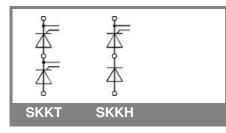
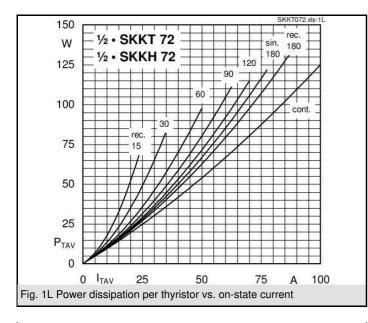
SKKT 72 H4, SKKH 72 H4

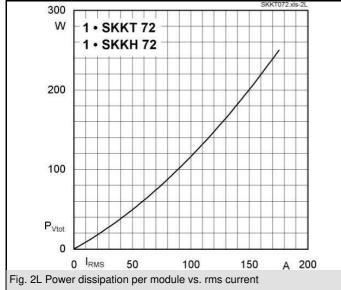
SEMIPACK[®] 1

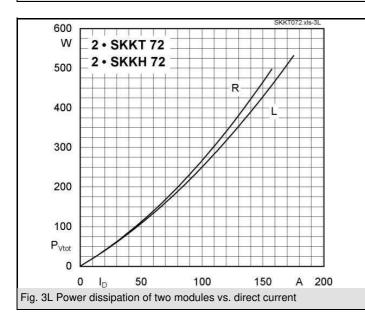
Thyristor / Diode Modules

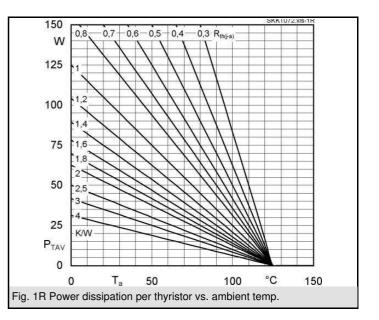
SKKT 72 H4 SKKH 72 H4

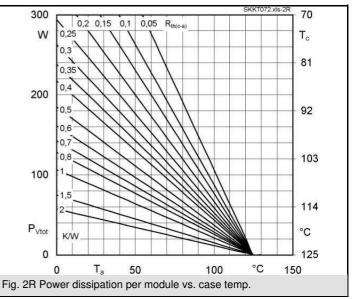

Features

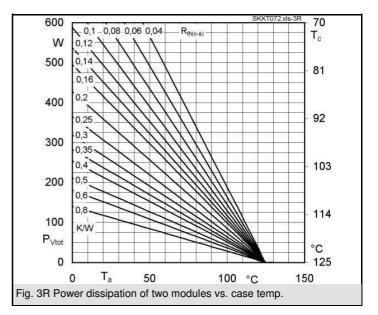

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63532

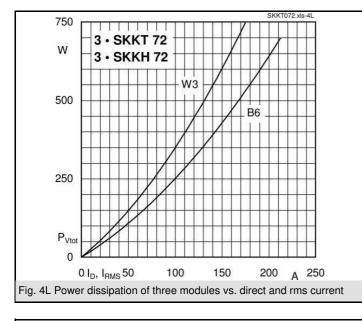

Typical Applications*

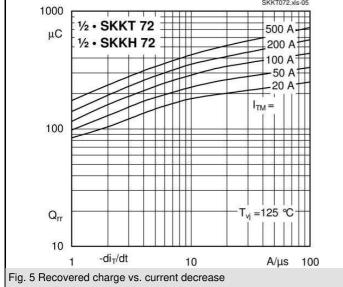

- DC motor control
 (e. g. for machine tools)
- AC motor soft starters
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

