6_RX	0	0
PL_GPIO_1/E3	I2C2_SDA	IrDA_RX	out out out	IPU	GPIO_1	UART2_TX	UART2_TX	UART2_TX	UART2_TX
PL_GPIO_0/F3	ISCZ_SCL	IrDA_TX	ruiciolal	OL	GPIO_0	UART2_RX	UART2_RX	UART2_RX	UART2_RX
PL_CLK1/K17	UART3_TX	PL_CLK1		OL	GPIO_98	CLCP	0	I2C1_SDA	SD_LED
PL_CLK2/J17	UART3_RX	PL_CLK2		OL	GPIO_99	SD_CLK	SD_CLK	I2C1_SCL	SD_CLK
PL_CLK3/J16	UART4_TX	PL_CLK3		IPU	GPIO_100	SD_WP	SD_WP	0	SD_WP
PL_CLK4/H17	UART4_RX	PL_CLK4		IPU	GPIO_101	SD_CMD	SD_CMD	0	SD_CMD

Table 15 cells filled with '0' or '1' are unused and unless otherwise configured as Alternate function or GPIO, the corresponding pin is held at low or high level respectively by the internal logic. Note:

Pins shared by EMI and FSMC: Depending on the AHB address to be accessed the pins are used for EMI or FSMC transfers. a

Reset state definition: the state of each pin during reset and after reset release. Device is in configuration mode 1 (default state): OH= Output high level, OL output low level, IPU = input pull up, IPD = input pull down. ω

Full debug mode: refer to Table 32: Ball sharing during debug for details on debug mode selection.

4

Functional mode definition: in functional mode the I/O works as configured by the application (depending on settings for Configuration mode 1- 4/Extended mode/Alternate function). 2

Refer to Table 16: Table shading reference for Table 15 multiplexing scheme for colors and shading used in Table 15 cells to identify pin groups 9

3 16. Table shading reference for Table 15 multiplexing scheme

y scheme	Pin group	FSMC pins: NAND Flash	EMI pins	Color LCD controller pins	Touchscreen pins	UART pins	CAN pins	MII/RMII Ethernet MAC pins	SD card controller pins	Pulse-width modulator timer module pins	Timer pins	IrDa pins	SSP pins	I2C pins	Standard parallel port pins	l2S pins
Table 16. Table shading reference for Table 15 multiplexing scheme	Shading	FSMC	EMI	CLCD	Touchscreen	UART	CAN	Ethernet MAC	SD/SDIO/MMC	PWM generators	GPT	IrDa	SSP	12C	SPP	l2S

577

3.4.8 Multiplexed signals description

This section provides a description of the multiplexed signals present in SPEAr320S device, grouped by IP.

Table 17. FSMC signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
FSMC_ADDR_LE	Address latch enable (active high)	0	PL_GPIO_60/A14	1, 2, 3, 4, Extended
FSMC_CMD_ LE	Command latch enable (active high)	0	PL_GPIO_57/E11	1, 2, 3, 4, Extended
FSMC_CS0			PL_GPIO_55/A13	1, 2, 3, 4, Extended
FSMC_CS1	Chip enable (active low)	0	PL_GPIO_54/E10	1, 2, 3, 4, Extended
FSMC_CS2	Chip enable (active low)		PL_GPIO_53/D11	1, 2, 3, 4, Extended
FSMC_CS3			PL_GPIO_52/B12	1, 2, 3, 4, Extended
FSMC_D0			PL_GPIO_68/B15	1, 2, 3, 4, Extended
FSMC_D1			PL_GPIO_67/C14	1, 2, 3, 4, Extended
FSMC_D2			PL_GPIO_66/E13	1, 2, 3, 4, Extended
FSMC_D3			PL_GPIO_65/B14	1, 2, 3, 4, Extended
FSMC_D4			PL_GPIO_64/D13	1, 2, 3, 4, Extended
FSMC_D5			PL_GPIO_63/C13	1, 2, 3, 4, Extended
FSMC_D6			PL_GPIO_62/A15	1, 2, 3, 4, Extended
FSMC_D7	Data lines	Ю	PL_GPIO_61/E12	1, 2, 3, 4, Extended
FSMC_D8	Data iiiles		PL_GPIO_73/A17	3, Extended
FSMC_D9			PL_GPIO_72/B16	3, Extended
FSMC_D10			PL_GPIO_71/D14	3, Extended
FSMC_D11			PL_GPIO_70/C15	3, Extended
FSMC_D12			PL_GPIO_49/C11	3, Extended
FSMC_D13			PL_GPIO_48/B11	3, Extended
FSMC_D14			PL_GPIO_47/C10	3, Extended
FSMC_D15			PL_GPIO_46/A11	4, Extended
FSMC_RDY/BSY	Wait signal (active low)	I	PL_GPIO_56/C12	1, 2, 3, 4, Extended
FSMC_RE	Read enable (active low)	0	PL_GPIO_58/D12	1, 2, 3, 4, Extended
FSMC_WE	Write enable (active low)	0	PL_GPIO_59/B13	1, 2, 3, 4, Extended

Table 18. EMI signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
EMI_A0			PL_GPIO_97/H16	3, Extended
EMI_A1			PL_GPIO_96/H15	3, Extended
EMI_A2			PL_GPIO_95/H14	3, Extended
EMI_A3			PL_GPIO_94/H13	3, Extended
EMI_A4			PL_GPIO_93/G17	3, Extended
EMI_A5			PL_GPIO_92/G16	3, Extended
EMI_A6			PL_GPIO_91/G15	3, Extended
EMI_A7			PL_GPIO_90/G14	3, Extended
EMI_A8			PL_GPIO_89/F17	3, Extended
EMI_A9			PL_GPIO_88/F16	3, Extended
EMI_A10			PL_GPIO_87/G13	3, Extended
EMI_A11	Address bus	0	PL_GPIO_86/E17	3, Extended
EMI_A12	Address bus		PL_GPIO_85/F15	3, Extended
EMI_A13			PL_GPIO_84/D17	3, Extended
EMI_A14			PL_GPIO_83/E16	3, Extended
EMI_A15			PL_GPIO_82/E15	3, Extended
EMI_A16			PL_GPIO_81/C17	3, Extended
EMI_A17			PL_GPIO_80/D16	3, Extended
EMI_A18			PL_GPIO_79/F14	3, Extended
EMI_A19			PL_GPIO_78/D15	3, Extended
EMI_A20			PL_GPIO_77/B17	3, Extended
EMI_A21			PL_GPIO_76/F13	3, Extended
EMI_A22			PL_GPIO_75/E14	3, Extended
EMI_A23			PL_GPIO_74/C16	3, Extended
EMI_BYTEN0	Byte_enables are provided to validate		PL_GPIO_51/D10	3, Extended
EMI_BYTEN1	the data present on the bus when high data is valid.	Ю	PL_GPIO_50/A12	3, Extended
EMI_CE0	EMI Chip selects, derived from internal		PL_GPIO_55/A13	3, Extended
EMI_CE1	address decoding	0	PL_GPIO_54/E10	3, Extended
EMI_CE2	(kept disabled during NAND_Flash cycles)		PL_GPIO_53/D11	3, Extended
EMI_CE3	- Oy 0, 000 j		PL_GPIO_52/B12	3, Extended

Table 18. EMI signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
EMI_D0			PL_GPIO_68/B15	3, Extended
EMI_D1			PL_GPIO_67/C14	3, Extended
EMI_D2			PL_GPIO_66/E13	3, Extended
EMI_D3			PL_GPIO_65/B14	3, Extended
EMI_D4			PL_GPIO_64/D13	3, Extended
EMI_D5			PL_GPIO_63/C13	3, Extended
EMI_D6			PL_GPIO_62/A15	3, Extended
EMI_D7	Data bus	0	PL_GPIO_61/E12	3, Extended
EMI_D8	Data bus		PL_GPIO_73/A17	3, Extended
EMI_D9			PL_GPIO_72/B16	3, Extended
EMI_D10			PL_GPIO_71/D14	3, Extended
EMI_D11			PL_GPIO_70/C15	3, Extended
EMI_D12			PL_GPIO_49/C11	3, Extended
EMI_D13			PL_GPIO_48/B11	3, Extended
EMI_D14			PL_GPIO_47/C10	3, Extended
EMI_D15			PL_GPIO_46/A11	3, Extended
EMI_OE	Data output enable for read cycles, target device must open its data bus with this signal.	О	PL_GPIO_58/D12	3, Extended
EMI_WAIT	Transfer acknowledge signal, used by the cycle target to slow down the cycle (must be pulled up on the bus for targets that do not need it). Note: This is an optional signal.	I	PL_GPIO_69/A16	3, Extended
EMI_WE	Write strobe, data are ready on EMI_ADB before its falling edge and after the rising edge.	0	PL_GPIO_59/B13	3, Extended

Table 19. CLCD signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
CLAC	STN AC bias drive or TFT data enable output	0	PL_GPIO_73/A17	1, Extended
CLCP	LCD panel clock	0	PL_CLK1/K17	1, Extended
CLD0			PL_GPIO_97/H16	
CLD1			PL_GPIO_96/H15	
CLD2			PL_GPIO_95/H14	
CLD3			PL_GPIO_94/H13	
CLD4			PL_GPIO_93/G17	
CLD5			PL_GPIO_92/G16	
CLD6			PL_GPIO_91/G15	
CLD7			PL_GPIO_90/G14	
CLD8			PL_GPIO_89/F17	
CLD9			PL_GPIO_88/F16	
CLD10			PL_GPIO_87/G13	
CLD11	LCD panel data	0	PL_GPIO_86/E17	1, Extended
CLD12	- LOD pariel data		PL_GPIO_85/F15	- I, Exterided
CLD13			PL_GPIO_84/D17	
CLD14			PL_GPIO_83/E16	
CLD15			PL_GPIO_82/E15	
CLD16			PL_GPIO_81/C17	
CLD17			PL_GPIO_80/D16	
CLD18			PL_GPIO_79/F14	
CLD19			PL_GPIO_78/D15	
CLD20			PL_GPIO_77/B17	
CLD21			PL_GPIO_76/F13	
CLD22			PL_GPIO_75/E14	
CLD23			PL_GPIO_74/C16	
CLFP	Frame pulse (STN)/ vertical synchronization pulse (TFT)	0	PL_GPIO_72/B16	1, Extended
CLLE	Line end signal	0	PL_GPIO_70/C15	1, Extended
CLLP	Line synchronization pulse (STN)/ horizontal synchronization pulse (TFT)	0	PL_GPIO_71/D14	1, Extended
CLPOWER	LCD panel power enable	0	PL_GPIO_69/A16	1, Extended

Table 20. Touchscreen signal description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
TOUCHSCREEN X	Touchscreen select signal	0	PL_GPIO_36/C8	1, Extended

Table 21. UART signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
UART0				
UART0_CTS	UART0 clear to send modem status input	I	PL_GPIO_38/A8	Alternate function
UART0_DCD	UART0 data carrier detect modem status input	I	PL_GPIO_39/A9	Alternate function
UART0_DSR	UART0 data set ready modem status input	I	PL_GPIO_40/B9	Alternate function
UART0_DTR	UARTO data terminal ready modem status output	0	PL_GPIO_42/D9	Alternate function
UART0_RI	UART0 ring indicator modem status input	I	PL_GPIO_41/C9	Alternate function
UARTO_RTS	UART0 request to send modem status output	0	PL_GPIO_37/B8	Alternate function
UART0_RX	UART0 received serial data input	I	PL_GPIO_3/D1	Alternate function
UART0_TX	UART0 transmitted serial data output	0	PL_GPIO_2/E4	Alternate function
UART1				
	UART1 clear to send modem status input	I	PL_GPIO_36/C8	3, 4, Extended
UART1_CTS			PL_GPIO_85/F15	Extended mode
			PL_GPIO_7/D3	
			PL_GPIO_45/B10	3, Extended
UART1_DCD	UART1 data carrier detect modem status	١,	PL_GPIO_33/E7	4, Extended
OARTI_DOD	input		PL_GPIO_4/C1	Extended mode
			PL_GPIO_82/E15	
			PL_GPIO_44/A10	3, Extended
LIADTA DOD	LIADT1 data ant roody modern status input	١,	PL_GPIO_32/D7	4, Extended
UART1_DSR	UART1 data set ready modem status input	I	PL_GPIO_3/D1	Extended made
			PL_GPIO_81/C17	Extended mode
			PL_GPIO_35/D8	3, 4, Extended
UART1_DTR	UART1 data terminal ready modem status output	0	PL_GPIO_84/D17	Extended mode
			PL_GPIO_6/B1	Extended mode
			PL_GPIO_34/E8	3, 4, Extended
UART1_RI	UART1 ring indicator modem status input	ı	PL_GPIO_83/E16	Extended mode
			PL_GPIO_5/D2	Exterioed mode

