1N6079 1N6080

1N6081

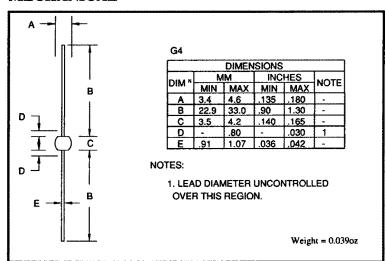
5FF05 5FF10 5FF15

January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE

- · Very low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics


QUICK REFERENCE DATA

- $V_R = 50 150V$
- $I_F = 5.0A$
- $t_{rr} = 30 nS$
- $V_F = 0.97V$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Working reverse voltage	V _{RWM}	50	100	150	V
Repetitive reverse voltage	VRRM	50	100	150	v
Average forward current (@ 55°C, lead length 0.375")	I _{F(av)}	4	— 5.0 —	·	Α
Repetitive surge current (@ 55°C in free air, lead length 0.375")	IFRM	4	— 24 —		A
Non-repetitive surge current (tp = 8.3mS, @ VR & Tjmax)	IFSM	-			A
Storage temperature range	TSTG		-65 to +150		°C
Operating temperature range	TOP		-65 to +150		°C

MECHANICAL

These products are qualified to MIL-S-19500/503.

They can be supplied fully released as JAN, JANTX, and JANTXV versions.

These products are qualified in Europe to DEF STAN 59-61 (PART 80)/030 available to F and FX levels.

1N6079 5FF05 1N6080 5FF10 1N6081 5FF15

January 7, 1998

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

2.0 ————————————————————————————————————	A A
12.0	Α
	_
4.8	
•	A
5.0	A
127	A ² S
0.97	V
10	μΑ μΑ
→ 30 →	nS
230	ρF
	5.0 ————————————————————————————————————

THERMAL CHARACTERISTICS

	Symbol	1N6079 5FF05	1N6080 5FF10	1N6081 5FF15	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0" Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	Rejl Rejl Reja	4	23.5 5 75		°C/W °C/W °C/W

1N6079 5FF05 1N6080 5FF10 1N6081 5FF15

January 7, 1998

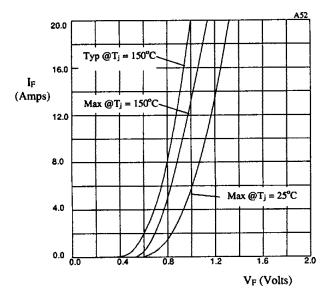


Fig 1. Forward voltage drop as a function of forward current

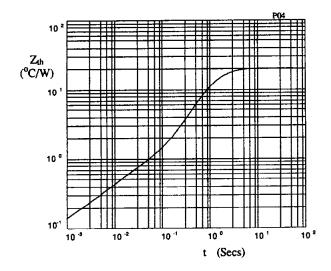


Fig 3. Transient thermal impedance characteristic.

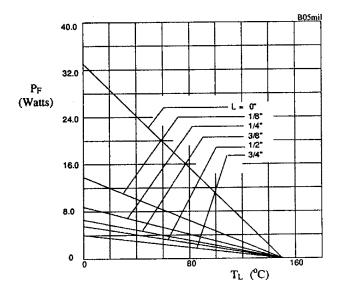


Fig 2. Maximum power versus lead temperature

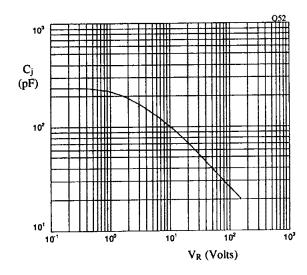


Fig 4. Typical junction capacitance as a function of reverse voltage.

1N6079 5FF05 1N6080 5FF10 1N6081 5FF15

January 7, 1998

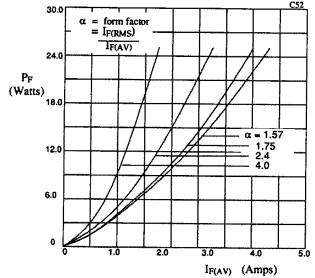


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

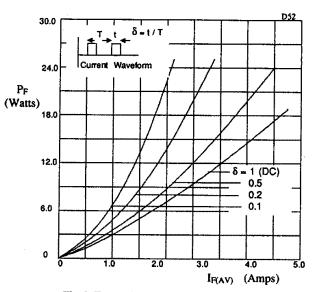


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

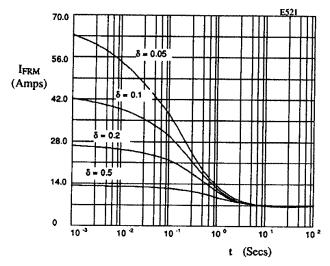


Fig 7. Maximum repetitive forward current as a function of pulse width at 55° C; $R_{\theta JL} = 20$ °C/W; V_{RWM} during 1 - δ .

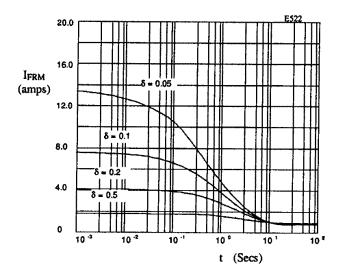


Fig 8. Maximum repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 80$ $^{\circ}$ C/W; V_{RWM} during $1 - \delta$.