
M54HC595

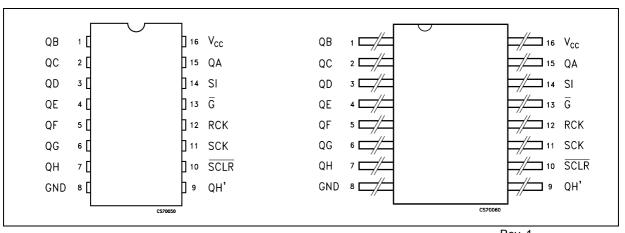
RAD-HARD 8 BIT SHIFT REGISTER WITH OUTPUT LATCHES (3 STATE)

- HIGH SPEED: f_{MAX} = 59MHz (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 6mA (MIN.) FOR QA to QH |I_{OH}| = I_{OL} = 4mA (MIN.) FOR QH'
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 54 SERIES 595
- SPACE GRADE-1: ESA SCC QUALIFIED
- 50 krad QUALIFIED, 100 krad AVAILABLE ON REQUEST
- NO SEL UNDER HIGH LET HEAVY IONS IRRADIATION
- DEVICE FULLY COMPLIANT WITH SCC-9306-051

DESCRIPTION

The M54HC595 is an high speed CMOS 8-BIT SHIFT REGISTERS/OUTPUT LATCHES (3-STATE) fabricated with silicon gate C²MOS technology.

ORDER CODES


PACKAGE	FM	EM
DILC	M54HC595D	M54HC595D1
FPC	M54HC595K	M54HC595K1

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has 8 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register.

The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION

June 2004 Rev. 1 1/15

Figure 1: IEC Logic Symbols

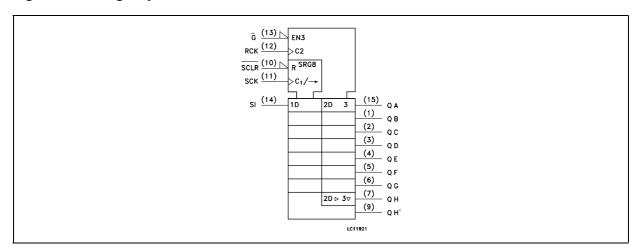
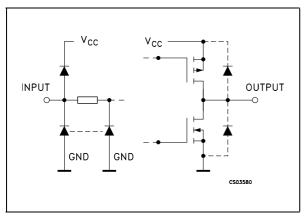



Figure 2: Input And Output Equivalent Circuit

Table 1: Pin Description

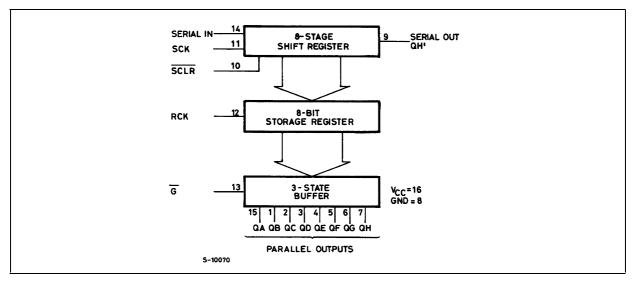

PIN N°	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 5, 6, 7, 15	QA to QH	Data Outputs
9	QH'	Serial Data Outputs
10	SCLR	Shift Register Clear Input
11	SCK	Shift Register Clock Input
13	G	Output Enable Input
14	SI	Serial Data Input
12	RCK	Storage Register Clock Input
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

Table 2: Truth Table

		INPUTS			OUTDUTS
SI	SCK	SCLR	RCK	G	OUTPUTS
Х	Х	Х	Χ	Н	QA THRU QH OUTPUTS DISABLE
Х	Х	Х	Х	L	QA THRU QH OUTPUTS ENABLE
Х	Х	L	Х	Х	SHIFT REGISTER IS CLEARED
L		н	Х	Х	FIRST STAGE OF S.R. BECOMES "L" OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
Н	工	Н	Х	Х	FIRST STAGE OF S.R. BECOMES "H" OTHER STAGES STORE THE DATA OF PREVIOUS STAGE, RESPECTIVELY
Х	L	Н	Х	Х	STATE OF S.R. IS NOT CHANGED
Х	Х	Х		Х	S.R. DATA IS STORED INTO STORAGE REGISTER
Х	Х	X		Х	STORAGE REGISTER STATE IS NOT CHANGED