Table 21. UART signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
			PL_GPIO_43/E9	3, Extended
LIADT1 DTC	UART1 request to send modem status	0	PL_GPIO_31/C7	4, Extended
UART1_RTS	output		PL_GPIO_80/D16	Extended made
			PL_GPIO_2/E4	Extended mode
UART1_RX	UART1 received serial data input	ı	PL_GPIO_28/A6	1, 2, 3, 4, Extended
UART1_TX	UART1 transmitted serial data output	0	PL_GPIO_29/A7	1, 2, 3, 4, Extended
UART2				
UART2_RX	UART2 received serial data input	I	PL_GPIO_0/F3	1, 2, 3, 4, Extended
UART2_TX	UART2 transmitted serial data output	0	PL_GPIO_1/E3	1, 2, 3, 4, Extended
UART3		· · · · ·		
			PL_GPIO_15/B3	O. Francisco
		PL_GPIO_8/C2 PL_GPIO_41/C9 I PL_GPIO_94/H13 PL_GPIO_73/A17	PL_GPIO_8/C2	2, Extended
			3, Extended	
UART3_RX	UART3 received serial data input	ı	PL_GPIO_94/H13	4, Extended
			PL_GPIO_73/A17	
			PL_GPIO_52/B12	Extended mode
			PL_CLK2/J17	-
			PL_GPIO_16/E6	- 2, Extended
			PL_GPIO_9/B2	
			PL_GPIO_42/D9	3, Extended
UART3_TX	UART3 transmitted serial data output	0	PL_GPIO_95/H14	4, Extended
			PL_GPIO_74/C16	
			PL_GPIO_53/D11	Extended mode
			PL_CLK1/K17	
UART4		Į.	1	
			PL_GPIO_13/A1	O. Fistended
		١.	PL_GPIO_6/B1	- 2, Extended
LIADTA DV	LIADTA received coviet data invest		PL_GPIO_39/A9	3, Extended
UART4_RX	UART4 received serial data input		PL_GPIO_92/G16	4, Extended
			PL_GPIO_71/D14	Extended ========
			PL_CLK4/H17	Extended mode

Table 21. UART signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
			PL_GPIO_14/A2	0.5.
			PL_GPIO_7/D3	2, Extended
UART4_TX	UART4 transmitted serial data output	0	PL_GPIO_40/B9	3, Extended
UAN14_1X	OAN14 transmitted Serial data output		PL_GPIO_93/G17	4, Extended
			PL_GPIO_72/B16	Extended made
			PL_CLK3/J16	Extended mode
UART5				
			2, Extended	
UART5_RX	UART5 received serial data input		3, Extended	
UARTS_RX	OARTS received serial data input		PL_GPIO_90/G14	4, Extended
			PL_GPIO_69/A16	Extended mode
	LIADTE to consist of a sign data and a sign data	O PL_GPIO_5/D2 2, Extended PL_GPIO_38/A8 3, Extended PL_GPIO_91/G15 4, Extended PL_GPIO_70/C15 Extended mode	PL_GPIO_5/D2	2, Extended
UART5_TX			PL_GPIO_38/A8	3, Extended
UANTS_TX	UART5 transmitted serial data output		4, Extended	
			PL_GPIO_70/C15	Extended mode
UART6				
UART6_RX	UART6 received serial data input		PL_GPIO_2/E4	2, Extended
UANTO_NX	OANTO received Serial data Input	1	PL_GPIO_88/F16	4, Extended
LIADTE TV	LIADTC transmitted sovial data sustaint	0	PL_GPIO_3/D1	2, Extended
UART6_TX	UART6 transmitted serial data output	0	PL_GPIO_89/F17	4, Extended
UART/RS485				
UART_RS485_TX	UART/RS485 transmitted serial data output	0	PL_GPIO_79/F14	Extended mode
UART_RS485_RX	UART/RS485 received serial data output	I	PL_GPIO_78/D15	Extended mode
UART_RS485_OE	UART/RS485 data output enable	0	PL_GPIO_77/B17	Extended mode

Table 22. CAN signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
CAN0				
CAN0_RX	CAN0 receiver data input	I	PL_GPIO_32/D7	1, 2, 3, Extended
CAN0_TX	CAN0 transmitter data output	0	PL_GPIO_33/E7	1, 2, 3, Extended
CAN1				
CAN1_RX	CAN1 receiver data input	I	PL_GPIO_30/B7	1, 2, 3, Extended
CAN1_TX	CAN1 transmitter data output	0	PL_GPIO_31/C7	1, 2, 3, Extended

Table 23. MMC-SD/SDIO controller signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
SD_CD	Card detection for single slot	PL_GPIO_51/D10 1, 2, 4, Extended	1, 2, 4, Extended	
30_00	(active low)	'	PL_GPIO_12/D4	Extended mode
SD_CLK	Clock to external card	0	PL_CLK2/J17	1, 2, 4, Extended
SD_CMD	Command line	Ю	PL_CLK4/H17	1, 2, 4, Extended
SD_DAT0			PL_GPIO_43/E9	1, 2, 4, Extended
SD_DAT1			PL_GPIO_44/A10	1, 2, 4, Extended
SD_DAT2		IO	PL_GPIO_45/B10	1, 2, 4, Extended
SD_DAT3	Data line		PL_GPIO_46/A11	1, 2, 4, Extended
SD_DAT4	Data iiile		PL_GPIO_47/C10	1, 2, 4, Extended
SD_DAT5			PL_GPIO_48/B11	1, 2, 4, Extended
SD_DAT6			PL_GPIO_49/C11	1, 2, 4, Extended
SD_DAT7			PL_GPIO_50/A12	1, 2, 4, Extended
	Cautions the user not to remove the		PL_GPIO_34/E8	1, 2, Extended
SD_LED card while the SD card is being accessed.	0	PL_CLK1/K17	4, Extended	
SD_WP	SD card write protect (active low)	I	PL_CLK3/J16	1, 2, 4, Extended

Table 24. PWM signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
			PL_GPIO_38/A8	1, 2, Extended
			PL_GPIO_15/B3	3, 4, Extended
			PL_GPIO_9/B2	3, Extended
PWM0	PWM0 output channel	0	PL_GPIO_89/F17	
			PL_GPIO_60/A14	Extended made
		PL_GPIO_43/E9 PL_GPIO_31/C7	Extended mode	
			PL_GPIO_31/C7	
			PL_GPIO_37/B8	1, 2, Extended
			PL_GPIO_43/E9 PL_GPIO_31/C7 PL_GPIO_37/B8 1, 2, Extended PL_GPIO_14/A2 3, 4, Extended	3, 4, Extended
			PL_GPIO_8/C2	3, Extended
PWM1	PWM1 output channel	0	PL_GPIO_88/F16	
			PL_GPIO_59/B13	Extended mode
			PL_GPIO_42/D9	Exteriueu moue
			PL_GPIO_30/B7	

Table 24. PWM signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
			PL_GPIO_34/E8	1, 2, Extended
			PL_GPIO_13/A1	3, 4, Extended
			PL_GPIO_7/D3	3, Extended
PWM2	PWM2 output channel	0	PL_GPIO_87/G13	
			PL_GPIO_58/D12	Extended made
			PL_GPIO_41/C9 Extended mode	Exterided mode
			PL_GPIO_29/A7	
			PL_GPIO_12/D4	1, 3, 4, Extended
			PL_GPIO_6/B1	1, 2, Extended 3, 4, Extended 3, Extended - Extended mode
PWM3	DM/M2 output channel		PL_GPIO_86/E17	
PWWIS	PWM3 output channel	0	PL_GPIO_57/E11	
			PL_GPIO_40/B9	
			PL_GPIO_28/A6	

Table 25. GPT signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode	
TMR_CLK1			PL_GPIO_43/E9	Alternate function	
TMR_CLK2	This clock toggles each time the timer interrupt goes active.	0	PL_GPIO_44/A10	Alternate function	
TMR_CLK3			PL_GPIO_45/B10	Alternate function	
TMR_CLK4			PL_GPIO_46/A11	Alternate function	
TMR_CPTR1	Asynchronous signal provided for the measurement of timing signals		PL_GPIO_47/C10	Alternate function	
TMR_CPTR2			PL_GPIO_48/B11	Alternate function	
TMR_CPTR3			PL_GPIO_49/C11	Alternate function	
TMR_CPTR4			PL_GPIO_50/A12	Alternate function	

Table 26. IrDA signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
IrDA_RX	IrDA receiver data input	I	PL_GPIO_1/E3	Alternate function
IrDA_TX	IrDA transmitter data output	0	PL_GPIO_0/F3	Alternate function

Table 27. SSP signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
SSP0		•		
SSP0_CS2	Slave select (used only in master mode)	0	PL_GPIO_34/E8	Alternate function
SSP0_CS3	Slave select (used only in master mode)	0	PL_GPIO_35/D8	Alternate function
SSP0_CS4	Slave select (used only in master mode)	0	PL_GPIO_36/C8	Alternate function
SSP0_CLK	SSP clock. It is used as output in master mode as input in slave mode.	Ю	PL_GPIO_8/C2	Alternate function
SSP0_MISO	Master input slave output	Ю	PL_GPIO_6/B1	Alternate function
SSP0_MOSI	Master output slave input	Ю	PL_GPIO_9/B2	Alternate function
SSP0_SS0	SSP frame output (master mode), input (slave mode)	Ю	PL_GPIO_7/D3	Alternate function
SSP1				
			PL_GPIO_19/A3	1, 4, Extended
			PL_GPIO_96/H15	
SSP1_CLK	SSP clock. It is used as output in master mode as input in slave mode.	Ю	PL_GPIO_67/C14	Extended mode
			PL_GPIO_50/A12	
			PL_GPIO_38/A8	
			PL_GPIO_17/C4	1, 4, Extended
			PL_GPIO_94/H13	
SSP1_MISO	Master input slave output	PL_GPIO_17/C4 1, 4, Extended	Extended mode	
			PL_GPIO_48/B11	- Extended mode
			PL_GPIO_36/C8	
			PL_GPIO_20/B4	1, 4, Extended
			PL_GPIO_97/H16	
SSP1_MOSI	Master output slave input	Ю	PL_GPIO_68/B15	- Extended mode
			PL_GPIO_51/D10	- Exterided mode
			PL_GPIO_39/A9	
			PL_GPIO_18/D5	1, 4, Extended
			PL_GPIO_95/H14	Extended mode
SSP1_SS0	SSP frame output (master mode), input (slave mode)	Ю	PL_GPIO_66/E13	
	1 (PL_GPIO_49/C11	- Laterided mode
			PL_GPIO_37/B8	1
SSP2				

Table 27. SSP signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
			PL_GPIO_15/B3	1, Extended
			PL_GPIO_92/G16	
SSP2_CLK	SSP clock. It is used as output in master mode as input in slave mode.	Ю	PL_GPIO_63/C13	1, Extended Extended mode 1, Extended Extended mode 1, Extended Extended mode 1, Extended 1, Extended
	The state of the s		PL_GPIO_46/A11	Extended mode
			PL_GPIO_34/E8	1, Extended Extended mode 1, Extended Extended mode 1, Extended Extended mode 1, Extended 1, Extended
			PL_GPIO_13/A1	1, Extended
			PL_GPIO_90/G14	
SSP2_MISO	Master input slave output	Ю	Extended mode	Extended made
		PL_GPIO_44/A10 PL_GPIO_32/D7	- Exterided mode	
			PL_GPIO_32/D7	
			PL_GPIO_16/E6	1, Extended
			PL_GPIO_47/C10	
SSP2_MOSI	Magter output clave input	Ю		1
33F2_IVIOSI	Master output slave input		PL_GPIO_16/E6	Extended mode
			PL_GPIO_93/G17	1
			PL_GPIO_64/D13	1
			PL_GPIO_14/A2	1, Extended
			PL_GPIO_91/G15	
SSP2_SS0	SSP frame output (master mode), input (slave mode)	Ю	PL_GPIO_62/A15	Tytondad made
	pat (state meas)		PL_GPIO_45/B10	Extended mode
			PL_GPIO_33/E7	

Table 28. I2C signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode	
I2C0		<u>'</u>			
I2C0_SCL	I2C0 input/output clock	IO	PL_GPIO_4/C1	Alternate function	
I2C0_SDA	I2C0 input/output data	Ю	PL_GPIO_5/D2	Alternate function	
I2C1		•	•		
I2C1_SCL	I2C1 input/output clock	10	PL_CLK2/J17	3, Extended	
1201_50L	12CT input/output clock	IO PL_GPIO_6 IO PL_GPIO_6 IO PL_CLK2/J PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6 PL_GPIO_6	PL_GPIO_8/C2	Extended mode	
I2C1_SDA	I2C1 input/output data	10	PL_CLK1/K17	3, Extended	
1201_SDA	1201 inpuloutput data	PL_GPIO_9/B2		Extended mode	
I2C2					
			PL_GPIO_2/E4	1, Extended	
			PL_GPIO_19/A3	2, Extended	
I2C2_SCL	I2C2 input/output clock	Ю	PL_GPIO_96/H15	4, Extended	
			PL_GPIO_75/E14	Estandad made	
			PL_GPIO_0/F3	Extended mode	
			PL_GPIO_3/D1	1, Extended	
			PL_GPIO_20/B4	2, Extended	
I2C2_SDA	I2C2 input/output data	Ю	PL_GPIO_97/H16	4, Extended	
			PL_GPIO_76/F13	F. dan dad made	
			PL_GPIO_1/E3	Extended mode	

