

ToolStick-F800DC

Rev. 0.1 9

6.4. Viewing and Modifying Registers
All registers on the device can be viewed and modified when the device is in a halted state. The registers are
grouped together according to which peripheral or part of hardware they belong. As an example, this guide shows
how to open the ADC0 Debug Window and disable the ADC0 directly from the IDE.

1. Open the ADC0 Debug Window from the View Debug Windows SFR’s ADC0 menu option. The
ADC0 Debug Window appears on the right-hand side of the IDE. In this window, the ADC0CN register is shown.
This register is used to enable and configure the on-chip ADC. When the firmware is running, the ADC0CN
register reads as 0x80 indicating that the ADC is running.

2. In the debug window, change the value of ADC0CN from 0x80 to 0x00. This value turns off the ADC on the
target microcontroller.

3. To write this new value to the device, select Refresh from the Debug Menu or click the Refresh button in the
toolbar.

4. Click “Go” to resume running the device with the new ADC0CN value.

5. Turn the potentiometer on the daughter card and notice that it has no effect on the blinking rate of the LED.

6. Re-enable the ADC by writing 0x80 to the ADC0CN and clicking the Refresh button.

Changing the values of registers does not require recompiling the code and redownloading the firmware. At any
time, the device can be halted and the values of the registers can be changed. After selecting “Go”, the firmware
will continue execution using the new values. This capability greatly speeds up the debugging process. See the
data sheet for the C8051F80x-83x device family for the definitions and usage for all registers.

The debug windows for other sets of registers are found in the View Debug Windows SFR’s menu.

ToolStick-F800DC

10 Rev. 0.1

6.5. Enabling and Using Watch Windows
The Debug Windows in the View menu are used to view and modify hardware registers. To view and modify
variables in code, the IDE provides Watch Windows. Just as with register debug windows, variables in the watch
windows are updated each time the device is halted. This section of the User’s Guide explains how to add a
variable to the watch window and modify the variable. In the F800_FeatureDemo example code, the variable
Num_LED_Flashes is a counter that stores the number of times the LED blinks.

1. If the device is running, stop execution using the “Stop” button or use the Debug Stop menu option.

2. In the File View on the left-hand side of the IDE, double-click on F800DC_FeaturesDemo.c to open the source
file.

3. Scroll to the TIMER2_ISR function (line 368) and right-click on the variable “Num_LED_Flashes”. In the
context menu that appears, select the first option “Add Num_LED_Flashes to Watch as Default Type”. On the
right-hand portion of the IDE, the watch window appears and the variable is added. The current value of the
variable is shown to the right of the name.

4. Start and stop the device a few times. See that the value of the Num_LED_Flashes is incremented each time
the LED blinks.

5. When the device is halted, click on the value field in the watch window and change the value to 0. Then click the
Refresh button or select Debug Refresh to write the new value to the device.

6. Start and stop the device a few times to watch the variable increment starting at 0.

Changing the values of variables does not require recompiling the code and redownloading the firmware. At any
time, the device can be halted and the values of the variables can be changed. The firmware will continue
execution using the new values.

ToolStick-F800DC

Rev. 0.1 11

6.6. Setting and Running to Breakpoints
The Silicon Laboratories microcontroller devices support up to four hardware breakpoints. A breakpoint is
associated with a specific line of code. When the processor reaches a hardware breakpoint, the code execution
stops, and the IDE refreshes all debug and watch windows. The on-chip debug hardware allows for breakpoints to
be placed on any line of executable code, including code in Interrupt Service Routines. This section provides steps
to set a breakpoint on the line of source code that increments the Num_LED_Flashes variable.

1. If the device is running, stop execution using the “Stop” button or use the Debug Stop menu option.

2. Scroll to the TIMER2_ISR function (line 368) and right-click on the variable “Num_LED_Flashes”. In the
context menu that appears, select “Insert/Remove Breakpoint.” On the left side of the line in the editor
window, a red circle is added to indicate a breakpoint is placed on the source line.

3. Click the “Go” button or select the Debug Go menu option.

4. After a short time, the IDE will show that the device is halted. A blue line will be placed in the editor window to
indicate where the code execution has stopped.

