SN74AVCBH324245 32-BIT DUAL-SUPPLY BUS TRANSCEIVER

WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

FEATURES

- Member of the Texas Instruments Widebus+™ Family
- DOC[™] Circuitry Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation
- **Dynamic Drive Capability Is Equivalent to** Standard Outputs With IOH and IOH of
 - $-\pm 24$ mA at 3-V V_{CC}
 - $-\pm$ 15 mA at 2.3-V V_{CC}

RUMENTS

www.ti.com

- $-\pm$ 9 mA at 1.65-V V_{CC}
- \pm 6 mA at 1.4-V V_{CC}
- Control Inputs V_{IH}/V_{II} Levels Are Referenced to V_{CCB} Voltage
- If Either V_{CC} Input Is at GND, Both Ports Are in the High-Impedance State

- Inputs/Outputs Can Tolerate up to 4.6 V, Which Allows Mixed-Voltage-Mode Data Communications
- I_{off} Supports Partial-Power-Down Mode Operation
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over Full 1.4-V to 3.6-V **Power-Supply Range**
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

This 32-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.4 V to 3.6 V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.4 V to 3.6 V. This allows for universal low-voltage bidirectional translation between any of the 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVCBH324245 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input is used to disable the outputs, so the buses effectively are isolated.

The SN74AVCBH324245 is designed so that the control pins (1DIR, 2DIR, $1\overline{OE}$, and $2\overline{OE}$) are supplied by V_{CCB}.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CCB} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. If either V_{CC} input is at GND, both ports are in the high-impedance state.

ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	LFBGA – GKE	Tape and reel	SN74AVCBH324245KR	WN4245
-40 C 10 85 C	LFBGA – ZKE	Tape and reel	74AVCBH324245ZKER	VVIN4243

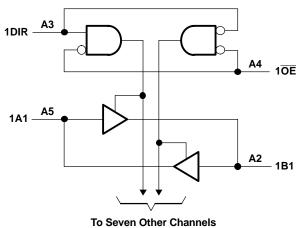
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1)www.ti.com/sc/package.

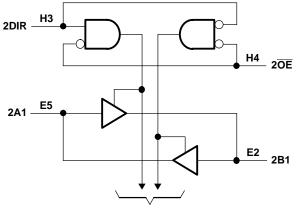
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus+, DOC are trademarks of Texas Instruments.

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

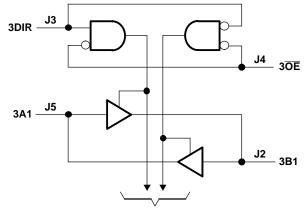
GKE PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 Α 000000 в С 000000 000000 D 000000 Е 000000 F 000000 G 000000 Н 000000 J 000000 κ L 000000 Μ 000000 000000 Ν 000000 Ρ 000000 R т 000000

TERMINAL ASSIGNMENTS

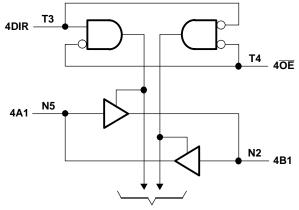

	1	2	3	4	5	6
Α	1B2	1B1	1DIR	1 0E	1A1	1A2
В	1B4	1B3	GND	GND	1A3	1A4
С	1B6	1B5	V _{CCB}	V _{CCA}	1A5	1A6
D	1B8	1B7	GND	GND	1A7	1A8
E	2B2	2B1	GND	GND	2A1	2A2
F	2B4	2B3	V _{CCB}	V _{CCA}	2A3	2A4
G	2B6	2B5	GND	GND	2A5	2A6
н	2B7	2B8	2DIR	2 0E	2A8	2A7
J	3B2	3B1	3DIR	3 <mark>0E</mark>	3A1	3A2
к	3B4	3B3	GND	GND	3A3	3A4
L	3B6	3B5	V _{CCB}	V _{CCA}	3A5	3A6
м	3B8	3B7	GND	GND	3A7	3A8
Ν	4B2	4B1	GND	GND	4A1	4A2
Р	4B4	4B3	V _{CCB}	V _{CCA}	4A3	4A4
R	4B6	4B5	GND	GND	4A5	4A6
Т	4B7	4B8	4DIR	4 0E	4A8	4A7