Table 29. I2S signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
audio_over_samp_clk	Audio oversampling clock. This is the clock that I2S_CLK derives from. The interfacing digital-to-analog converter (DAC) can use this clock to (over)sample the I2S data.	0	PL_GPIO_35/D8	1, 2, Extended
I2S_CLK	I2S clock	0	PL_GPIO_39/A9	1, 2, Extended
I2S_LR	I2S word select	0	PL_GPIO_40/B9	1, 2, Extended
I2S_RX	I2S receive data	I	PL_GPIO_42/D9	1, 2, Extended
I2S_TX	I2S transmit data	0	PL_GPIO_41/C9	1, 2, Extended

Table 30. SPP signals description

Signal name	Description	Dir.	PL_GPIO_# /Ball	Configuration mode
SPP_ACKn	The peripheral pulses this line low when it has received the previous data and is ready to receive more data. The rising edge of SPP_ACKn can be enabled to interrupt the host.	0	PL_GPIO_76/F13	4, Extended
SPP_AUTOFDn	Usage of this line varies. Most printers will perform a line feed after each carriage return when this line is low, and carriage returns only when this line is high.	ı	PL_GPIO_72/B16	4, Extended
SPP_BUSY	The peripheral drives this signal high to indicate that it is not ready to receive data.	0	PL_GPIO_75/E14	4, Extended
SPP_DATA0			PL_GPIO_85/F15	4, Extended
SPP_DATA1			PL_GPIO_84/D17	4, Extended
SPP_DATA2	SPP unidirectional data lines		PL_GPIO_83/E16	4, Extended
SPP_DATA3			PL_GPIO_82/E15	4, Extended
SPP_DATA4			PL_GPIO_81/C17	4, Extended
SPP_DATA5			PL_GPIO_80/D16	4, Extended
SPP_DATA6			PL_GPIO_79/F14	4, Extended
SPP_DATA7			PL_GPIO_78/D15	4, Extended
SPP_FAULTn	Usage of this line varies. Peripherals usually drive this line low when an error condition exists.	0	PL_GPIO_71/D14	4, Extended
SPP_INITn	This line is held low for a minimum of 50 µs to reset the printer and clear the print buffer.	I	PL_GPIO_70/C15	4, Extended
SPP_PERROR	Usage of this line varies. Printers typically drive this signal high during a paper empty condition.	0	PL_GPIO_74/C16	4, Extended
SPP_SELECT	The peripheral drives this signal high when it is selected and ready for data transfer.	0	PL_GPIO_73/A17	4, Extended
SPP_SELINn	The host drives this line low to select the peripheral.	I	PL_GPIO_69/A16	4, Extended
SPP_STRBn	Data is valid during an active low pulse on this line.	I	PL_GPIO_77/B17	4, Extended

Table 31. Ethernet signals description

Signal name	Description	Dir.	PL_GPIO_# / ball number	Configuration mode (see Section 3.4.2)
MIIO				
MII0_COL	PHY collision This signal is asserted by the PHY when a collision is detected on the medium. This signal is not synchronous to any clock. (Active high)	1	PL_GPIO_13/A1	Alternate function
MII0_CRS	PHY CRS This signal is asserted by the PHY when either the transmit or receive medium is not idle. The PHY deasserts this signal when both transmit and receive medium are idle. This signal is not synchronous to any clock. (Active high)	1	PL_GPIO_12/D4	Alternate function
MIIO_MDC	Management data clock The MAC provides timing reference for the MAC_MDIO signal through this aperiodic clock. The maximum frequency of this clock is 2.5 MHz. This clock is generated from the application clock (HCLK) via a clock divider.	0	PL_GPIO_11/E5	Alternate function
MII0_MDIO	Management data input/output	Ю	PL_GPIO_10/C3	Alternate function
MII0_RXCLK	Reception clock This is the reception clock (25/2.5 MHz in 100M/10Mbps) provided by the external PHY for MII interfaces. The MIIO_RXDn signals that the Ethernet controller receives are synchronous to this clock.	I	PL_GPIO_20/B4	Alternate function
MII0_RXD0	PHY receive data		PL_GPIO_17/C4	Alternate function
MII0_RXD1	These bits provide the MII receive data		PL_GPIO_16/E6	Alternate function
MII0_RXD2	nibble. The validity of the data is qualified with MIIO_RXDV and MIIO_RXER.	'	PL_GPIO_15/B3	Alternate function
MII0_RXD3	WILL WING HADV AND WING HALEN.		PL_GPIO_14/A2	Alternate function
MII0_RXDV	PHY receive data valid When high, indicates that the data on the MIIO_RXDn bus is valid. It remains asserted continuously from the first recovered byte/nibble of the frame through the final recovered byte/nibble.	I	PL_GPIO_19/A3	Alternate function
MIIO_RXER	PHY receive error When high, indicates an error or carrier extension in the received frame on the MIIO_RXDn bus.	I	PL_GPIO_18/D5	Alternate function

Table 31. Ethernet signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# / ball number	Configuration mode (see Section 3.4.2)
MII0_TXCLK	Transmission clock This is the transmission clock (25/2.5 MHz in 100 M/10 Mbps) provided by the external PHY for the MII interface. All the MIIO_TXDn signals generated by the MAC are synchronous to this clock.	I	PL_GPIO_27/B6	Alternate function
MII0_TXD0	PHY transmit data.		PL_GPIO_26/A5	Alternate function
MII0_TXD1	These bits provide the MII transmit data	0	PL_GPIO_25/C6	Alternate function
MII0_TXD2			PL_GPIO_24/B5	Alternate function
MII0_TXD3	WILL WING TAEN AND WING TAEN.		PL_GPIO_23/A4	Alternate function
MIIO_TXEN	PHY transmit data enable When high, it indicates that valid data is being transmitted on the MII0_TXDn bus.	0	PL_GPIO_22/D6	Alternate function
MII0_TXER	PHY transmit error When high, indicates a transmit error or carrier extension on the MII0_TXDn bus.	0	PL_GPIO_21/C5	Alternate function
MII1				
MII1_COL	PHY collision This signal is asserted by the PHY when a collision is detected on the medium. This signal is not synchronous to any clock. (Active high)	I	PL_GPIO_83/E16	2, Extended
MII1_CRS	PHY CRS This signal is asserted by the PHY when either the transmit or receive medium is not idle. The PHY deasserts this signal when both transmit and receive medium are idle. This signal is not synchronous to any clock. (Active high)	I	PL_GPIO_82/E15	2, Extended
MII1_MDC	Management data clock The MAC provides timing reference for the MII1_MDIO signal through this aperiodic clock. The maximum frequency of this clock is 2.5 MHz.This clock is generated inside the Ethernet controller from the application clock (HCLK) via a clock divider.	0	PL_GPIO_80/D16	2, Extended
MII1_MDIO	Management data input/output	Ю	PL_GPIO_81/C17	2, Extended
MII1_RXCLK	This is the reception clock (25/2.5 MHz in 100M/10Mbps) provided by the external PHY for MII interfaces. All MII1_RXDn signals that the Ethernet controller receives are synchronous to this clock.	I	PL_GPIO_90/G14	2, Extended

Table 31. Ethernet signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# / ball number	Configuration mode (see Section 3.4.2)
MII1_RXD0	PHY receive data		PL_GPIO_87/G13	2, Extended
MII1_RXD1	These bits provide the MII receive data	,	PL_GPIO_86/E17	2, Extended
MII1_RXD2	nibble. The validity of the data is qualified with MII1_RXDV and MII1_RXER.		PL_GPIO_85/F15	2, Extended
MII1_RXD3	WILL WILL _ NADV and WILL _ NAEN.	RXDV and MII1_RXER.		2, Extended
MII1_RXDV	PHY receive data valid When high, indicates that the data on the MII1_RXDn bus is valid. It remains asserted continuously from the first recovered byte/nibble of the frame through the final recovered byte/nibble.	I	PL_GPIO_89/F17	2, Extended
MII1_RXER	PHY receive error When high, indicates an error or carrier extension in the received frame on the MII1_RXDn bus.	I	PL_GPIO_88/F16	2, Extended
MII1_TXCLK	Transmission clock This is the transmission clock (25/2.5 MHz in 100M/10Mbps) provided by the external PHY for the MII. All the MII transmission signals generated by the MAC are synchronous to this clock.	I	PL_GPIO_97/H16	2, Extended
MII1_TXD0	PHY transmit data.		PL_GPIO_96/H15	2, Extended
MII1_TXD1	These bits provide the MII transmit data nibble. The validity of the data is qualified		PL_GPIO_95/H14	2, Extended
MII1_TXD2	with MII1_TXEN and MII1_TXER.	0	PL_GPIO_94/H13	2, Extended
MII1_TXD3			PL_GPIO_93/G17	2, Extended
MII1_TXEN	PHY transmit data enable When high, indicates that valid data is being transmitted on the MII1_TXDn bus.	0	PL_GPIO_92/G16	2, Extended
MII1_TXER	PHY transmit error When high, indicates a transmit error or carrier extension on the MII1_TXDn bus.	0	PL_GPIO_91/G15	2, Extended
RMIIO/RMII1				
RMII_MDC	Management data clock The MAC provides timing reference for the RMII_MDIO signal through this aperiodic clock. The maximum frequency of this clock is 2.5 MHz.This clock is generated from the application clock (HCLK) via a clock divider.	0	PL_GPIO_11/E5	Extended mode
RMII_MDIO	Management data input/output	Ю	PL_GPIO_10/C3	Extended mode
RMII_REF_CLK	50 MHz reference clock input for RMII interface	I	PL_GPIO_22/D6	Extended mode

Table 31. Ethernet signals description (continued)

Signal name	Description	Dir.	PL_GPIO_# / ball number	Configuration mode (see Section 3.4.2)
RMII0_CRS_DV	PHY receive data valid Contains the CRS (carrier sense) and data valid information of the receive interface.	1	PL_GPIO_14/A2	Extended mode
RMII0_RX_ER	PHY receive error	I	PL_GPIO_13/A1	Extended mode
RMII0_RXD0	PHY receive data		PL_GPIO_26/A5	Extended mode
RMII0_RXD1	These bits provide the RMII receive data. The validity of the data is qualified with RMII0_CRS_DV.	I	PL_GPIO_15/B3	Extended mode
RMII0_TX_EN	PHY transmit data enable When high, indicates that valid data is being transmitted on the RMII_TXDn bus	0	PL_GPIO_16/E6	Extended mode
RMII0_TXD0	PHY transmit data		PL_GPIO_27/B6	Extended mode
RMII0_TXD1	These bits provide the RMII transmit data. The validity of the data is qualified with RMII0_TX_EN.	0	PL_GPIO_17/C4	Extended mode
RMII1_CRS_DV	PHY receive data valid Contains the crs and data valid information of the receive interface.	I	PL_GPIO_19/A3	Extended mode
RMII1_RX_ER	PHY receive error	I	PL_GPIO_18/D5	Extended mode
RMII1_RXD0	PHY receive data		PL_GPIO_24/B5	Extended mode
RMII1_RXD1	These bits provide the RMII receive data. The validity of the data is qualified with RMII1_CRS_DV.	I	PL_GPIO_20/B4	Extended mode
RMII1_TX_EN	PHY transmit data enable When high, it indicates that valid data is being transmitted on the RMII_TXDn bus.	0	PL_GPIO_23/A4	Extended mode
RMII1_TXD0	PHY transmit data		PL_GPIO_25/C6	Extended mode
RMII1_TXD1	These bits provide the RMII transmit data. The validity of the data is qualified with RMII1_TX_EN.	0	PL_GPIO_21/C5	Extended mode

3.5 PL_GPIO and PL_CLK pin sharing for debug and test modes

In some cases the PL_GPIO and PL_CLK pins may be used in different ways for debugging purposes. There are four different cases (see also *Table 32*):

- Case 0 All the PL_GPIO and PL_CLK get values from Boundary scan registers during Ex-test instruction of JTAG. Typically, this configuration is used to verify the correctness of the soldering process during the production flow. The pad (PL_GPIO or PL_CLK) is driven by the Boundary Scan Register, and disconnected from the I/O function used in functional mode.
- 2. Case 1 All the PL_GPIO and PL_CLK maintain their original meaning and the JTAG Interface is disconnected from the processor.
- 3. Case 2 All the PL_GPIO and PL_CLKmaintain their original meaning but the JTAG Interface is connected to the processor. This configuration is useful during the development phase, but offers only "static" debug.
- 4. Case 3 Some PL_GPIOs, as shown in *Table 32* below, are used to connect the ETM9 lines to an external box. This configuration is typically used only during the development phase. It offers a very powerful debug capability. When the processor reaches a breakpoint it is possible, by analyzing the trace buffer, to understand the reason why the processor has reached the break.