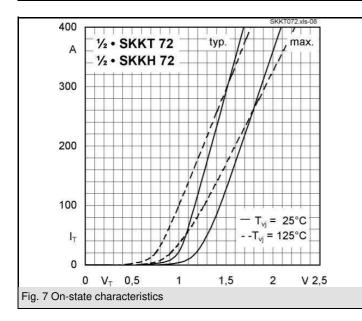

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 125 A (ma	aximum value for continuous	operation)
V			= 70 A (sin. 180; T _c = 85 °C)	
2100	2000	SKKT 72/20E H4	SKKH 72/20E H4	
2300	2200	SKKT 72/22E H4	SKKH 72/22E H4	
_			Values	
Symbol	Conditions			Units
I _{TAV}	sin. 180; T _c = 85 (100) °C;		70 (50)	A
I_D P3/180; $T_a = 45 °C; I_a$			62 / 75	A
	P3/180F; T _a = 35 °C; B2 /		115 /145 155 / 3 * 115	A
I _{RMS}	-	3/180F; T _a = 35 °C; W1 / W3		A
I _{TSM}	$T_{vj} = 25 \text{ °C}; 10 \text{ ms}$		1600	A
:21	$T_{vj} = 125 \text{ °C}; 10 \text{ ms}$		1450	A
i²t	τ _{yj} = 125 °C; 8,3 10 ms		13000	A ² s
			10500	A²s
V _T	vj i	$_{ij} = 25 \text{ °C}; I_T = 300 \text{ A}$		V
V _{T(TO)}	$\Gamma_{vj} = 125 ^{\circ}\text{C}$		max. 0,9 max. 3,5	V
r _T	T _{vj} = 125 °C	-1		mΩ
I _{DD} ; I _{RD}	T _{vj} = 125 °C; V _{RD} = V	v_j = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}		mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs		1	μs
t _{gr}	/ _D = 0,67 * V _{DRM}		1	μs
(di/dt) _{cr}	T _{vj} = 125 °C			A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C		max. 1000	V/µs
t _q	$T_{vj} = 125 \degree C$,		80	μs
I _H	$T_{vj} = 25 ^{\circ}C; typ. / max.$		150 / 250	mA
I _L	T _{vj} = 25 °C; R _G = 33 Ω; typ. / max.		300 / 600 min. 3	mA
V _{GT}	$T_{vj} = 25 \text{ °C; d.c.}$			V
I _{GT}	$T_{vj} = 25 ^{\circ}C; d.c.$		min. 150 max. 0,25	mA
V _{GD}	T _{vj} = 125 °C; d.c.			V
I _{GD}	T _{vj} = 125 °C; d.c.		max. 6 0.35 / 0.18	mA
R _{th(j-c)}		nt.; per thyristor / per module		K/W
R _{th(j-c)}		n. 180; per thyristor / per module c. 120; per thyristor / per module		K/W
R _{th(j-c)}			0,39 / 0,2 0,2 / 0,1	K/W
R _{th(c-s)}	per invisior / per mo	er thyristor / per module		K/W °C
T _{vj} T			- 40 + 125	o° l
T _{stg}	50.11		- 40 + 125 4800 / 4000	_
V _{isol}		c. 50 Hz; r.m.s.; 1 s / 1 min.		V~
M _s	to heatsink			Nm
M _t	to terminals		3 ± 15 % 5 * 9,81	Nm m/s²
a	opprov			
	approx.		95	g
m				
Case	SKKT SKKH		A 46 A 47	

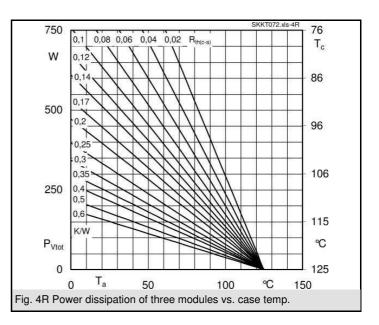


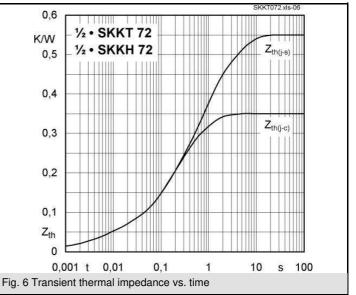


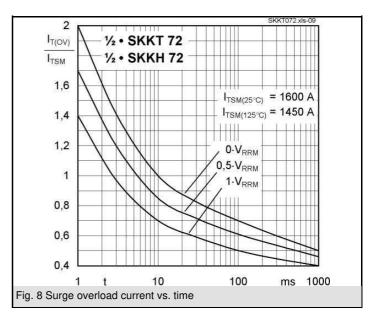


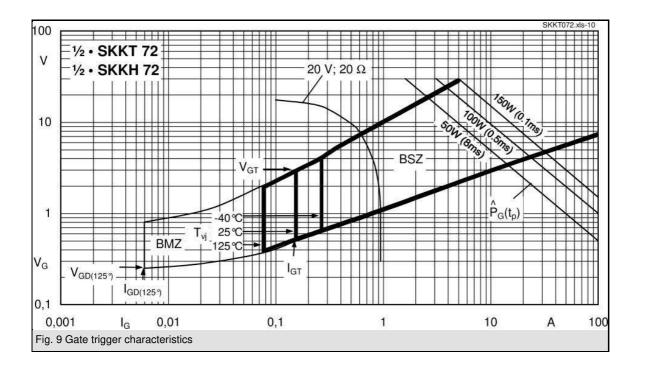


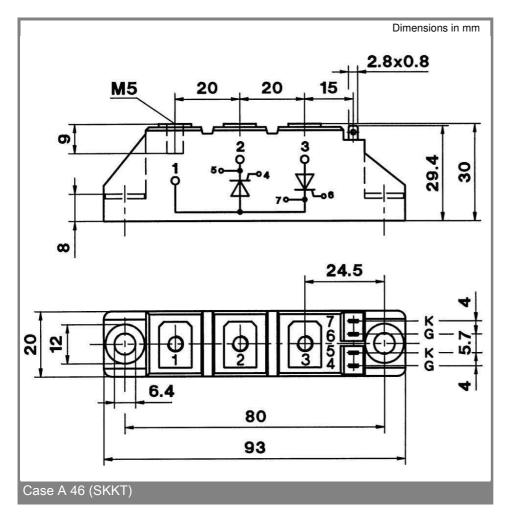


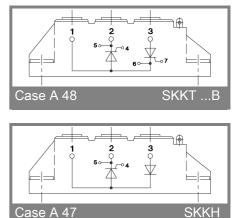



SKKT 72 H4, SKKH 72 H4









* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

08-07-2009 GIL