5. Start and stop the processor a few more times. Notice that the LED blinks once for every time the processor is
started and the Num_LED_Flashes variable also increments by one.

ToolStick-F800DC

12 Rev. 0.1

6.7. Single-Stepping through Firmware
The IDE supports the ability to single-step through firmware one assembly instruction at a time. The IDE reads the
Flash from the device, converts the instructions to assembly and displays them in a disassembly window. The
following steps show how to open the disassembly window and single step through firmware.

1. If there is already not a breakpoint set on line of code that increments the Num_LED_Flashes variable, set the
breakpoint using the steps described in Section 6.6.

2. Start the processor using the “Go” button and wait till it stops on the breakpoint.

3. Select View Debug Windows Disassembly. The disassembly window will appear on the right-hand side
of the IDE, if it is not already open.

4. To execute one assembly instruction at a time, click the “Step” button on the toolbar or select the Debug
Step menu option. The highlighted line in the disassembly window indicates the next instruction to be executed.
The blue line marker in the editor window will stay on the same .C source line until all of the assembly
instructions are completed.

The disassembly window has three columns. The left column is the address of the instruction in Flash. The middle
column is the instruction in hex. The right column is the disassembled instruction. The Disassembly debug window
and the capability to single-step through firmware allows a developer to see exactly what instructions are executed
and their output.

ToolStick-F800DC

Rev. 0.1 13

6.8. Using ToolStick Terminal
This section describes how to use ToolStick Terminal to communicate with UART from the PC to the daughter card
through the ToolStick Base Adapter.

1. If the Silicon Laboratories IDE is open, close the IDE. The IDE and the ToolStick Terminal cannot communicate
with the daughter card simultaneously.

2. Open ToolStick Terminal from the Start Programs Silicon Laboratories menu.

3. Go to the ToolStick Settings menu.

4. Under “Pin Settings”, change GPIO0 / RTS to “GPIO Output - Push Pull” and click “OK.” The rest of the default
settings are correct for the C8051F800 Features Demo.

5. In the top, left-hand corner of the Terminal application, available devices are shown in the drop-down
Connection menu. Click “Connect” to connect to the device. In the “Receive Data” window, text indicating the
blink rate of the LED will appear.

6. Turn the potentiometer on the daughter card and see that the blink rate is updated on the daughter card and the
new blink rate is printed to the Terminal.

In addition to the standard two UART pins (TX and RX), there are two GPIO/UART handshaking pins on the
ToolStick Base Adapter that are connected to two port pins on the target microcontroller. ToolStick Terminal is used
to configure and read/write these pins. For the F800DC_FeaturesDemo, one of these GPIO pins is connected to
the GPIO pin P1.2 on the C8051F800. The following steps describe how to change the level of one of the GPIO
pins and have that change affect the program flow on the target microcontroller. The level change is recognized by
the firmware using the Port Match feature, and it switches modes and send a pulse-width modulated (PWM) signal
to the LED instead of blinking the LED using an on-chip Timer. When P1.2 is low, the state of the push button
switch (P1.4) is ignored by the firmware.

1. In ToolStick Terminal, under Pin State Configuration, select “Set GPIO0 Logic Low” and click on “Set Selected
Pin States.” This changes the level of the GPIO0 pin from Logic High to Logic Low and that is detected by the
firmware running on the microcontroller.

2. In the Receive window, see that the printed text has changed to indicate the LED PWM duty cycle.

3. Turn the potentiometer on the daughter card to change the brightness of the LED on the daughter card.

4. Change the GPIO0 pin state back to Logic High and notice that the firmware switches back to blinking the
LED.

The firmware on the C8051F800 target microcontroller does not need to be customized to use the UART and
communicate with ToolStick Terminal. The firmware on the microcontroller should write to the UART as it would in
any standard application and all of the translation is handled by the ToolStick Base Adapter.

ToolStick-F800DC

14 Rev. 0.1

7. Additional Demo Examples

7.1. Capacitive Sense Switch Example
In addition to the F800DC_FeaturesDemo example firmware, the ToolStick download package also includes a
demo project named F800DC_CapacitiveSense. The example source file F800DC_CapacitiveSense.c
demonstrates the configuration and usage of the capacitive sense switches labeled P1.5 and P1.6. Refer to the
source file for step-by-step instructions to build and test this example. The project and source files for these demos
can be found in the “C:\SiLabs\MCU\ToolStick\F800DC\Firmware\” directory by default.