Table 32. Ball sharing during debug

Signals	Case 0 - boundary scan	Case 1 - no debug	Case 2 - static debug	Case 3 - full debug
TEST_0	0	0	1	0
TEST_1	0	0	0	1
TEST_2	0	1	1	1
TEST_3	0	1	1	1
TEST_4	1	0	0	0
nTRST	nTRST_bscan	nc	nTRST_ARM	nTRST_ARM
TCK	TCK_bscan	nc	TCK_ARM	TCK_ARM
TMS	TSM_bscan	nc	TMS_ARM	TMS_ARM
TDI	TDI_bscan	nc	TDI_ARM	TDI_ARM
TDO	TDO_bscan	nc	TDO_ARM	TDO_ARM
PL_GPIOxxx/ PL_CLKx (all pins)	Used for boundary scan	Functional mode	Functional mode	PL_GPIO97- PL_GPIO73 used for debug, Refer to Table 15: PL_GPIO/PL_CLK multiplexing scheme and reset states on page 43

4 Electrical characteristics

4.1 Absolute maximum ratings

This product contains devices to protect the inputs against damage due to high/low static voltages. However, it is advisable to take normal precaution to avoid application of any voltage higher/lower than the specified maximum/minimum rated voltages.

Caution:

Stresses above those listed in *Table 33* may cause permanent damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 33. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
V _{DD} 1.2	Supply voltage for the core	- 0.3	1.44	V
V _{DD} 3.3	Supply voltage for the I/Os	- 0.3	3.9	V
V _{DD} 2.5	Supply voltage for the analog blocks	- 0.3	3	V
V _{DD} 1.8	Supply voltage for the DRAM interface	- 0.3	2.16	V
V _{DD} RTC	RTC supply voltage	-0.3	2.16	V
T _{STG}	Storage temperature	-55	150	°C

4.2 Maximum power consumption

Note:

These values take into consideration the worst cases of process variation and voltage range and must be used to design the power supply section of the board.

Table 34. Maximum power consumption

Symbol	Description		Unit
I _{DD(1.2Vsupply)}	Current consumption of V _{DD} 1.2 supply voltage for the core	400	mA
I _{DD(1.8Vsupply)}	Current consumption of V _{DD} 1.8 supply voltage for the DRAM interface ⁽¹⁾	150	mA
I _{DD(RTC)}	Current consumption of RTC supply voltage	8	μΑ
I _{DD(2.5Vsupply)}	Current consumption of 2.5V supply voltage for the analog blocks	30	mA
I _{DD(3.3Vsupply)}	Current consumption of 3.3V supply voltage for the I/Os ⁽²⁾	12	mA
P _D	Maximum power consumption ⁽³⁾	870	mW

^{1.} Peak current with Linux memory test (50% write and 50% read) plus DMA reading memory.

^{2.} With 30 logic channels connected to the device and simultaneously switching at 10 MHz.

Based on bench measurements for worst case silicon under worst case operating conditions. Devices tested with operating system running, CPU and DDR2 running at 333 MHz, DDR2 driven by PLL2, SDRAM and all on-chip peripherals and internal modules enabled.

^{1.2} V current and power are primarily dependent on the applications running and the use of internal chip functions (DMA, USB, Ethernet, and so on).

^{3.3} V current and power are primarily dependent on the capacitive loading, frequency, and utilization of the external buses.

Electrical characteristics SPEAr320S

4.3 Recommended operating conditions

To ensure proper operation of the device, it is highly recommended to follow the conditions shown in the following table.

Table 35. Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{DD} 1.2	Supply voltage for the core	1.14	1.2	1.3	V
V _{DD} 3.3	Supply voltage for the I/Os	3	3.3	3.6	V
V _{DD} 2.5	PLL supply voltage ⁽¹⁾	2.25	2.5	2.75	V
V _{DD} 2.5	Oscillator supply voltage	2.25	2.5	2.75	V
V _{DD} 1.8	Supply voltage for DRAM interface	1.70	1.8	1.9	V
V _{DD} RTC	RTC supply voltage	1.3	1.5	1.8	V
T _A	Ambient temperature ⁽²⁾	-40	_	85	°C
T _J	Junction temperature	-40	-	125	°C

^{1.} For power supply filtering it is required to add an external ferrite inductor.

4.4 Overshoot and undershoot

This product can support the following values of overshoot and undershoot.

Table 36. Overshoot and undershoot specifications

Parameter	3V3 I/Os	2V5 I/Os	1V8 I/Os
Amplitude	500 mV	500 mV	500 mV
Ratio of overshoot (or undershoot) duration with respect to pulse width	1/3	1/3	1/3

If the amplitude of the overshoot/undershoot increases (decreases), the ratio of overshoot/undershoot width to the pulse width decreases (increases). The formula relating the two is:

Amplitude of OS/US = 0.75*(1- ratio of OS (or US)) duration with respect to pulse width)

Note:

The value of overshoot/undershoot should not exceed the value of 0.5 V. However, the duration of the overshoot/undershoot can be increased by decreasing its amplitude.

^{2.} T_A to be considered under JESD51 conditions or equivalent ones.

4.5 3.3V I/O characteristics

The 3.3 V I/Os are compliant with JEDEC standard JESD8b.

Table 37. Low voltage TTL DC input specification (3 V< V_{DD} <3.6 V)

Symbol	Parameter	Min	Max	Unit
V_{IL}	Low level input voltage		0.8	V
V _{IH}	High level input voltage	2		V
V _{hyst}	Schmitt trigger hysteresis	300	800	mV

Table 38. Low voltage TTL DC output specification (3 V< V_{DD} <3.6 V)

Symbol	Parameter	Test condition	Min	Max	Unit
V _{OL}	Low level output voltage	I _{OL} = X mA ⁽¹⁾		0.3	V
V _{OH}	High level output voltage	I _{OH} = -X mA ⁽¹⁾	V _{DD} - 0.3		V

Maximum current load (IOL) = 10 mA for PL_GPIO and PL_CLK pins. For the IOL max value of dedicated pins, refer to Chapter 3: Pin description.

Table 39. Pull-up and pull-down characteristics

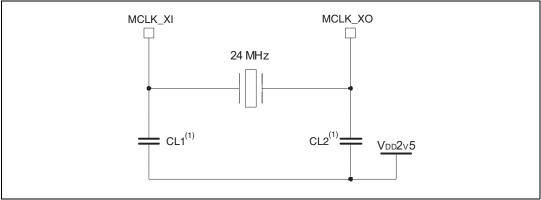
Symbol	Parameter	Test condition	Min	Max	Unit
R _{PU}	Equivalent pull-up resistance	V _I = 0 V	29	67	kΩ
R _{PD}	Equivalent pull-down resistance	$V_I = V_{DDE}3V3$	29	103	kΩ

Electrical characteristics SPEAr320S

4.6 Clocking parameters

4.6.1 Master clock (MCLK)

MCLK generated from a crystal oscillator


Table 40. MCLK oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{osc_in}	Oscillator frequency			24 ⁽¹⁾	33 ⁽²⁾	MHz
ESR	Equivalent series resisistance				50	Ω
gm	Oscillator transconductance	Startup	19.8	28.5		mA/V
t _{SU}	Startup time	Stabilized power on MCLK_VDD2V5 pin			2 (3)	ms

A frequency of 24 MHz is mandatory to obtain the required frequencies for all clocks generated by the USB PLL (PLL3).

- 2. At Max freq = 33 MHz the ESR value has to be less than 20 Ω .
- 3. Startup time simulated with a 30 MHz crystal.

Figure 4. MCLK crystal connection

1. C_{L1} and C_{L2} are the load capacitors.

The value of the capacitors depends on the type of the selected crystal. To calculate the value of the load capacitance, use the formula given below.

Formula

$$C_{L} = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} + C_{s}$$

Where C_{L1} and C_{L2} are the load capacitors and C_{S} is the circuit stray capacitance.

In our application:

$$C_{L1} = C_{L2} = C_{ext}$$

This implies:

$$C_{\text{ext}} = (C_{\text{L}} - C_{\text{S}})^* 2$$

Example:

For this example, a Rakon XTAL003342 24 MHz oscillator has been used.

For the Rakon XTAL003342 crystal, $C_L = 12 pF$

With $C_S = \sim 3$ pF, we have: Cext = $C_{L1} = CL2 = 18$ pF

MCLK generated from an external clock source

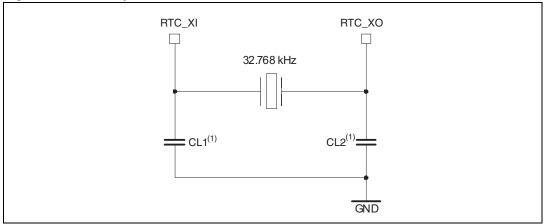
Table 41. MCLK external user clock source characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{MCLK_XI}	External clock source frequency		No limitation	24 ⁽¹⁾	33	MHz
V _{MCLK_XIH}	MCLK_XI input pin high level voltage		MCLK_VDD2V5 - 0.3		MCLK_VDD2V5	V
V _{MCLK_XIL}	MCLK_XI input pin low level voltage		MCLK_GNDSUB		0.3	V
DuCy _(MCLK_XI)	Duty cycle ⁽²⁾		40		60	%
t _{r(MCLK_XI)}	MCLK_XI input rise and fall time		-5% of the clock period		+5% of the clock period	%
C _{IN(MCLK_XI)}	MCLK_XI input capacitance			7		pF
I _{L(MCLK_XI)}	MCLK_XI input leakage current	MCLK_GNDSUB≤V _{IN} ≤ MCLK_VDD2V5			±1	μΑ

A frequency of 24 MHz is mandatory to obtain the required operating frequency for all clocks generated by the USB PLL (PLL3).

^{2.} An initial delay of 1 μ s + 2048 f_{MCLK} χ_{I} cycles occurs for duty cycle detection and internal clock availability.

Electrical characteristics SPEAr320S


4.6.2 Real-time clock (RTC)

RTC clock generated from a crystal oscillator

Table 42. RTC oscillator characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency			32.768		kHz
ESR	Equivalent series resistance				6000	Ω
gm	Oscillator transconductance	Startup	5			μ A /V
t _{SU}	Startup time	Stabilized power on RTC_VDD1V5 pin			17000	f _{OSC_IN} cycles

Figure 5. RTC crystal connection

1. C_{L1} and C_{L2} are the load capacitors.

The value of the capacitors depends on the type of the selected crystal. To calculate the value of the load capacitance, use the formula given below.

Formula

$$C_{L} = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} + C_{s}$$

Where C_{L1} and C_{L2} are the load capacitors and C_{S} is the circuit stray capacitance.

In our application:

$$C_{L1} = C_{L2} = C_{ext}$$

This implies:

$$C_{\text{ext}} = (C_{\text{L}} - C_{\text{S}})^* 2$$

Example:

For this example, a Fox Electronics, NC26LF-327 32.768 kHz oscillator has been used.

For the Fox Electronics, NC26LF-327 crystal, $C_L = 12.5 pF$

With $C_S = \sim 0.1$ pF, we have: Cext = $C_{L1} = CL2 = 24.8$ pF=22 pF

RTC clock generated from an external clock source

Table 43. RTC external user clock source characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{RTC_XI}	External clock source frequency			32.768		kHz
V _{RTC_XIH}	RTC_XI input pin high level voltage		RTC_VDD1V5 - 0.2		RTC_VDD1V5	٧
V _{RTC_XIL}	RTC_XI input pin low level voltage		RTC_GND		0.2	٧
DuCy _(RTC_XI)	Duty cycle		40		60	%
$t_{r(RTC_XI)}$ $tf_{(RTC_XI)}$	RTC_XI input rise and fall time				50	ns
C _{IN(RTC_XI)}	RTC_XI input capacitance			5		pF
I _{L(RTC_XI)}	RTC_XI input leakage	RTC_GND≤V _{IN} ≤ RTC_VDD1V5			±1	μΑ

Electrical characteristics SPEAr320S

4.7 LPDDR and DDR2 pin characteristics

Table 44. DC characteristics

Symbol	Parameter	Test condition	Min	Max	Unit
V _{IL}	Low level input voltage	SSTL18	-0.3	V _{REF} -0.125	V
V _{IH}	High level input voltage	SSTL18	V _{REF} +0.125	V _{DDE} 1V8+0.3	V
V _{hyst}	Input voltage hysteresis		200		mV

Table 45. Driver characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R _O	Output impedance		45		Ω

Table 46. On-die termination

Symbol	Parameter	Min	Тур	Max	Unit
RT1	Termination value of resistance for on die termination		75		Ω
RT2	Termination value of resistance for on die termination		150		Ω

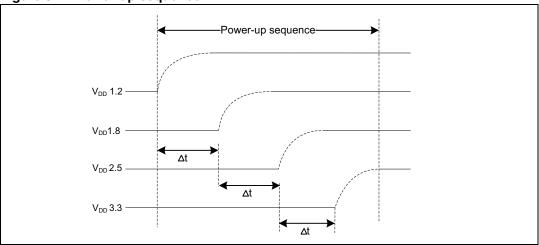
Table 47. Reference voltage

Symbol	Parameter	Min	Тур	Max	Unit
V _{REFIN}	Voltage applied to core/pad	0.49 * V _{DDE}	0.500 * V _{DDE}	0.51 * V _{DDE}	٧

4.8 ADC pin characteristics

Table 48. ADC pin characteristics

	•				
Symbol	Parameters	Min	Тур	Max	Unit
f _{ADC_CLK}	ADC_CLK frequency	3		14	MHz
AV _{DD}	ADC supply voltage			2.5	V
V _{REFP}	Positive reference voltage			2.5	V
V _{REFN}	Negative reference voltage	0			V
V _{IREF}	Internal reference voltage	1.95	2	2.05	V
t _{STARTUP}	Startup time		50		μs
	Input range (absolute)	AGND - 0.3		AVDD - 0.3	V
V_{AIN}	Conversion range	V _{REFN}		V _{REFP}	V
C _{AIN}	Input capacitance	5	6.4	8	pF
R _{AIN}	Input mux resistance (total equivalent sampling resistance)	1.5	2	2.5	ΚΩ
+	Conversion time (f _{ADC_CLK} =14 MHz)			1	μs
t _{CONV}	Conversion time	13			ADC_CLK cycles
INL	Integral linearity error			±1	LSB
DNL	Differential linearity error			±1	LSB


Electrical characteristics SPEAr320S

4.9 Power-up sequence

It is recommended to power up the power supplies in the order shown in Figure 6.