SCES550B-FEBRUARY 2004-REVISED JUNE 2005

FUNCTION TABLE (EACH 8-BIT SECTION)


INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	х	Isolation

LOGIC DIAGRAM (POSITIVE LOGIC)



To Seven Other Channels

To Seven Other Channels

To Seven Other Channels

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage range		-0.5	4.6	V
		I/O port (A port)	-0.5	4.6	
VI	Input voltage range ⁽²⁾	I/O port (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
V	Voltage range applied to any output in the high-impedance or	A port	-0.5	4.6	V
Vo	power-off state ⁽²⁾	B port	-0.5	4.6	v
V	Veltage range emplied to any extract in the high or law state $\binom{2}{3}$	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state $^{(2)(3)}$	B port	-0.5	V _{CCB} + 0.5	v
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each V_{CCA} , V_{CCB} , or GND			±100	mA
θ_{JA}	Package thermal impedance ⁽⁴⁾	GKE/ZKE package		40	°C/W
T _{stg}	Storage temperature range	·	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating" conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(2)

 (3) The output positive-voltage rating may be exceeded up to 4.6 v maximum in (4)
 (4) The package thermal impedance is calculated in accordance with JESD 51-7. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

Recommended Operating Conditions⁽¹⁾⁽²⁾⁽³⁾

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.4	3.6	V
V _{CCB}	Supply voltage				1.4	3.6	V
			1.4 V to 1.95 V		$V_{CCI} \times 0.65$	3.6	
VIH	High-level input voltage	Data inputs	1.95 V to 2.7 V		1.7	3.6	V
			2.7 V to 3.6 V		2	3.6	
			1.4 V to 1.95 V		0	$V_{CCI} \times 0.35$	
VIL	Low-level input voltage	Data inputs	1.95 V to 2.7 V		0	0.7	V
			2.7 V to 3.6 V		0	0.8	
			1.4 V to 1.95 V		$V_{CCB} \times 0.65$	V _{CCB}	
VIH	High-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V		1.7	V _{CCB}	V
		(referenced to v CCB)	2.7 V to 3.6 V		2	V _{CCB}	
			1.4 V to 1.95 V		0	$V_{CCB} \times 0.35$	
V _{IL}	Low-level input voltage	Control inputs (referenced to V _{CCB})	1.95 V to 2.7 V		0	0.7	V
		(referenced to v CCB)	2.7 V to 3.6 V		0	0.8	
Vo	Output voltage				0	V _{CCO}	V
				1.4 V to 1.6 V		-2	
	Llich lough output ourroat			1.65 V to 1.95 V		-4	mA
I _{OH}	High-level output current			2.3 V to 2.7 V		-8	mA
				3 V to 3.6 V		-12	
				1.4 V to 1.6 V		2	
	Low lovel output ourrent			1.65 V to 1.95 V		4	A
I _{OL}	Low-level output current			2.3 V to 2.7 V		8	mA
				3 V to 3.6 V		12	
$\Delta t/\Delta v$	Input transition rise or fa	Il rate				5	ns/V
T _A	Operating free-air tempe	rature			-40	85	°C

(1)

V_{CCI} is the V_{CC} associated with the data input port. V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. (2) (3)

