

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED FAST RECTIFIER DIODE

- Low reverse recovery time
- · Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics

QUICK REFERENCE DATA

- $V_R = 200 1000V$
- $I_F = 2.00A$
- $t_{rr} = 150 500$ nS
- $I_R = 0.5 \mu A$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N5615 S2F	1N5617 S4F	1N5619 S6F	1N5621 S8F	1N5623 S0F	Unit
Working reverse voltage	V _{RWM}	200	400	600	800	1000	V
Repetitive reverse voltage	V _{RRM}	200	400	600	800	1000	V
Average forward current (@ 55°C, lead length 0.375")	I _F (AV)			- 2.0 -	,		A
Repetitive surge current (@ 55°C in free air, lead length 0.375")	I_{FRM}	-		- 6.0 -			A
Non-repetitive surge current (tp = 8.3mS, @ VR & Tjmax)	I _{FSM}	-		- 25 -			Α
Storage temperature range	Tstg			55 to +17	75 ——		°C
Operating temperature range	TOP	-		55 to +17	75 		°C

MECHANICAL

These products are qualified to MIL-PRF-19500/429 and are preferred parts as listed in MIL-STD-701. They can be supplied fully released as JAN, JANTX, JANTXV and JANS version. These products are qualified in Europe to DEF STAN 59-61 (PART 80)/029.

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

·	Symbol	1N5615 1N S2F S	N5617 S4F	1N5619 S6F	1N5621 S8F	1N5623 S0F	Unit
Average forward current max. (pcb mounted; $T_A = 55^{\circ}C$) for sine wave for square wave (d = 0.5)	I _F (AV) I _F (AV)	4					A A
Average forward current max. $(T_L = 55^{\circ}C; L = 3/8")$ for sine wave for square wave I^2t for fusing (t = 8.3mS) max.	I _{F(AV)} I _{F(AV)} I ² t	=		2.00 -			A A A ² S
Forward voltage drop max. @ $I_F = 1.0A$, $T_j = 25^{\circ}C$	$V_{\mathbf{F}}$	4		- 1.2 -		→	v
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R I _R			- 0.5 - - 25 -		→	μΑ μΑ
Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} .	t _{rr}	150	150	250	300	500	nS
Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$	C _j	27	27	27	18	18	ρF

THERMAL CHARACTERISTICS

	Symbol	1N5615 S2F	5 1N5617 S4F	1N5619 S6F	1N5621 S8F	1N5623 S0F	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0"	R ₀ jl R ₀ jl	-		— 38 — — 7 —			°C/W °C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	R _{0JA}	←		– 95 –			°C/W

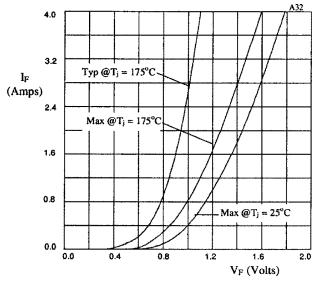


Fig 1. Forward voltage drop as a function of forward current.

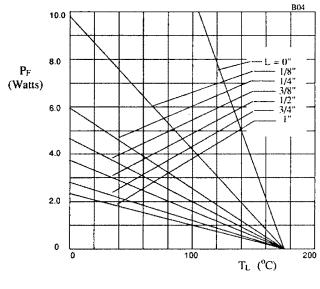


Fig 2. Maximum power versus lead temperature.

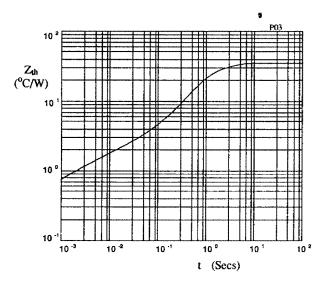


Fig 3. Transient thermal impedance characteristic.

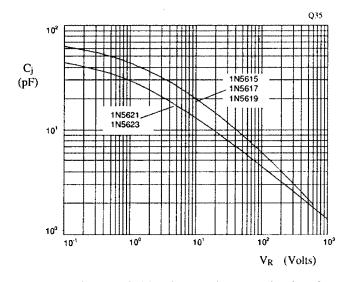


Fig 4. Typical junction capacitance as a function of reverse voltage.

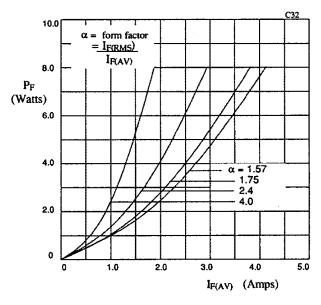


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

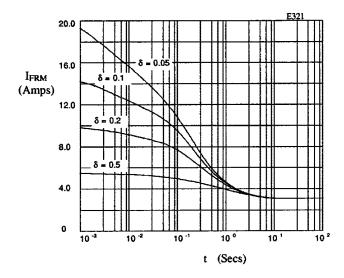


Fig 7. Typical repetitive forward current as a function of pulse width at $55^{\circ}C$; $R_{\theta JL} = 35\ ^{\circ}C/W$; V_{RWM} during $1 - \delta$.

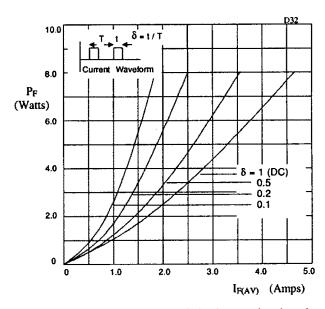


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

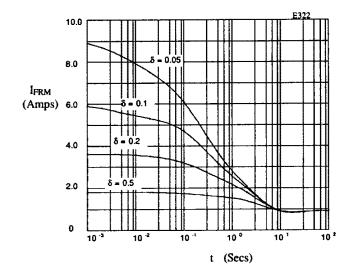


Fig 8. Typical repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 95$ °C/W; V_{RWM} during $1 - \delta$.