 V_{DD} 1.2 is brought up first, followed by V_{DD} 1.8, then V_{DD} 2.5 and finally V_{DD} 3.3. The minimum time (Δt) between each power up is >0 μs .

Figure 6. Power-up sequence

4.10 Power-down sequence

All power supplies can be shut down at the same time.

4.11 Reset release

The master reset (MRESET) must be released after all the power supplies are stable and for a time interval of 2 ms, which is the start-up time of the main oscillator, and must be asserted low for at least 1 μ s for warm reset.

Figure 7. Cold reset release

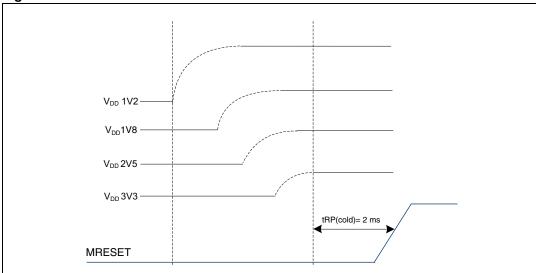
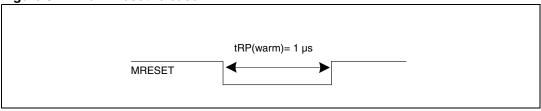



Figure 8. Warm reset release

Note: See also: Section 5.2: Reset timing characteristics on page 78.

Timing requirements SPEAr320S

5 Timing requirements

This chapter provides the timing requirements for the synchronous and asynchronous IPs present in SPEAr320S.

The signal transition levels used for timing measurements are: 0.2*VDD and 0.8*VDD.

5.1 External interrupt timing characteristics

In legacy modes, all the interrupts are high-level triggered. In extended mode, interrupt trigger polarity is programmable as rising or falling edge.

Table 49. PL_GPIO external interrupt input timing

Symbol	Description	Min	Unit
tINT	Minimum width for rising edge interrupt pulse	24	ns

5.2 Reset timing characteristics

Table 50. Reset timing characteristics

Symbol	Description	Min	Unit
tRP(cold)	MRESET pin active low state duration for cold reset (startup time from all supplies up and stable). See Figure 7: Cold reset release on page 77)	2	ms
tRP(warm)	MRESET pin active low state duration for warm reset (minimum pulse width able to reset the device). See Figure 8: Warm reset release on page 77)	1	μs

Note: Warm reset can be triggered by software by writing any value to the system controller SYSSTAT register.

5.3 CAN timing characteristics

The nominal CAN bit time allows a delay Prop_Seg to compensate for the physical delay times. For details refer to *RM0319*, *Reference manual*, *SPEAr320S architecture and functionality*.

Table 51 specifies the delay for the CAN I/O pads.

Prop_Seg ≥ 2 * max node output delay + bus line delay + node input delay

Table 51. CAN timing characteristics

Symbol	Description	Max	Unit
t _{d(RX)}	CAN0_RX (PL_GPIO32) input delay	5.03	ns
	CAN1_RX (PL_GPIO30) input delay	6.2	ns
t _{d(TX)}	CAN0_TX (PL_GPIO33) output delay	9.55	ns
	CAN1_TX (PL_GPIO31) output delay	10.2	ns

79/113

5.4 CLCD timing characteristics

The CLCD has a wide variety of configurations, and the parameters change accordingly.

The timing characterization is performed assuming an output load capacitance of 10 pF on all outputs.

Figure 9. CLCD waveform

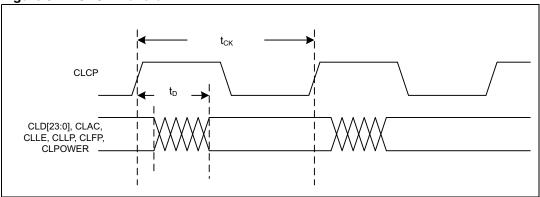


Table 52. CLCD timing requirements

Symbol	Description	Min	Max	Unit
t _{CK}	CLCP clock period	20.83	41.66	ne
t _D	CLCP to CLCD output data delay	1	9.5	ns

DDR2/LPDDR timing characteristics 5.5

The timing parameters listed below are defined by the JEDEC Standard for DDR memories. DDR memories whose parameters are within the ranges defined in *Table 53*, *Table 54* and Table 55 can be interfaced with SPEAr320S.

Read cycle timing apply to DQS and DQ input to SPEAr. Write cycle timings refer to DQS and DQ output to SPEAr.

The timing characterization is performed assuming an output load capacitance of 10 pF on all the DDR pads.

5.5.1 DDR2/LPDDR read cycle timing characteristics

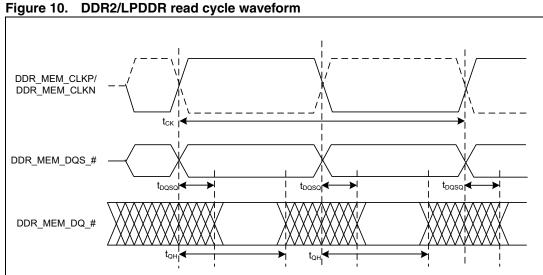


Table 53. DDR2/LPDDR read cycle timing requirements

Symbol	Description	Min	Max	Unit
	DDR_MEM_CLKP/CLKN cycle time when interfacing DDR2 memory	3		
t _{CK}	LPDDR DDR_MEM_CLKP/CLKN cycle time when interfacing LPDDR memory	6		ns
t _{DQSQ}	DQS to DQ input setup time	0	0.25t _{CK} +0.4	
t _{QH}	DQS to DQ input hold time	0.25t _{CK} +0.7	0.5t _{CK}	

Timing requirements SPEAr320S

DDR2/LPDDR write cycle timing characteristics 5.5.2

Figure 11. DDR2/LPDDR write cycle waveform

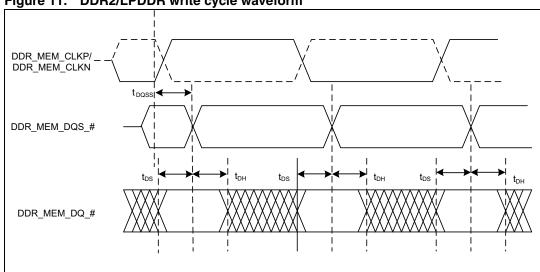
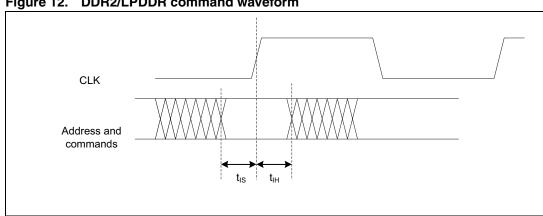


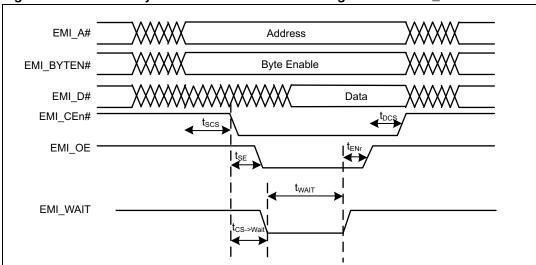
Table 54. DDR2/LPDDR write cycle timing requirements

Symbol	Description	Min	Max	Unit
t _{DQSS}	Positive DQS latching edge to associated CK edge	-0.5	0.5	
t _{DS}	DQ & DQM output setup time relative to DQS	0	0.25t _{CK} - 0.76	ns
t _{DH}	DQ & DQM output hold time relative to DQS	0	0.25t _{CK} - 0.84	

5.5.3 **DDR2/LPDDR** command timing characteristics

Figure 12. DDR2/LPDDR command waveform




Table 55. **DDR2/LPDDR** command timing requirements

Symbol	Description	Min	Max	Unit
t _{IS}	Address and control output setup time	0	0.5t _{CK} - 0.5	ns
t _{IH}	Address and control output hold time	0	0.5t _{CK} - 0.59	115

SPEAr320S Timing requirements

5.6 EMI timing characteristics

Figure 13. EMI read cycle waveform with acknowledgement on EMI_WAIT

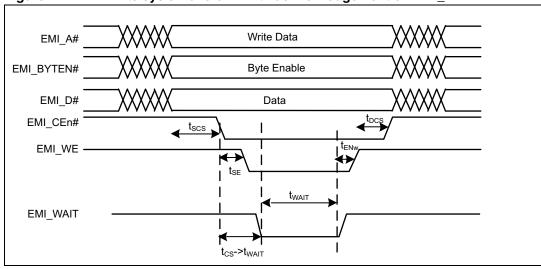

Note: The values of t_{SE} , t_{ENp} , t_{DCS} , t_{SCS} are programmable via the EMI registers.

Table 56. EMI timing requirements for read cycle with acknowledgement on WAIT

Symbol	Min
t _{CS->Wait}	t _{HCLK}
t _{WAIT}	4*t _{HCLK}

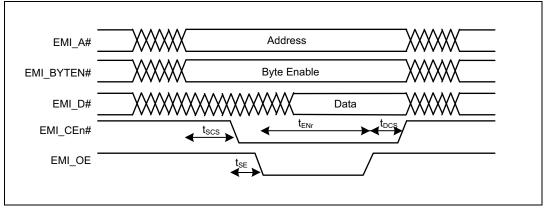
Note: Values in Table 56 refer to the common internal source clock which has a period of $t_{HCLK} = 6$ ns.

Figure 14. EMI write cycle waveform with acknowledgement on EMI_WAIT

Note: The values of t_{SE} , t_{ENw} , t_{DCS} , t_{SCS} are programmable via the EMI registers.

Doc ID 022508 Rev 2 83/113

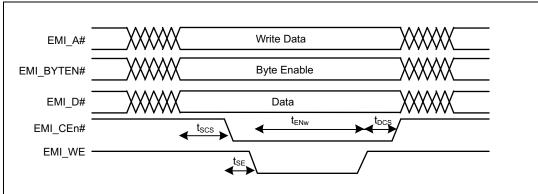
Timing requirements SPEAr320S


Table 57. EMI timing requirements for write cycle with acknowledgement on WAIT

Symbol	Min
t _{CS->Wait}	t _{HCLK}
t _{WAIT}	4*t _{HCLK}

Note:

Values in Table 57 refer to the common internal source clock which has a period of $t_{HCLK} = 6$ ns.


Figure 15. EMI read cycle waveform without acknowledgement on EMI_WAIT

Note:

The values of t_{SE} , t_{ENr} , t_{DCS} , t_{SCS} are programmable via the EMI registers.

Figure 16. EMI write cycle waveform without acknowledgement on EMI_WAIT

Note:

The values of t_{SE} , t_{ENw} , t_{DCS} , t_{SCS} are programmable via the EMI registers.

Direction Signal name Min Unit Max EMI_A0-EMI_A23 8.612293 1.93584 EMD0-EMID15 9.471291 2.260195 EMI_CE0 8.764648 2.90581 EMI_CE1 7.977348 2.636304 Output EMI_CE2 9.027624 2.930175 EMI_CE3 9.29631 3.006315 ns EMI_BYTEN0 9.554388 3.092855 EMI_BYTEN1 9.233592 3.038856 EMI_RE 8.193018 2.680564 EMI_WE 8.172619 2.80189 nput EMI_D0-EMI_D15 10.8188 1.30245

Table 58. EMI signals timing requirements

5.7 Ethernet MII timing characteristics

The timing characterization is performed assuming an output load capacitance of 5 pF on the MII TX clock (MII#_TXCLK) and 10 pF on the other pads.