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

Electrical Characteristics⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONE	DITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽²⁾	MAX	UNIT
	I _{OH} = −100 μA,	$V_{I} = V_{IH}$	1.4 V to 3.6 V	1.4 V to 3.6 V	V _{CCO} – 0.2			
	$I_{OH} = -2 \text{ mA},$	$V_{I} = V_{IH}$	1.4 V	1.4 V	1.05			
V _{OH}	$I_{OH} = -4 \text{ mA},$	$V_I = V_{IH}$	1.65 V	1.65 V	1.2			V
	I _{OH} = -8 mA,	$V_{I} = V_{IH}$	2.3 V	2.3 V	1.75			
	I _{OH} = -12 mA,	$V_I = V_{IH}$	3 V	3 V	2.3			
	I _{OH} = 100 μA,	$V_I = V_{IL}$	1.4 V to 3.6 V	1.4 V to 3.6 V			0.2	
	I _{OH} = 2 mA,	$V_{I} = V_{IL}$	1.4 V	1.4 V			0.35	
V _{OL}	$I_{OH} = 4 \text{ mA},$	$V_{I} = V_{IL}$	1.65 V	1.65 V			0.45	V
	I _{OH} = 8 mA,	$V_{I} = V_{IL}$	2.3 V	2.3 V			0.55	
	I _{OH} = 12 mA,	$V_I = V_{IL}$	3 V	3 V			0.7	
	$I_{OHD} = -6 \text{ mA},$	$V_I = V_{IH}$	1.4 V	1.4 V	1.05			
N /	$I_{OHD} = -9 \text{ mA},$	$V_I = V_{IH}$	1.65 V	1.65 V	1.2			
V _{OH}	I _{OHD} = -15 mA,	$V_{I} = V_{IH}$	2.3 V	2.3 V	1.75			V
	I _{OHD} = -24 mA,	$V_{I} = V_{IH}$	3 V	3 V	2.3			
	I _{OHD} = 6 mA,	$V_I = V_{IL}$	1.4 V	1.4 V			0.35	
	I _{OHD} = 9 mA,	$V_I = V_{IL}$	1.65 V	1.65 V			0.45	
V _{OL}	I _{OHD} = 15 mA,	$V_I = V_{IL}$	2.3 V	2.3 V			0.55	V
	I _{OHD} = 24 mA,	$V_{I} = V_{IL}$	3 V	3 V			0.7	
II Control inputs	$V_I = V_{CCB}$ or GND		1.4 V to 3.6 V	3.6 V			±2.5	μA
	V _I = 0.49 V		1.4 V	1.4 V		11		
(3)	V _I = 0.57 V		1.65 V	1.65 V	25			
BHL ⁽³⁾	V _I = 0.7 V		2.3 V	2.3 V	45			μA
	V _I = 0.8 V		3 V	3 V	75			
	V _I = 0.49 V		1.4 V	1.4 V		-11		
(4)	V _I = 1.07 V		1.65 V	1.65 V	-25			۸
внн ⁽⁴⁾	V _I = 1.7 V		2.3 V	2.3 V	-45			μA
	V _I = 2 V		3 V	3 V	-75			
			1.6 V	1.6 V	100			
(5)			1.95 V	1.95 V	200			
BHLO ⁽⁵⁾	$V_{I} = 0$ to V_{CC}		2.7 V	2.7 V	300			μA
			3.6 V	3.6 V	525			
			1.6 V	1.6 V	-100			
(6)			1.95 V	1.95 V	-200			
I _{BHHO} ⁽⁶⁾	$V_1 = 0$ to V_{CC}		2.7 V	2.7 V	-300			μA
			3.6 V	3.6 V	-525			

 V_{CCO} is the V_{CC} associated with the output port.
 All typical values are at T_A = 25°C.
 The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.
 (4) The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to

(4) The bushold cheat can source at loast the minimum high sector and source at loast the minimum high sector at loast and V_{CC} and then lowering it to V_{IH} min.
 (5) An external driver must source at least I_{BHLO} to switch this node from low to high.
 (6) An external driver must sink at least I_{BHHO} to switch this node from high to low.