7.2. QuickSenseTM Firmware API Example
The QuickSense Studio software install (available at www.silabs.com/quicksense) includes a QuickSense Firm-
ware API example for the ToolStick C8051F800 daughter card. This is installed in the “C:\SiLabs\MCU\Quick-
Sense_Studio\Kits\F800_ToolStickDC” directory by default. In addition to the source files, a pre-built Intel Hex file
(F800DC.hex) is also included for quick evaluation. This firmware uses the QuickSense Firmware API to measure
capacitance on the two sensing pads and application layer code indicates touch using the LEDs on the board.
While the P1.5 and P1.6 sensing pads are pressed, the firmware lights up the P1.0 and P1.1 LEDs, respectively.

For a more detailed description of the QuickSense Firmware API or the Serial Interface, see “AN366: QuickSense
API.” For a more detailed description of active/inactive thresholds, see “AN367: Understanding Capacitive Sensing
Signal to Noise Ratios.” For a discussion on baselining in the QuickSense Firmware API, see “AN418: Baselining
in the QuickSense Firmware API.

8. Using the C8051F800 Daughter Card as a Development Platform

The prototyping area on the ToolStick C8051F800 daughter card makes it easy to interface to external hardware.
All of the I/O pins are available so it possible to create a complete system.

8.1. C8051F800 Pin Connections
It is important to note that if external hardware is being added, some of the existing components on the board can
interfere with the signaling. The following is a list of port pins on the C8051F800 that are connected to other
components:

 P0.4, P0.5—These pins are connected directly to the ToolStick Base Adapter for UART communication.

 P1.2, P1.3—These pins are connected directly to the ToolStick Base Adapter’s GPIO pins. By default, these
GPIO pins on the Base Adapter are high-impedance pins so they will not affect any signaling. Configuring these
pins on the Base Adapter to output pin or handshaking pins could affect signaling.

 P1.0, P1.1—These pins are connected to the cathodes of the green LEDs (D2, D3) on the daughter card. The
LEDs or the R2, R10 resistors can be removed to disconnect an LED from the corresponding pin.

 P0.7—This pin is connected to the output of the potentiometer. The 0 resistor R5 can be removed to
disconnect the potentiometer from the pin. The 0 resistor R3 can be removed to disconnect VDD from the
potentiometer.

 P1.4—This pin is connected to the push-button switch (S1) through a series resistor (R6). The switch or R6 can
be removed to disconnect them from the pin.

 P1.5, P1.6—These pins are connected to the two capacitive sense switches through 0 ohm series resistors R8
and R9. The resistors can be removed to disconnect the switches from the pin.

See the daughter card schematic in Section 10 for more information.

8.2. C2 Pin Sharing
On the ToolStick-C8051F800DC, the debug pins, C2CK, and C2D, are shared with the pins RST and P2.0
respectively. The daughter card includes the resistors (R11, R12) necessary to enable pin sharing, which allow the
RST and P2.0 pins to be used normally while simultaneously debugging the device. See Application Note “AN124:
Pin Sharing Techniques for the C2 Interface” at www.silabs.com for more information regarding pin sharing.

http://www.silabs.com
https://www.silabs.com/quicksense

ToolStick-F800DC

Rev. 0.1 15

9. Information Locations

Example source code is installed by default in the “C:\SiLabs\MCU\ToolStick\F800DC\Firmware” directory during
the ToolStick installation.

Documentation for the ToolStick kit, including this User’s Guide, can be found in the
C:\SiLabs\MCU\ToolStick\Documentation and the C:\SiLabs\MCU\ToolStick\F800DC\Documentation directories.

The installer for the ToolStick software is available at www.silabs.com/toolstick.

http://www.silabs.com/toolstick

ToolStick-F800DC

16 Rev. 0.1

10. C8051F800 Daughter Card Schematic

F
ig

u
re

1.
C

80
51

F
80

0
To

o
lS

ti
ck

 D
au

g
h

te
r

C
ar

d
 S

ch
em

at
ic

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