5.7.1 MII transmit timing characteristics

Figure 17. MII TX waveform

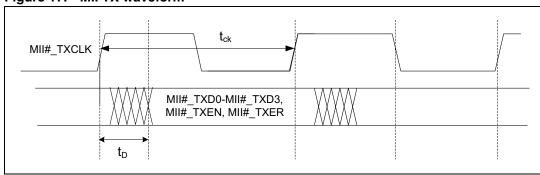


Table 59. MII TX timing requirements

Symbol	Description	Min	Max	Unit	
t _{CK}	MII#_TXCLK clock period	40	40	ne	
t _D	MII#_TXCLK to MII output data delay	3.34	11.86	ns	

Note:

To calculate the t_{SETUP} value for the PHY, you have to consider the next t_{CK} rising edge, so you have to apply the following formula: $t_{SETUP} = t_{CK} - t_{max}$

577

Doc ID 022508 Rev 2

85/113

Timing requirements SPEAr320S

5.7.2 MII receive timing characteristics

Figure 18. MII RX waveform

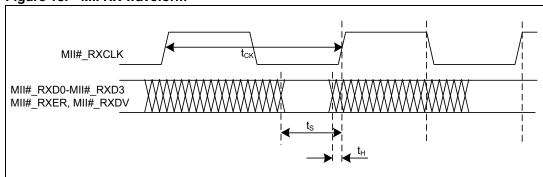


Table 60. MII RX timing requirements

Symbol	Description	Min	Max	Unit
t _{CK}	MII#_TXCLK clock period	40	40	
t _S	Setup time requirement for MII receive data	12.5	ns	
t _H	Hold time requirement for MII receive data	-2		

5.7.3 MDC/MDIO timing characteristics

Figure 19. MDC waveform

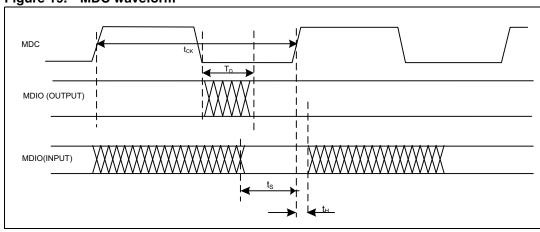


Table 61. MDC timing requirements

Symbol	Description	Min	Max	Unit
t _{CK}	MDC clock period	614.4	614.4	
t _D	Falling edge of MDC to MDIO output delay	-2.4	0.64	nc
t _S	Setup time requirement for MDIO input	9.6	ns	
t _H	Hold time requirement for MDIO input	-6.6		

Note:

When MDIO is used as output the data are launched on the falling edge of the clock as shown in Figure 19.

5.8 Ethernet RMII timing characteristics

5.8.1 RMII transmit timing characteristics

Figure 20. RMII TX waveform

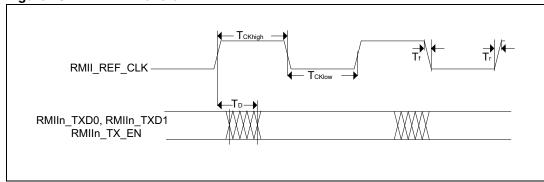
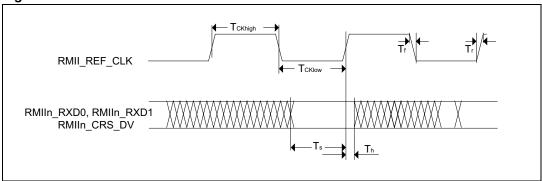



Table 62. RMII TX timing requirements

Symbol	Description	Min	Max	Unit
t _{CK}	RMII_REF_CLK period	20		
+	Clock to RMII0_TXD output delay	4.28	15.65	ns
t _D	Clock to RMII1_TXD output delay	4.20	15.45	

5.8.2 RMII receive timing characteristics

Figure 21. RMII RX waveform

Timing requirements SPEAr320S

Table 63. RMII RX timing requirements

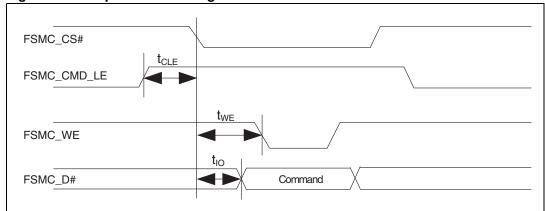
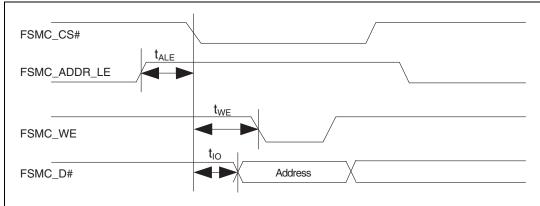
Symbol	Description	Min	Max	Unit
t _{CK}	RMII_REF_CLK period	20		
	Setup time requirement for RMII0 receive data	4.9		
t _S	Setup time requirement for RMII1 receive data	5		ns
	Hold time requirement for RMII0 receive data	0.1		
t _H	Hold time requirement for RMII1 receive data	-0.09		

5.9 FSMC timing characteristics

The FSMC present in SPEAr320S can interface external parallel NAND Flash memories.

The timing characterization is performed using primetime assuming an output load capacitance of 3 pF on the data, 15 pF on FSMC_CSx, FSMC_RE and FSMC_WE and 10 pF on FSMC_ADDR_LE and FSMC_CMD_LE.

Figure 22. Output command signal waveform

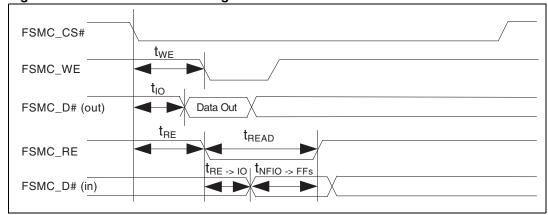


Figure 23. Output address signal waveform

577

Doc ID 022508 Rev 2

89/113

Table 64. FSMC timing requirements

Symbol	Min	Max
t _{CLE}	-3.9	2.8
t _{ALE}	-4.2	2.6
t _{WE} ⁽¹⁾	(((Tset+1) * t _{HCLK}) - 3 ns)	(((Tset+1) * t _{HCLK}) + 3 ns)
t _{RE} ⁽¹⁾	(((Tset+1) * t _{HCLK}) - 3 ns)	(((Tset+1) * t _{HCLK}) + 3 ns)
t _{IO} ⁽²⁾	(((Thiz +1) * t _{HCLK}) - 3 ns)	(((Thiz +1) * t _{HCLK})+ 3 ns)
t _{READ} (3)	((Twait+1)* t _{HCLK}	

- 1. Programmable by the Tset bits in the FSMC registers.
- 2. Programmable by the Thiz bits in the FSMC registers.
- 3. Programmable by the Twait bits in the FSMC registers.

Note: Values in Table 64 refer to the common internal source clock which has a period of t_{HCLK} = 6 ns.

Table 65. FSMC signals timing requirements

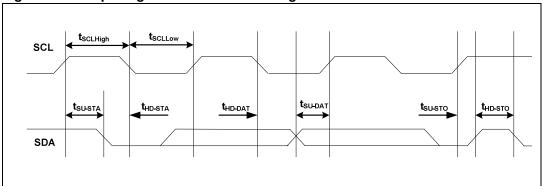
Direction	Signal name	Мах	Min	Data path width	Unit
	FSMC_CMD_LE	10.57	3.1		
	FSMC_ADDR_LE	9.5	2.8		
	FSMC_WE	8.5	2.9		
	FSMC_RE	8.4	2.75		
=	FSMC_CS0	9.165836	3.07661		
Output	FSMC_CS1	8.473722	2.81431		
0	FSMC_CS2	9.172739	3.02958		
	FSMC_CS3	9.808426	3.21934		ns
	FSMC_D7-FSMC_D0	7.710164	2.298715	8-bit	
	FSMC_D15-FSMC_D8	9.301547	2.420165	8-bit	
	FSMC_D15-FSMC_D0	9.301547	2.298715	16-bit	
	FSMC_RDY/BUSY	6.88	1.7		
Input	FSMC_D7-FSMC_D0	8.8809	1.18356	8-bit	
삡	FSMC_D15-FSMC_D8	10.875302	1.37802	8-bit	
	FSMC_D15-FSMC_D0	10.875302	1.18356	16-bit	

5.10 GPIO/XGPIO timing characteristics

For edge-sensitive signals, the interrupt line is sampled by flip flops clocked by PCLK for GPIOs and HCLK for XGPIOs, the APB and AHB clocks, normally running at 83 MHz and 166 MHz respectively.

The minimum pulse width required for interrupt detection on signal edge is:

3*T_{PCLK} (36 ns at 83 MHz) for GPIO


3*T_{HCLK} (18 ns at 166 MHz) for XGPIO

Doc ID 022508 Rev 2 91/113

5.11 I²C timing characteristics

The timing characterization is performed using primetime assuming an output load capacitance of 10 pF on SCL and SDA.

Figure 25. Output signal waveform for I²C signals

The timings of the high and low level of SCL ($t_{SCLHigh}$ and t_{SCLLow}) are programmable.

The clock-to-output data delay is:

- MIN (T(clk+data)min) = 5.9
- MAX (T(clk+data)max) = 15

The timings shown in *Figure 25* depend on the programmed value of $t_{SCLHigh}$ and t_{SCLLow} . The values listed in *Table 66* to *Table 68* have been calculated using the minimum programmable values of :

- High-speed mode: IC_HS_SCL_HCNT= 19 and IC_HS_SCL_LCNT= 53 registers
- Fast-speed mode: IC_FS_SCL_HCNT= 99 and IC_FS_SCL_LCNT= 215 registers
- Standard-speed mode: IC_SS_SCL_HCNT= 664 and IC_SS_SCL_LCNT= 780 registers

These minimum values depend on the AHB clock frequency, which is 166 MHz.

- Note: 1 A device may internally require a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL (Please refer to the I²C Bus Specification v3-0 Jun 2007). However, the SDA data hold time in the I²C controller of SPEAr320S is one-clock cycle based (6 ns with the HCLK clock at 166 MHz). This time may be insufficient for some slave devices. A few slave devices may not receive the valid address due to the lack of SDA hold time and will not acknowledge even if the address is valid. If the SDA data hold time is insufficient, an error may occur.
 - Workaround: If a device needs more SDA data hold time than one clock cycle, an RC delay circuit is needed on the SDA line as illustrated in Figure 26.

Figure 26. RC delay circuit

Table 66. I²C timing requirements in high-speed mode

Parameter	Min	Unit
t _{SU-STA}	140	
t _{HD-STA}	325	
t _{SU-DAT}	300	nc
t _{HD-DAT}	1	ns
t _{su-sto}	620	
t _{HD-STO}	4745	

Table 67. I²C timing requirements in fast-speed mode

Parameter	Min	Unit
t _{SU-STA}	620	
t _{HD-STA}	602	
t _{SU-DAT}	1270	ne
t _{HD-DAT}	1	ns
t _{su-sто}	620	
t _{HD-STO}	4745	

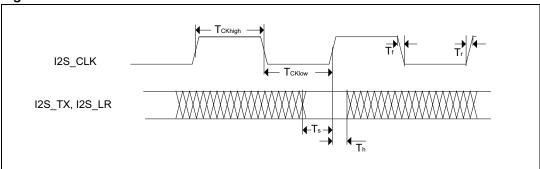
Table 68. I²C timing requirements in standard-speed mode

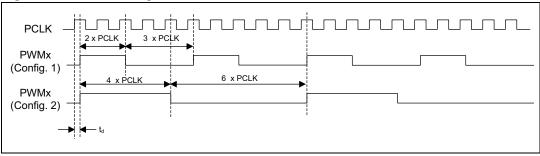
Parameter	Min	Unit
t _{SU-STA}	4718	
t _{HD-STA}	3992	
t _{SU-DAT}	4660	ns
t _{HD-DAT}	1	115
t _{su-sto}	4010	
t _{HD-} sto	4745	

57

5.12 I2S timing characteristics

Figure 27. I2S waveform




Table 69. I2S timing requirements

Symbol	Description	Min	Max	Unit
t _{CK}	I2S_CLK clock period	40		
t _D	I2S_CLK to I2S_TX output delay	3.8	9	nc
t _S	Setup time requirement for I2S_CLK	6		ns
t _H	Hold time requirement for I2S_CLK	1		

5.13 PWM timing characteristics

This section describes the timing characteristics of the four PWM generators. *Figure 28* shows two PWM waveforms in two example configurations programmed using the PWM registers.

Figure 28. PWM timing waveforms

Config. 1: Prescalerx = 0, Duty_reg_x = 2, Period_Reg_x = 4.

Config. 2: Prescalerx = 1, Duty_reg_x = 2, Period_Reg_x = 4.