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

Electrical Characteristics⁽¹⁾⁽²⁾ (continued)

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	V _{CCA}	V _{CCB}	MIN TYP ⁽³⁾	MAX	UNIT
	A port			0 V	0 to 3.6 V		±10	•
l _{off}	B port	$V_{\rm I}$ or $V_{\rm O}$ = 0 to 3.6 V		0 to 3.6 V	0 V		±10	μA
	A or B port		$\overline{OE} = V_{IH}$	3.6 V	3.6 V		±12.5	
$I_{OZ}^{(4)}$	B port	$V_0 = V_{CC0}$ or GND, $V_1 = V_{CC1}$ or GND	$\overline{OE} = don't$	0 V	3.6 V		±12.5	μA
	A port		care	3.6 V	0 V		±12.5	
				1.6 V	1.6 V		40	
				1.95 V	1.95 V		40	
				2.7 V	2.7 V		60	•
I _{CCA}		$V_{I} = V_{CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V		-80	μA
				3.6 V	0 V		80	
				3.6 V	3.6 V		80	
				1.6 V	1.6 V		40	
				1.95 V	1.95 V		40	
				2.7 V	2.7 V		60	•
I _{CCB}		$V_{I} = V_{CCI}$ or GND,	$I_{O} = 0$	0 V	3.6 V		80	μA
				3.6 V	0 V		-80	
				3.6 V	3.6 V		80	
Ci	Control inputs	$V_{I} = 3.3 \text{ V or GND}$		3.3 V	3.3 V	4		pF
Cio	A or B ports	$V_{O} = 3.3 \text{ V or GND}$		3.3 V	3.3 V	5		pF

 $\begin{array}{ll} (1) & V_{CCO} \text{ is the } V_{CC} \text{ associated with the output port.} \\ (2) & V_{CCI} \text{ is the } V_{CC} \text{ associated with the input port.} \\ (3) & \text{All typical values are at } T_A = 25^\circ\text{C}. \\ (4) & \text{For } I/\text{O} \text{ ports, the parameter } I_{OZ} \text{ includes the input leakage current.} \end{array}$

Switching Characteristics

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = ± 0.7		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(001-01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.7	6.7	1.9	6.4	1.8	5.5	1.5	5.8	
t _{pd}	В	A	1.8	6.8	1.7	6.2	1.6	5.9	1.5	5.9	ns
	ŌĒ	A	2.1	9	2.9	9.8	3.2	10	3	9.8	20
t _{en}	UE	В	2.5	8.4	2.4	8	2.3	7.6	2.2	7.5	ns
	ŌĒ	А	2.1	7.1	2.3	6.4	1.7	5.1	1.6	4.8	20
t _{dis}	UE	В	2.2	6.9	1.8	6.4	1.1	5.8	1.8	5.7	ns

Switching Characteristics

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	V _{CCB} = ± 0.7	1.5 V 1 V	V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.2		V _{ССВ} = ± 0.3		UNIT
	(INPUT)	(0011 01)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	A	В	1.7	6.4	1.8	6	1.7	4.7	1.6	4.3	~~~
t _{pd}	В	А	2	6.6	1.8	6	1.8	5.6	1.8	5.5	ns
	ŌĒ	А	1.8	7.6	2.6	7.7	2.6	7.6	2.6	7.4	~~~
t _{en}	UE	В	2.5	8.2	2.5	7.5	2.4	7.4	2.3	7.2	ns
	ŌĒ	А	1.8	7	2.5	6.3	1.8	4.7	1.7	4.4	~~~
t _{dis}	UE	В	2.5	6.7	2.3	6.1	2.2	5.5	1.3	5.3	ns

SCES550B-FEBRUARY 2004-REVISED JUNE 2005

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 2.5 V \pm 0.2 V (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = ± 0.7		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INFOT)	(001201)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.6	6	1.8	5.6	1.5	4	1.5	3.4	
t _{pd}	В	A	1.7	5.4	1.7	4.6	1.5	4	1.5	3.7	ns
	ŌĒ	A	1.7	5.7	2.2	5.5	2.2	5.3	2.2	5.1	
t _{en}	UE	В	3.1	6.1	2.5	5.6	2.2	5.3	1.9	4.2	ns
t	ŌĒ	A	1.2	5.8	1.9	5	1.4	3.6	1.3	3.3	
t _{dis}	UE	В	2.4	6	3	5.2	1.4	3.6	1.2	3	ns