X: Don't Care

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Figure 4: Logic Diagram

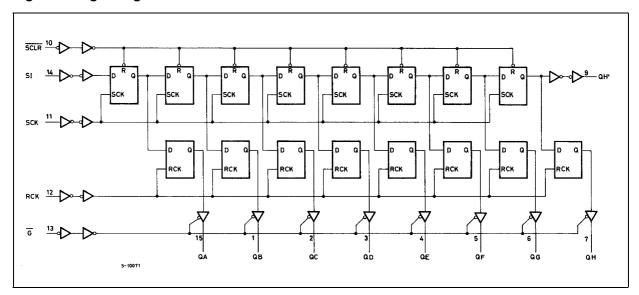
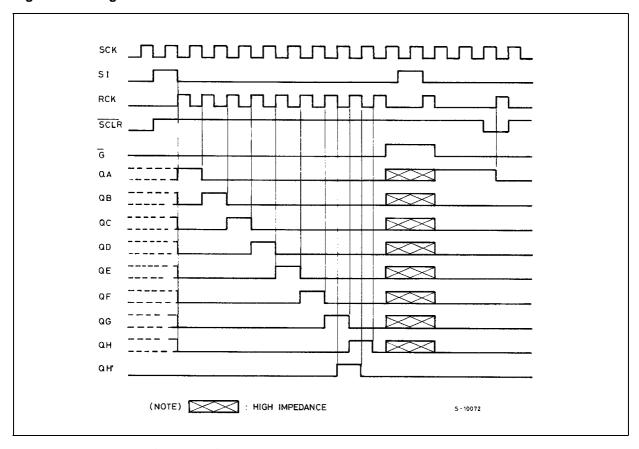



Table 5: This logic diagram has not be used to estimate propagation delays

Figure 6: Timing Chart

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 35	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P _D	Power Dissipation	420	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T _L	Lead Temperature (10 sec)	265	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 4: Recommended Operating Conditions

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		$V_{CC} = 6.0V$	0 to 400	ns

Table 5: DC Specifications

		1	Test Condition				Value				
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
V _{OH}	High Level Output Voltage	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	(for QH' outputs)	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
	(6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V _{OH}	High Level Output	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
	Voltage (for QA to QH	4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
	outputs)	6.0	I _O =-20 μA	5.9	6.0		5.9		5.9		V
	, ,	4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage (for QH' outputs)	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
	(lor Qri outputs)	6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40	
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage (for QA to QH	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
	outputs)	6.0	I _O =20 μA		0.0	0.1		0.1		0.1	V
		4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40	
I _I	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ

		Т	est Condition				Value				
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μΑ