Calculations (in PLCK periods):

PWMxDuty = (Prescalerx +1) * Duty_reg_x

PWMx Period = (Prescalerx +1) * (Period_Reg_x = 1

Table 70. PWM timing characterisitics

Symbol	Parameter	PWM Channel	External pin	Min	Max	Unit
			PL_GPIO_9	4.1	14.3	
			PL_GPIO_15	3.9	13.7	
			PL_GPIO_31	4.3	15.1	
		PWM1	PL_GPIO_38	4.2	14.6	
			PL_GPIO_43	4.0	14.3	
			PL_GPIO_60	4.0	13.8	
			PL_GPIO_89	3.4	10.4	
			PL_GPIO_8	4.3	15.2	
			PL_GPIO_14	4.0	14.3	
	PWM path delay from PWM		PL_GPIO_30	4.3	15.0	
		PWM2	PL_GPIO_37	4.2	15.0	ns
			PL_GPIO_42	4.2	14.5	
			PL_GPIO_59	4.2	13.8	
t _d	internal output to output on		PL_GPIO_88	3.3	11.0	
	external pin		PL_GPIO_7	4.4	15.1	
			PL_GPIO_13	4.5	15.8	
			PL_GPIO_29	4.3	15.3	
		PWM3	PL_GPIO_34	4.5	15.8	
			PL_GPIO_41	3.9	13.8	
			PL_GPIO_58	4.1	14.2	
			PL_GPIO_87	3.4	11.5	
			PL_GPIO_6	4.2	14.7	
			PL_GPIO_12	4.0	13.9	
		PWM4	PL_GPIO_28	4.5	15.3	
		r vvivi4	PL_GPIO_40	4.3	15.1	
			PL_GPIO_57	4.4	15.3	
			PL_GPIO_86	3.5	11.9	

5.14 SD timing characteristics

Figure 29. SD timing waveform

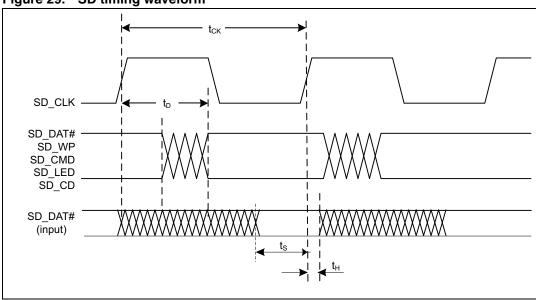


Table 71. SD timing requirements (high-speed mode, 48 MHz)

Symbol	Description	Min	Max	Unit
t _{CK}	SD_CLK clock period	20.8	-	
t _D	SD_CLK to SD output delay	-1.60	10	ne
t _S	Setup time requirement for SD inputs	7.35		ns
t _H	Hold time requirement for SD inputs	0.19		

Table 72. SD timing requirements (full-speed mode, 24 MHz)

Symbol	Description	Min	Max	Unit
t _{CK}	SD_CLK clock period	41.6	-	
t _{ck-half}	SD_CLK half period	20.8		
t _D	SD_CLK to SD output delay	-0.40	10	ns
t _S	Setup time requirement for SD inputs	7.35		
t _H	Hold time requirement for SD inputs	0.19		

Note:

In full-speed mode, the frequency is 24 MHZ (41.6 ns). The data is launched at the falling edge of the 24 MHZ clock and captured on the clock's rising edge (the effective available time is always 20.8 ns)

5.15 SMI timing characteristics

Figure 30. SMI input/output waveform

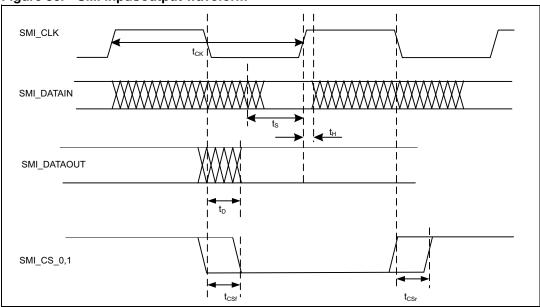
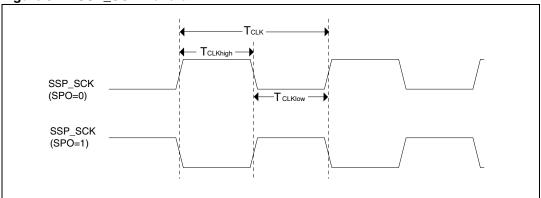


Table 73. SMI timing requirements


- auto ros - om anning roquinomonio						
Symbol	Description	Min	Max	Unit		
t _{CK}	SMI clock period	20	50			
t _D	SMI_CLK to SMI_DATAOUT output delay	-2.96	3.05			
t _S	Setup requirement for SMI_DATAIN	8.05				
t _H	Hold requirement for SMI_DATAIN	-2.53		ns		
t _{CSf}	Minimum and maximum delay of falling edge of SMI_CS_0 , 1 with regard to SMI_CLK	-3.0	2.9			
t _{CSr}	Minimum and maximum delay of rising edge of SMI_CS_0 , 1 with regard to SMI_CLK	-2.8	2.8			

5.16 SSP timing characteristics

This section describes the timing characteristics of the synchronous serial port.

Note: Note: The characterization of the SSP has been done using the SPI protocol.

Figure 31. SSP_SCK waveform

The clock polarity parameter (SPO) indicates the state of the clock signal when it is idle. This can be programmed in the SSPCR0 register.

SPO= 0 The clock idle state is low.

SPO= 1 The clock idle state is high.

5.16.1 SPI master mode timings

SSP_SCK is the SPI output clock.

T_{PCLK} is the clock period of the PCLK internal clock.

Figure 32. SPI master mode external timing waveform (SPH= 0, SPO =0)

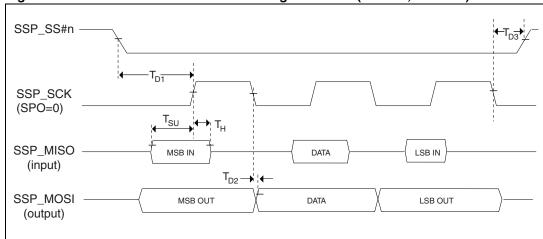


Table 74. SPI master mode timing characteristics (SPH = 0, SPO=0)

Symbol	Parameters		Min	Max	Unit	
		SSP0	7.8			
T _{SU}	Setup time, MISO (input) valid before SSP_SCK (output) rising edge	SSP1	16			
	(capa, mang cage	SSP2	15.55		no	
			-2.7		ns	
T _H	Hold time, MISO (input) valid after SSP_SCK (output) rising edge	SSP1	-4			
	(catpat) hoing eage		-4.6			
		SSP0	T _{SSP_SCK} -10	T _{SSP_SCK} -3		
T _{D1}	Delay time, SSP_SS#n (output) falling edge to first SSP_SCK (output) rising edge	SSP1	T _{SSP_SCK} -6.4	T _{SSP_SCK} -0.9	ns	
		SSP2	T _{SSP_SCK} -5.87	T _{SSP_SCK} -0.03		
		SSP0	2.7	9.5		
T _{D2}	Delay time, SSP_SCK (output) falling edge to MOSI (output) transition	SSP1	0.57	5.34		
		SSP2	0.2	5.53	ns	
		SSP0	(T _{SSP_SCK} /2)+ 3	(T _{SSP_SCK} /2) +8	115	
T _{D3}	Delay time, SSP_SCK (output) falling edge to SSP_SS#n (output) rising edge	SSP1	(T _{SSP_SCK} /2)+ 0.9	(T _{SSP_SCK} /2) +6.4		
	Cor _com (output) hairig eage		(T _{SSP_SCK} /2)-0.03	(T _{SSP_SCK} /2) +5.87		

Timing requirements SPEAr320S

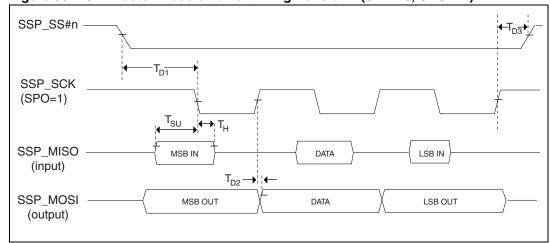


Figure 33. SPI master mode external timing waveform (SPH= 0, SPO =1)

Table 75. SPI master mode timing characteristics (SPH = 0, SPO=1)

Symbol	Parameters		Min	Max	Unit	
	Setup time, MISO (input) valid before SSP_SCK (output) falling edge	SSP0	7.8			
T _{SU}		SSP1	16			
	(carpay caming cage	SSP2	15.55		no	
			-2.7		ns	
1 1	T _H Hold time, MISO (input) valid after SSP_SCK (output) falling edge	SSP1	-4			
		SSP2	-4.6			
		SSP0	T _{SSP_SCK} -10	T _{SSP_SCK} -3		
T _{D1}	Delay time, SSP_SS#n (output) falling edge to first SSP_SCK (output) falling edge	SSP1	T _{SSP_SCK} -6.4	T _{SSP_SCK} -0.9	ns	
		SSP2	T _{SSP_SCK} -5.87	T _{SSP_SCK} -0.03		
		SSP0	2.7	9.5		
T _{D2}	Delay time, SSP_SCK (output) rising edge to MOSI (output) transition	SSP1	0.57	5.34		
		SSP2	0.2	5.53	ns	
		SSP0	(T _{SSP_SCK} /2)+ 3	(T _{SSP_SCK} /2) +8	113	
T _{D3}	Delay time, SSP_SCK (output) rising edge to SSP_SS#n (output) rising edge	SSP1	(T _{SSP_SCK} /2)+ 0.9	(T _{SSP_SCK} /2) +6.4		
	Con _com (output) haing eage		(T _{SSP_SCK} /2)-0.03	(T _{SSP_SCK} /2) +5.87		

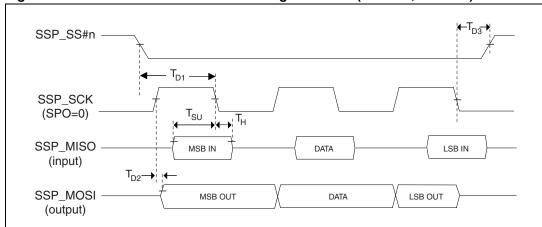


Figure 34. SPI master mode external timing waveform (SPH = 1, SPO = 0)

Table 76. SPI master mode timing characteristics (SPH = 1, SPO=0)

Symbol	Parameters		Min	Max	Unit	
	Setup time, MISO (input) valid before SSP_SCK (output) falling edge	SSP0	7.8			
T _{SU}		SSP1	16			
	(caspas) saming ougo	SSP2	15.55		no	
			-2.7		ns	
T _H	Hold time, MISO (input) valid after SSP_SCK (output) falling edge	SSP1	-4			
	(output) running ougo	SSP2	-4.6			
	T _{D1} Delay time, SSP_SS#n (output) falling edge to first SSP_SCK (output) falling edge	SSP0	(T _{SSP_SCK} /2)-10	(T _{SSP_SCK} /2)-3		
T _{D1}		SSP1	(T _{SSP_SCK} /2)-6.4	(T _{SSP_SCK} /2)-0.9	ns	
		SSP2	(T _{SSP_SCK} /2)-5.87	(T _{SSP_SCK} /2)-0.03		
		SSP0	2.7	9.5		
T _{D2}	Delay time, SSP_SCK (output) rising edge to MOSI (output) transition	SSP1	0.57	5.34		
		SSP2	0.2	5.53	ns	
		SSP0	T _{SSP_SCK} + 3	(T _{SSP_SCK} +10	113	
T _{D3}	Delay time, SSP_SCK (output) rising edge to SSP_SS#n (output) rising edge	SSP1	T _{SSP_SCK} + 0.9	(T _{SSP_SCK} +6.4		
	Con _com (capaly noing dage		T _{SSP_SCK} -0.03	T _{SSP_SCK} +5.87		

Timing requirements SPEAr320S

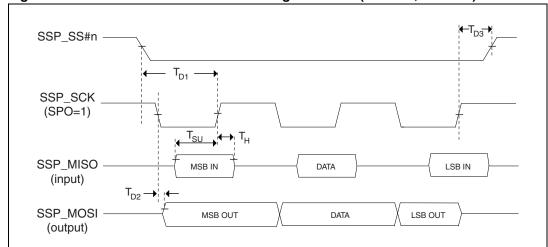
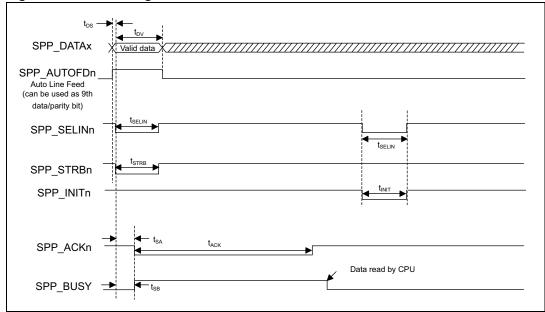


Figure 35. SPI master mode external timing waveform (SPH = 1, SPO = 1)

Table 77. SPI master mode timing characteristics (SPH = 1, SPO=1)

Symbol	Parameters		Min	Max	Unit	
		SSP0	7.8			
T _{SU}	Setup time, MISO (input) valid before SSP_SCK (output) rising edge	SSP1	16			
	(Carpary Harris	SSP2	15.55		no	
			-2.7		ns	
T _H	T _H Hold time, MISO (input) valid after SSP_SCK (output) rising edge	SSP1	-4			
		SSP2	-4.6			
		SSP0	(T _{SSP_SCK} /2)-10	(T _{SSP_SCK} /2)-3		
T _{D1}	Delay time, SSP_SS#n (output) falling edge to first SSP_SCK (output) rising edge	SSP1	(T _{SSP_SCK} /2)-6.4	(T _{SSP_SCK} /2)-0.9	ns	
		SSP2	(T _{SSP_SCK} /2)-5.87	(T _{SSP_SCK} /2)-0.03		
		SSP0	2.7	9.5		
T _{D2}	Delay time, SSP_SCK (output) falling edge to MOSI (output) transition	SSP1	0.57	5.34		
		SSP2	0.2	5.53	ns	
		SSP0	T _{SSP_SCK} + 3	(T _{SSP_SCK} +10	113	
	Delay time, SSP_SCK (output) rising edge to SSP_SS#n (output) rising edge	SSP1	T _{SSP_SCK} + 0.9	(T _{SSP_SCK} +6.4		
	Con _com (capaty noing dage		T _{SSP_SCK} -0.03	T _{SSP_SCK} +5.87		

5.16.2 SPI slave mode timings


Table 78. SSP timing characteristics (slave mode)

Symbol	Parameters	Min	Max	Unit
T _{SSP_CLK}	SSP_CLK_IN input clock period	T _{PCLK} *12	254*256*T _{PCLK}	
T _{SSP_CLKHigh}	SSP_SCK high pulse	T _{SSP_CLK} /2		
T _{SSP_CLKLow}	SSP_SCK low pulse	T _{SSP_CLK} /2		ns
T _{SU}	Data input setup time	4*T _{PCLK}		115
T _H	Data input hold time	0		
T _D	Data output delay	3*T _{PCLK}	4*T _{PCLK}	

5.17 SPP timing characteristics

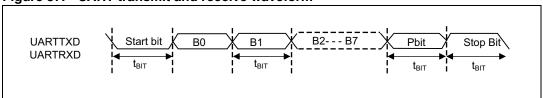

This section describes the timing characteristics of the standard parallel port (SPP).

Figure 36. SPP timing waveform

5.18 UART timing characteristics

Figure 37. UART transmit and receive waveform

4

Doc ID 022508 Rev 2

103/113

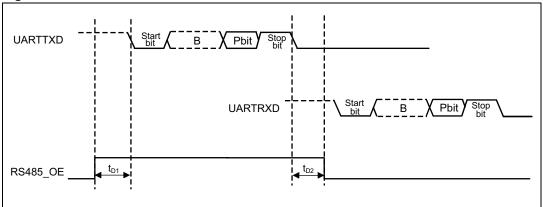
Table 79.	UART transmit timing characteristics	

Symbol	Parameters	Min	Max	Unit	
f	UART1 UART6 baud rate		6 ⁽¹⁾	Mbps	
^I baudrate	UART0 baud rate		3	ivibps	
t _{BIT}	UART duration of transmit data bit (B0B7), Parity bit (Pbit), Start bit, Stop bits ⁽²⁾	1/f _{baudrate} - t _{UARTCLK} -1	1/f _{baudrate} + t _{UARTCLK} +1	ns	

Maximum baudrate = 6 Mbps provided that UARTCLK is within a frequency range greater than 96 MHz and less than 5/3 PCLK.

Table 80. UART receive timing characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
	Baudrate = 6 Mbps	1/f _{baudrate} - (t _{UARTCLK} /2)	1/f _{baudrate} + (t _{UARTCLK} /2)	ns	
			1/f _{baudrate} -1/ (16*f _{baudrate})	1/f _{baudrate} + (16*f _{baudrate})	ns


The time margin is with respect to a single bit accumulation and not with respect to the whole UART frame.
 The start bit is sampled after the 8th baud cycle after a low is detected at input, Subsequently, each bit is sampled at consecutive 16 baud cycles.

The above min. and max. values allow a deviation of ± 1 baud cycle in a single bit time. The accumulated deviation of a UART character frame must not exceed $3/(16*f_{baudrate})$.

For information related to baud rate generation refer to:

- Section 2.12: Asynchronous serial ports (UART)
- RM0321, Reference manual, SPEAr320S address map and registers

Figure 38. RS485_OE transmit and receive waveform

^{2.} $t_{UARTCLK} = 1/f_{UARTCLK}$ with $f_{UARTCLK}$ in MHz

Table 81. RS485_OE transmit and receive timing characteristics

Symbol	Parameters	Min	Max	Unit
t _{D1}	Delay from OE enable till UART first bit transmission	500		ns
t _{D2}	Delay from UART last bit transmission till OE enable	900		ns

Note: 1 The time value depends upon the CPU frequency to write and read registers.

2 It also depends on the UART clock frequency used to set its flag register bit to indicate the end of transmission.

For example:

For t_{D2} , the above values are with respect to 83 MHz PCLK and UARTCLK 83 MHz.

Package information SPEAr320S

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 82. LFBGA289 (15 x 15 x 1.7 mm) mechanical data

Dim.		mm			inches	
	Min.	Туре	Max.	Min.	Туре	Max.
Α			1.700			0.0669
A1	0.270			0.0106		
A2		0.985			0.0387	
A3		0.200			0.0078	
A4			0.800			0.0315
b	0.450	0.500	0.550	0.0177	0.0197	0.0217
D	14.850	15.000	15.150	0.5846	0.5906	0.5965
D1		12.800			0.5039	
Е	14.850	15.000	15.150	0.5846	0.5906	0.5965
E1		12.800			0.5039	
е		0.800			0.0315	
F		1.100			0.0433	
ddd			0.200			0.0078
eee			0.150			0.0059
fff			0.080			0.0031

SPEAr320S Package information

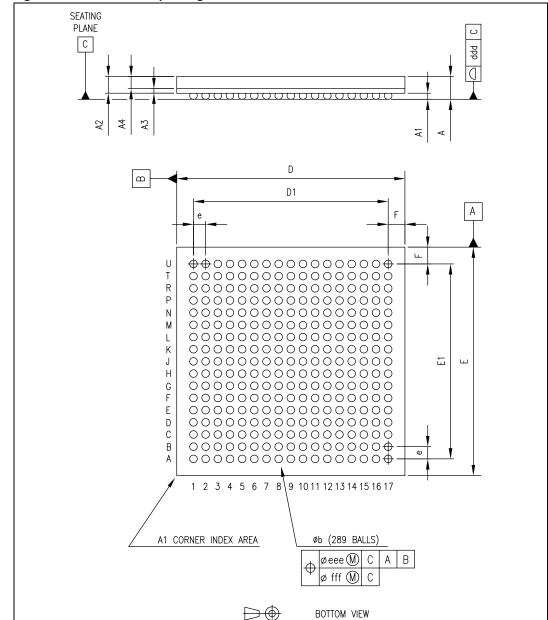


Figure 39. LFBGA289 package dimensions

Table 83. LFBGA289 package thermal characteristics

Symbol	Parameter	Value	Unit
$\Theta_{JA}^{(1)}$	Thermal resistance junction-to-ambient	30	
Θ_{JB}	Thermal resistance junction-to-board	21	°C/W
$\Theta_{\sf JC}$	Thermal resistance junction-to-case	13.5	C/VV
Ψ_{JC}	Junction-to-case thermal characterisation parameter	0.48	

^{1.} Measured on JESD51 2s2p test board.

577

Doc ID 022508 Rev 2

107/113

Acronyms SPEAr320S

Appendix A Acronyms

Table 84. List of acronyms

Acronym	Definition		
ADC	Analog-to-digital converter		
AES	Advanced encryption standard		
AHB	AMBA high speed bus		
AMBA	Advanced microcontroller bus architecture		
APB	Advanced peripheral bus		
BIST	Built-In self test		
CAN	Controller area network		
CBC	Cipher block chaining		
CMOS	Complimentary metal-oxide semiconductor		
CPU	Central processing unit		
CRC	Cyclic redundancy check		
DDR	Double data rate		
DES	Data encryption standard		
DLL	Delay locked loop (when applied to DDR memories)		
DMA	Direct memory access		
EMI	External memory interface		
ETM	Embedded trace macrocell		
FIFO	First-in-first-out		
FIQ	Fast interrupt request		
FPGA	Field programmable gate array		
FSMC	Flexible static memory controller		
GB	Giga bytes		
GPIO	General purpose input / output		
HLOS	High-level operating system		
НМІ	Human machine interface		
HW	Hardware		
IrDA	Infrared data association		
IRQ	Interrupt request		
JPEG	Joint photographic experts group		
JTAG	Joint test action group		
КВ	Kilo bytes		
LCD	Liquid color display		

SPEAr320S Acronyms

Table 84. List of acronyms (continued)

Acronym	Definition		
LSB	Least significant bit		
MAC	Media access control		
МВ	Mega bytes		
MCU	Microcontroller unit		
MD5	Message digest 5		
MII	Media independent interface		
MMU	Memory management unit		
MSB	Most significant bit		
PHY	Physical (device, transceiver, layer)		
PLL	Phase locked loop		
PWM	Pulse width modulation		
RAM	Random access memory		
RAS	Reconfigurable array subsystem		
RF	Radio frequency		
RFU	Reserved for future use		
RISC	Reduced instruction set computing		
RMII	Reduced media independent interface		
ROM	Read only memory		
RTC	Real-time clock		
RTOS	Real-time operating system		
RX	Receive		
SHA-1	Secure hash algorithm		
SMI	Serial memory interface		
SoC	System-on-chip		
SPI	Serial peripheral interface		
SPP	Standard parallel port		
SRAM	Static RAM		
SSP	Synchronous serial port		
SW	Software		
TCM	Tightly coupled memory		
TFT	Thin film transistor, a display technology		
TX	Transmit		
UART	Universal asynchronous receiver transmitter		
USB	Universal serial bus		

Doc ID 022508 Rev 2

109/113

Acronyms SPEAr320S

Table 84. List of acronyms (continued)

Acronym	Definition	
VIC	Vectored interrupt controller	
WDT	Watchdog timer	

SPEAr320S Revision history

Revision history

Table 85. Document revision history

Date	Revision	Changes
5-Apr-2012	1	Initial release.
		Figure 1: SPEAr320S architectural block diagram: Replaced "4 KB SRAM" by "8 KB SRAM".
		Section 2.2: Internal memories (BootROM/SRAM): Added "Boot from UARTO" and "Boot from Ethernet MIIO" to the list of bootstrap modes.
		Section 2.25: System controller (SYSCTR): Replaced "a low-speed oscillator" by "a crystal oscillator (24 MHz) or a low-frequency oscillator (32 KHz)" in Doze mode description.
		Table 32: Ball sharing during debug: modified the configuration for pins TEST_2, TEST_3 and TEST_4.
		Section 3.4.2: Extended mode: RMII automation networking mode revised descriptions of each mode.
		Section 3.4.5: Boot pins added description of H[7:0] pins Ethernet MIIO boot and bypass mode.
		Updated Figure 3: Hierarchical multiplexing scheme
		Added note on I/O direction below <i>Table 13: PL_GPIO / PL_CLK</i> pins description
		Chaged order of columns and added reset states to <i>Table 15:</i> PL_GPIO/PL_CLK multiplexing scheme and reset states
27-Sep-2012	2	Added Section 3.5: PL_GPIO and PL_CLK pin sharing for debug and
		test modes
		Table 8: Debug pins description:
		 Replaced "Test configuration ports" by "Debug mode configuration ports"
		 Deleted "For functional mode, they have to be set to zero" for pins TEST_0 to TEST_4.
		 Added a cross-reference.
		- Added bypass mode to Table 14: Boot pins description
		Section 4.6: Clocking parameters:
		 Added Table 40: MCLK oscillator characteristics and new Section : MCLK generated from a crystal oscillator.
		Added Table 42: RTC oscillator characteristics and new Section : RTC clock generated from an external clock source. Section 4.11: Reset release:
		 Updated the introduction.
		- Renamed and updated Figure 7: Cold reset release.
		- Added new Figure 8: Warm reset release.
		Table 50: Reset timing characteristics: added new row for warm reset.

Revision history SPEAr320S

Table 85. Document revision history (continued)

Date	Revision	Changes
27-Sep-2012	2 (cont'd)	Added Section 5.3: CAN timing characteristics Updated Section 5.5: DDR2/LPDDR timing characteristics Section 5.7.3: MDC/MDIO timing characteristics, corrected td min Updated Table 62: RMII TX timing requirements Section 5.11: I2C timing characteristics added note and diagram of RC circuit. Added Section 5.13: PWM timing characteristics Added Section 5.18: UART timing characteristics Table 83: LFBGA289 package thermal characteristics: - Modified Θ _{JA,} Θ _{JB,} Θ _{JC} values Added Ψ _{JC} value.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022508 Rev 2

113/113