Switching Characteristics

over recommended operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = ± 0.7		V _{ССВ} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INFUT)	(001201)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	А	В	1.5	5.9	1.7	5.4	1.5	3.7	1.4	3.1	20
t _{pd}	В	А	1.5	5.8	1.5	4.2	1.5	3.3	1.4	3.1	ns
	ŌĒ	А	1.6	4.9	2	4.5	2	4.3	1.9	4.1	20
t _{en}	UE	В	2	5.1	2	4.6	2.2	5.2	1.9	4.1	ns
+	ŌĒ	A	1.3	6.9	2.1	5.5	1.6	3.8	1.5	3.5	20
t _{dis}	UE	В	2.3	5.5	1.9	4.5	1.3	3.5	1.2	3.5	ns

Operating Characteristics

 V_{CCA} and V_{CCB} = 3.3 V, T_{A} = 25°C

	PARAMETER	TEST C	ONDITIONS	TYP	UNIT	
	Power-dissipation capacitance per transceiver,	Outputs enabled			14	
C _{pdA}	A-port input, B-port output	Outputs disabled	• •	f = 10 MHz	7	~ F
C _{pdA} (V _{CCA})	Power-dissipation capacitance per transceiver,	Outputs enabled	$C_{L} = 0,$		20	pF
	B-port input, A-port output	Outputs disabled			7	
	Power-dissipation capacitance per transceiver,	Outputs enabled			20	
C _{pdB}	A-port input, B-port output	Outputs disabled	0 0	£ 40 MUL	7	
C _{pdB} (V _{CCB})	Power-dissipation capacitance per transceiver,	Outputs enabled	$C_{L} = 0,$	f = 10 MHz	14	pF
	B-port input, A-port output	Outputs disabled			7	

Output Description

TEXAS

TRUMENTS www.ti.com

The DOCTM circuitry is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OL} vs I_{OL} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number SCEA006, and *Dynamic Output Control (DOCTM) Circuitry Technology and Applications*, literature number SCEA009.

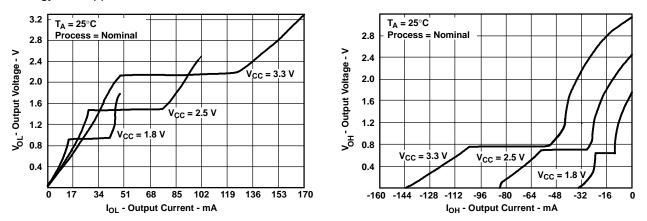
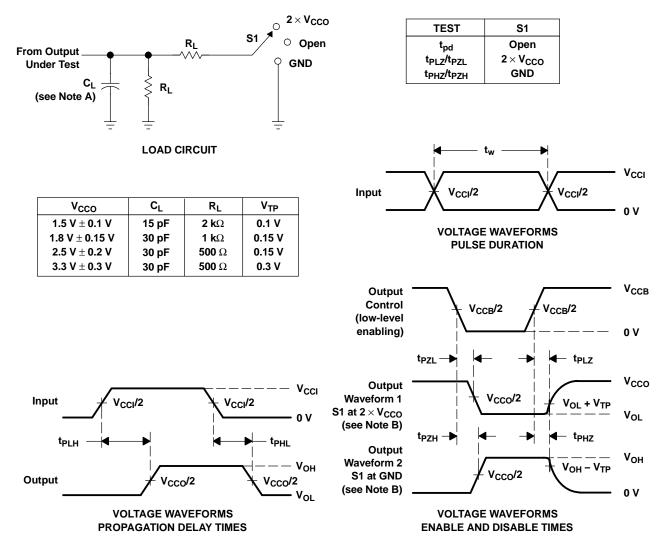



Figure 1. Typical Output Voltage vs Output Current

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, dv/dt ≥ 1 V/ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. V_{CCI} is the V_{CC} associated with the input port.
 - I. V_{CCO} is the V_{CC} associated with the output port.