Table 6: AC Electrical Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		7	Test Co	ondition				Value				
Symbol	Parameter	v _{cc}	CL		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90	
	Time (Qn)	4.5	50			7	12		15		18	ns
		6.0				6	10		13		15	
t _{TLH} t _{THL}	Output Transition	2.0				30	75		95		115	
	Time	4.5	50			8	15		19		23	ns
	(QH')	6.0				7	13		16		20	
t _{PLH} t _{PHL}	Propagation Delay	2.0				45	125		155		190	
	Time	4.5	50			15	25		31		38	ns
	(SCK - QH')	6.0				13	21		26		32	
t _{PLH} t _{PHL}	Propagation Delay	2.0				60	175		220		265	
	Time OUI)	4.5	50			18	35		44		53	ns
	(SCLR - QH')	6.0				15	30		37		45	
t _{PLH} t _{PHL}	Propagation Delay	2.0				60	150		190		225	
	Time	4.5	50			20	30		38		45	ns
	(RCK - Qn)	6.0				17	26		32		38	
		2.0				75	190		240		285	
		4.5	150			25	38		48		57	ns
		6.0				22	32		41		48	
t _{PZL} t _{PZH}	High Impedance	2.0				45	135		170		205	
	Output Enable	4.5	50	$R_L = 1 K\Omega$		15	27		34		41	ns
	Time	6.0				13	23		29		35	
		2.0				60	175		220		265	
		4.5	150	$R_L = 1 K\Omega$		20	35		44		53	ns
		6.0				17	30		37		45	
t _{PLZ} t _{PHZ}	High Impedance	2.0				30	150		190		225	
	Output Disable	4.5	50	$R_L = 1 K\Omega$		15	30		38		45	ns
	Time	6.0				14	26		32		38	
f _{MAX}	Maximum Clock	2.0			6.0	17		4.8		4		
	Frequency	4.5	50		30	50		24		20		MHz
		6.0			35	59		28		24		
		2.0			5.2	14	İ	4.2		3.4		
		4.5	150		26	40		21		17		MHz
		6.0	1		31	45	İ	25		20		
t _{W(H)}	Minimum Pulse	2.0				17	75		95		110	
	Width	4.5	50			6	15		19		22	ns
	(SCK, RCK)	6.0	1			6	13		16		19	

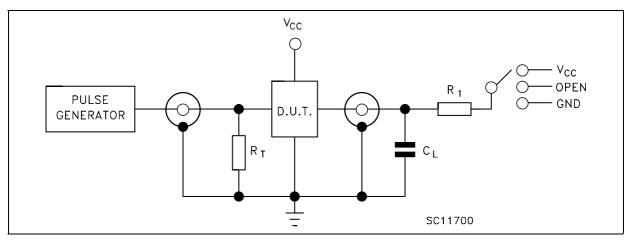

		1	Test Co	ondition				Value				
Symbol	Parameter	v _{cc}	CL		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{W(L)}	Minimum Pulse	2.0				20	75		95		110	
	Width_	4.5	50			6	15		19		22	ns
	(SCLR)	6.0				6	13		16		19	
t _s	Minimum Set-up	2.0				25	50		65		75	
	Time	4.5	50			5	10		13		15	ns
	(SI - CCK)	6.0				4	9		11		13	
t _s	Minimum Set-up	2.0				35	75		95		110	
	Time	4.5	50			8	15		19		22	ns
	(SCK - RCK)	6.0				6	13		16		19	
t _s	Minimum Set-up	2.0				40	100		125		145	
	Time	4.5	50			10	20		25		29	ns
	(SCRL - RCK)	6.0				7	17		21		25	
t _h	Minimum Hold	2.0					0		0		0	
	Time	4.5	50				0		0		0	ns
		6.0					0		0		0	
t _{REM}	Minimum Clear	2.0				15	50		65		75	
	Removal Time	4.5	50			3	10		13		15	ns
		6.0				3	9		11		13	

Table 7: Capacitive Characteristics

		1	est Co	ondition				Value				
Symbol	Parameter	v _{cc}			Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance					5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)					184						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}$

Figure 7: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 $C_L=50pF/150pF$ or equivalent (includes jig and probe capacitance) $R_1=1K\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

Figure 8: Waveform - SCK To QH' Propagation Delay Times, SCK Minimum Pulse Width (f=1MHz; 50% duty cycle)

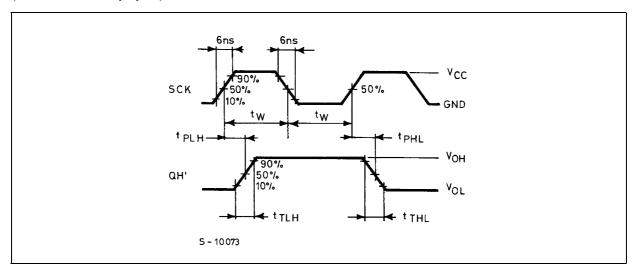


Figure 9: Waveform - RCK To Qn Propagation Delay Times (f=1MHz; 50% duty cycle)

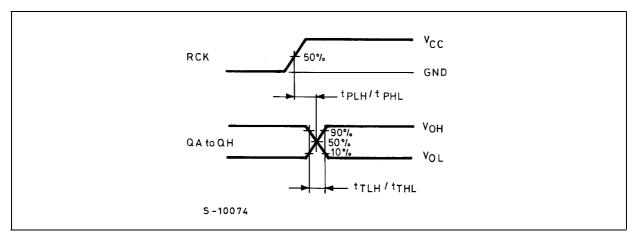


Figure 10: Waveform - SI To SCK Setup And Hold Times (f=1MHz; 50% duty cycle)

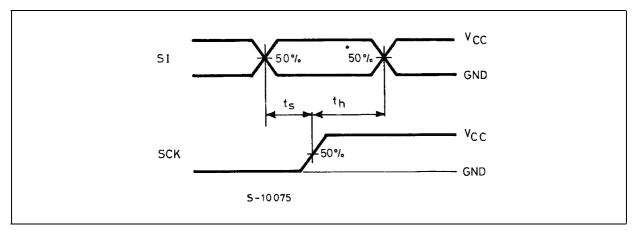


Figure 11: Waveform - SCK To RCK Setup And Hold Times (f=1MHz; 50% duty cycle)

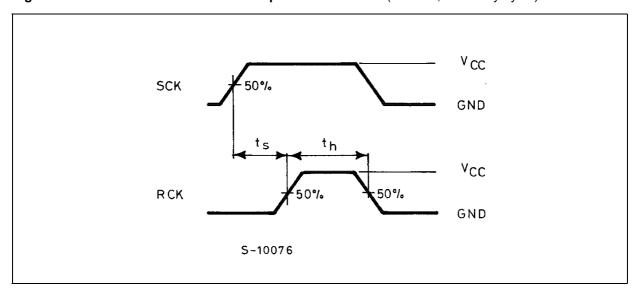


Figure 12: Waveform - SCLR Minimum Pulse Width, Minimum Removal Time (f=1MHz; 50% duty cycle)

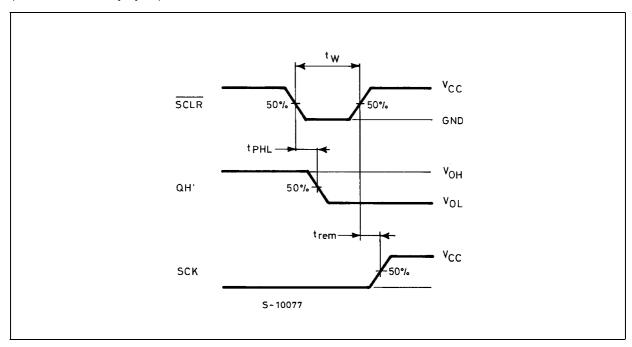
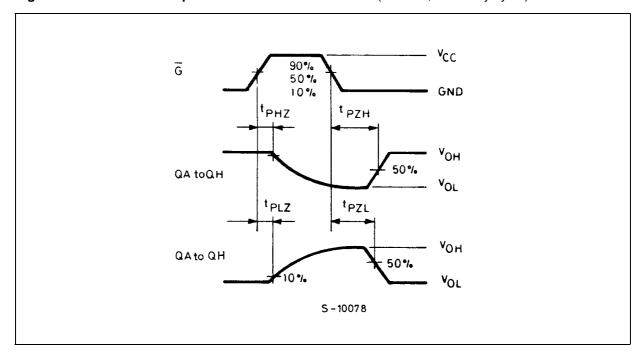



Figure 13: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)

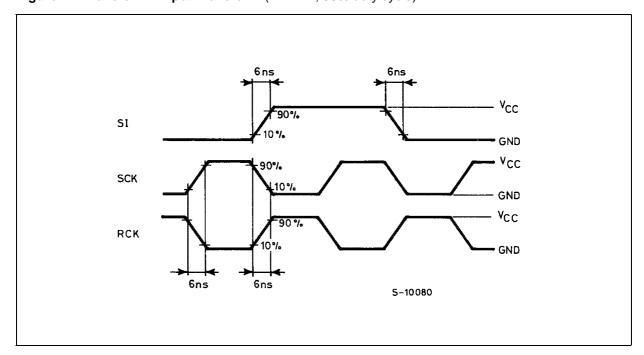
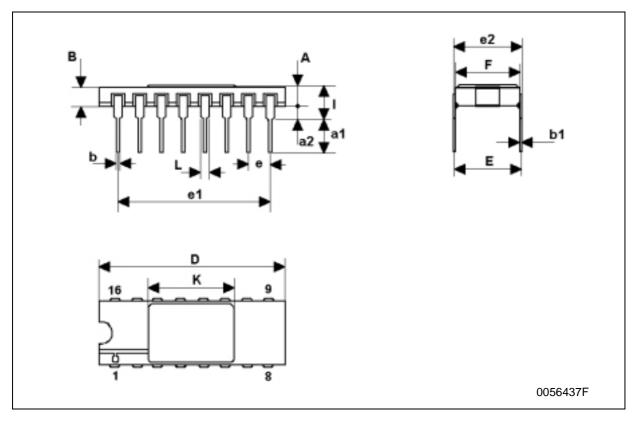
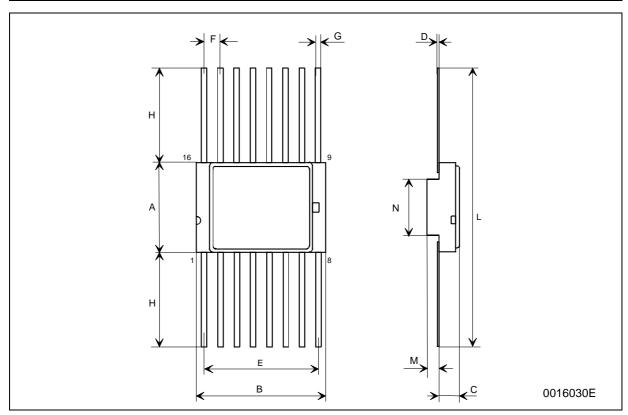



Figure 14: Waveform - Input Waveform (f=1MHz; 50% duty cycle)


DILC-16 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	2.1		2.71	0.083		0.107
a1	3.00		3.70	0.118		0.146
a2	0.63	0.88	1.14	0.025	0.035	0.045
В	1.82		2.39	0.072		0.094
b	0.40	0.45	0.50	0.016	0.018	0.020
b1	0.20	0.254	0.30	0.008	0.010	0.012
D	20.06	20.32	20.58	0.790	0.800	0.810
Е	7.36	7.62	7.87	0.290	0.300	0.310
е		2.54			0.100	
e1	17.65	17.78	17.90	0.695	0.700	0.705
e2	7.62	7.87	8.12	0.300	0.310	0.320
F	7.29	7.49	7.70	0.287	0.295	0.303
I			3.83			0.151
K	10.90		12.1	0.429		0.476
L	1.14		1.5	0.045		0.059

FPC-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	6.75	6.91	7.06	0.266	0.272	0.278
В	9.76	9.94	10.14	0.384	0.392	0.399
С	1.49		1.95	0.059		0.077
D	0.102	0.127	0.152	0.004	0.005	0.006
E	8.76	8.89	9.01	0.345	0.350	0.355
F		1.27			0.050	
G	0.38	0.43	0.48	0.015	0.017	0.019
Н	6.0			0.237		
L	18.75		22.0	0.738		0.867
М	0.33	0.38	0.43	0.013	0.015	0.017
N		4.31			0.170	

M54HC595

Table 8: Revision History

Date	Revision	Description of Changes
01-Jun-2004	1	First Release

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com