Figure 2. Load Circuit and Voltage Waveforms

16-Aug-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74AVCBH324245ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	WN4245	Samples
SN74AVCBH324245KR	NRND	LFBGA	GKE	96		TBD	Call TI	Call TI	-40 to 85	WN4245	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

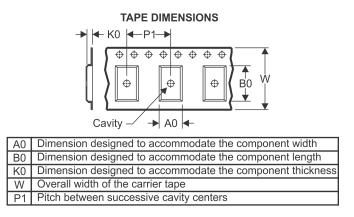
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

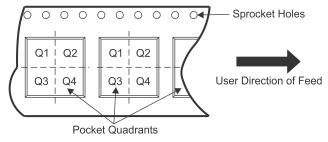
www.ti.com

16-Aug-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

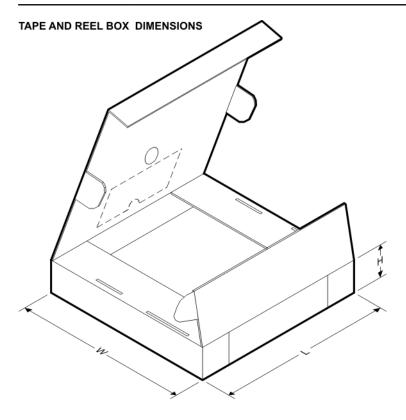

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

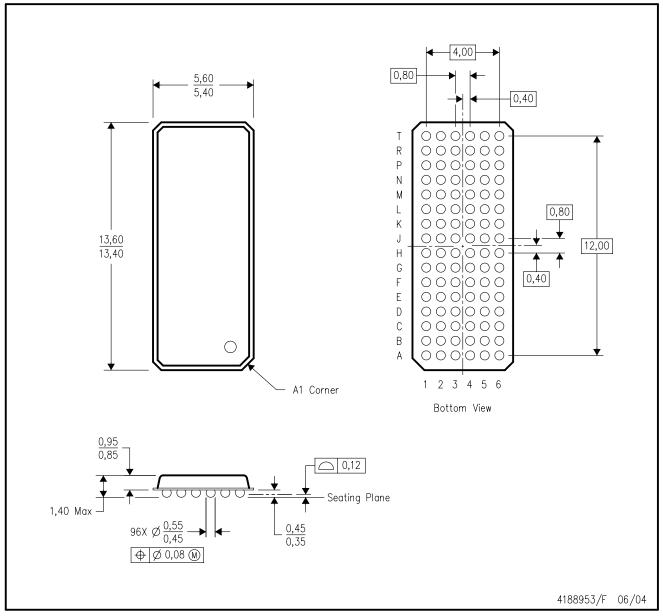

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74AVCBH324245ZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

18-Aug-2014

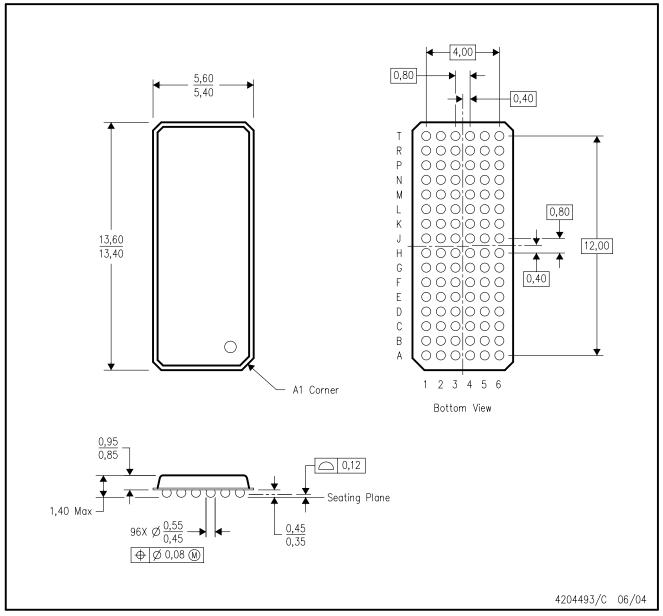


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74AVCBH324245ZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MO-205 variation CC.
 - D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-205 variation CC.

D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated