RICOH

R5480x Series

1-Cell Li-Ion Battery Protection IC

NO.EA-308-170516

OUTLINE

The R5480x is a protection IC for over-charge of rechargeable Lithium-ion (Li+)/Lithium polymer battery. The R5480x can detect over-charge, over-discharge, excess-discharge current, and excess-charge current of one-cell Lithium-ion (Li+)/Lithium polymer battery. The external resistor of RSENSE pin allows a high-accuracy detection for excess current. The supply current after detecting over-discharge is suppressed as much as possible by stopping the internal circuit.

FEATURES

High Voltage Tolerant Process
Absolute Maximum Ratings······ 30 V
Low supply current
Supply current (At normal mode) ······Typ. 4.0 μA
Standby current ······Max. 0.1 μA
High accuracy detector threshold
Over-charge detector±20 mV
Over-discharge detector ······±35 mV
Excess discharge-current detector±15%
Excess charge-current detector±15%
Variety of detector threshold
Over-charge detector threshold4.1 V to 4.5 V step of 0.005 V
Over-discharge detector threshold ·······2.1 V to 3.0 V step of 0.005 V
Excess discharge-current threshold ·················0.030 V to 0.048 V step of 0.001 V
Excess charge-current threshold ········
Internal fixed Output delay time
Over-charge detector Output Delay 1.0 s
Over-discharge detector Output Delay ····· 20 ms/132 ms
Excess discharge-current detector Output Delay 12 ms
Excess charge-current detector Output Delay 16 ms/8 ms
Short Circuit detector Output Delay ······ 250 μs

Output Delay Time Shortening Function

At C_{OUT} is "H", if V- level is set at -2.0 V, the Output Delay time of detect the over-charge and over-discharge can be reduced (Delay Time for over-charge becomes about 1/100 of normal state).

- Conditions for release over-charge detector Latch type
- Conditions for release over-discharge detector Latch type
- 0 V-battery charge optionUnacceptable
- Small package------DFN(PLP)1414-6, DFN1814-6C

NO.EA-308-170516

APPLICATIONS

- Li+/Li Polymer protector of over-charge, over-discharge, excess-current for battery pack
- High precision protectors for smart-phones and any other gadgets using on board Li+/Li Polymer battery

SELECTION GUIDE

The over-charge and the delay time are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R5480Kxxx\$*-TR	DFN(PLP)1414-6	5,000 pcs	Yes	Yes
R5480Lxxx\$*-TR	DFN1814-6C	5,000 pcs	Yes	Yes

xxx: Set voltage version

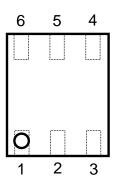
\$: Delay time version

Version	t _{VDET1} (s)	t _{VDET2} (ms)	t _{VDET3} (ms)	t _{VDET4} (ms)	t _{SHORT} (μs)
С	1	20	12	16	250
U	1	132	12	8	250

*: Function version

Version	Return from Over-charge	Return from Over-discharge	0-V Charge	V _{SHORT}
G	Latch	Latch	NG	0.500 V
L	Latch	Latch	NG	0.180 V
М	Latch	Latch	NG	0.140 V


Product Code List


Product Code Table

Codo	V_{DET1}	V_{REL1}	V_{DET2}	V _{REL2}	V_{DET3}	V _{DET4}	V _{SHORT}	t _{VDET1}	t _{VDET2}	t _{VDET3}	t _{VDET4}	tshort	0-V
Code	(V)	(V)	(V)	(V)	(V)	(V)	(V)	(s)	(ms)	(ms)	(ms)	(µs)	Charge
R5480x228CG	4.405	-	2.400	-	0.032	-0.020	0.500	1	20	12	16	250	NG
R5480x240CG	4.280	-	2.800	-	0.032	-0.020	0.500	1	20	12	16	250	NG
R5480x241CG	4.405	-	2.400	-	0.042	-0.020	0.500	1	20	12	16	250	NG
R5480x247CG	4.425	-	2.400	-	0.032	-0.020	0.500	1	20	12	16	250	NG
R5480x257CL	4.425	-	2.400	-	0.034	-0.022	0.180	1	20	12	16	250	NG
R5480x260CL	4.280	-	2.400	-	0.032	-0.030	0.180	1	20	12	16	250	NG
R5480x261CL	4.280	-	2.700	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x262CL	4.405	-	2.400	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x266CL	4.475	-	2.800	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x267CL	4.475	-	2.400	-	0.034	-0.022	0.180	1	20	12	16	250	NG
R5480x228CL	4.405	-	2.400	-	0.032	-0.022	0.180	1	20	12	16	250	NG
R5480x275CL	4.230	-	2.800	-	0.048	-0.030	0.180	1	20	12	16	250	NG
R5480x277CL	4.425	-	2.800	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x278CL	4.425	-	2.800	-	0.034	-0.022	0.180	1	20	12	16	250	NG
R5480x283CL	4.280	-	2.800	-	0.030	-0.020	0.180	1	20	12	16	250	NG
R5480x284CL	4.425	-	2.400	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x285CL	4.280	-	2.400	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x286CL	4.405	-	2.800	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x287CL	4.280	-	2.600	-	0.048	-0.030	0.180	1	20	12	16	250	NG
R5480x324CL	4.425	-	2.500	-	0.030	-0.030	0.180	1	20	12	16	250	NG
R5480x326CL	4.280	-	2.800	-	0.048	-0.030	0.180	1	20	12	16	250	NG
R5480x348CL	4.475	-	2.600	-	0.040	-0.030	0.180	1	20	12	16	250	NG
R5480x342UM	4.425	-	2.800	-	0.030	-0.023	0.140	1	132	12	8	250	NG
R5480x349CL	4.475	-	2.600	-	0.048	-0.030	0.180	1	20	12	16	250	NG

NO.EA-308-170516

PIN DESCRIPTION

DFN(PLP)1414-6 Pin Configuration

DFN1814-6C Pin Configuration

DFN(PLP)1414-6 Pin Description

Pin No.	Symbol	Description
1	VSS	VSS pin. Ground pin for the IC
2	VDD	Power supply pin, the substrate voltage level of the IC
3	RSENSE	Input of overcurrent detection
4	V-	Pin for charger negative input
5	COUT	Output of over-charge detection, CMOS output
6	DOUT	Output of over-discharge detection, CMOS output

DFN1814-6C Pin Description

Pin No.	Symbol	Description
1	V-	Pin for charger negative input
2	COUT	Output of over-charge detection, CMOS output
3	DOUT	Output of over-discharge detection, CMOS output
4	VSS	VSS pin. Ground pin for the IC
5	VDD	Power supply pin, the substrate voltage level of the IC
6	RSENSE	Input of overcurrent detection

NO.EA-308-170516

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, V_{SS} = 0 V)$

Symbol	Item	Rating	Unit
V_{DD}	Supply Voltage	30	V
V- Rsense	V- Pin Voltage RSENSE Pin Voltage	V_{DD} - 30 to V_{DD} + 0.3 V_{SS} - 0.3 to V_{DD} + 0.3	V V V
V _{COUT}	COUT Pin Voltage	V_{DD} - 30 to V_{DD} + 0.3	V
V _{DOUT}	DOUT Pin Voltage	V_{SS} - 0.3 to V_{DD} + 0.3	V
PD	Power Dissipation (Standard Land Pattern)	150	mW
Tj	Junction Temperature Range	-40 to 125	°C
Tstg	Storage Temperature Range	−55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Item	Rating	Unit
V_{DD}	Operating Input Voltage	-0.3 to 12	V
Та	Operating Temperature Range	-40 to 85	°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-308-170516

ELECTRICAL CHARACTERISTICS

R5480x Electrical Characteristics

(Unless otherwise specified, $Ta = 25^{\circ}C$)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating Input Voltage	V _{DD} - V _{SS}	1.5		5.0	V
V _{NOCHG}	Maximum Operating Voltage for Inhibition of Charger	Voltage Defined as V _{DD} - V _{SS} , V _{DD} - V- = 4 V	0.4	0.7	1.0	V
V _{DET1}	Over-charge Threshold Voltage	R1 = 330 Ω	V _{DET1} -0.020	V _{DET1}	V _{DET1} +0.020	V
tvdet1	Output Delay of Over-charge	V _{DD} = 3.6 V→4.5 V	0.7	1.0	1.3	S
tvrel1	Release Delay for VD1	V _{DD} = 4 V, V− = 0 V→1 V	11	16	21	ms
V _{DET2}	Over-discharge Threshold	Detect falling edge of supply voltage	V _{DET2} -0.035	V _{DET2}	V _{DET2} +0.035	V
tvdet2	Output Delay of Over- discharge	V _{DD} = 3.6 V→2.0 V	14	20	26	ms
tvrel2	Release Delay for VD2	$V_{DD} = 3 \text{ V}, \text{ V} - = 3 \text{ V} \rightarrow 0 \text{ V}$	0.7	1.2	1.7	ms
V _{DET3}	Excess discharge-current threshold	Detect rising edge of 'RSENSE' pin voltage, V- = VRSENSE	V _{DET3} x0.85	V_{DET3}	V _{DET3} x1.15	V
tvdet3	Output delay of excess discharge-current	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to } 0.4 \text{ V},$ $V = V_{RSENSE}$	8	12	16	ms
t _{VREL3}	Output delay of release from excess discharge-current	$V_{DD} = 3.0 \text{ V}, \text{ V-} = 3 \text{ V to } 0 \text{ V}$ V- = V _{RSENSE}	0.7	1.2	1.7	ms
	Short protection voltage (R5480xxxxCG)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.41	0.50	0.59	V
V _{SHORT}	Short protection voltage (R5480xxxxCL)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.135	0.18	0.225	V
	Short protection voltage (R5480xxxxUM)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.095	0.14	0.185	V
tshort	Output Delay of Short protection	V _{DD} = 3.0 V, V _{RSENSE} = 0 V to 3 V, V- = V _{RSENSE}	180	250	425	μs
Rshort	Reset resistance for excess discharge-current protection	$V_{DD} = 3.6 \text{ V}, \text{ V} - = 1.0 \text{ V}$	20	45	70	kΩ
V_{DET4}	Excess charge-current threshold	Detect falling edge of 'R _{SENSE} ' pin voltage, V- = V _{RSENSE}	V _{DET4} x1.15	V_{DET4}	V _{DET4} x0.85	V
tvdet4	Output delay of excess charge-current	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to } -0.3 \text{ V},$ $V - = V_{RSENSE}$	11	16	21	ms
t _{VREL4}	Output delay of release from excess charge-current	$V_{DD} = 3.0 \text{ V}, \text{ V} - = -1 \text{ V to } 0 \text{ V}$ V- = V _{RSENSE}	0.7	1.2	1.7	ms
V_{DS}	Delay Time Shortening Mode Voltage	V _{DD} = 3.6 V	-2.6	-2.0	-1.4	V
V _{OL1}	Nch ON-Voltage of Cout	$I_{OL} = 50 \mu A, V_{DD} = 4.5 V$		0.4	0.5	V
V _{OH1}	Pch ON-Voltage of Cout	I _{OH} = −50 μA, V _{DD} = 3.9 V	3.4	3.7		V
V _{OL2}	Nch ON-Voltage of Dout	$I_{OL} = 50 \mu A, V_{DD} = 2.0 V$		0.2	0.5	V
V _{OH2}	Pch ON-Voltage of Dout	I _{OH} = −50 μA, V _{DD} = 3.9 V	3.4	3.7		V
I _{DD}	Supply Current	V _{DD} = 3.9 V, V- =0 V		4.0	8.0	μΑ
ISTANDBY	Standby Current	V _{DD} = 2.0 V			0.1	μΑ

Considering of variation in process parameters, we compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not mass production tested.

NO.EA-308-170516

ELECTRICAL CHARACTERISTICS (continued)

R5480x Electrical Characteristics

 $(Ta = -20^{\circ}C \text{ to } 60^{\circ}C)$

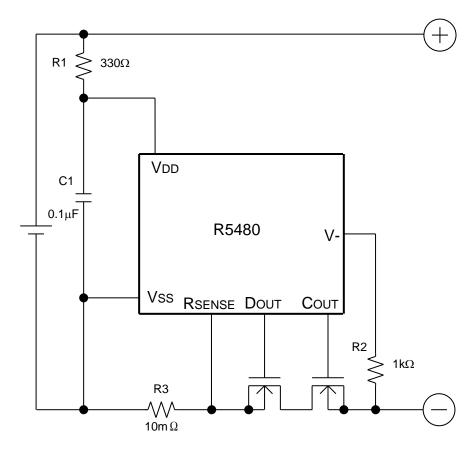
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating Input Voltage	V _{DD} - V _{SS}	1.5		5.0	V
V _{NOCHG}	Maximum Operating Voltage for Inhibition of Charger	Voltage Defined as V _{DD} - V _{SS} , V _{DD} - V- = 4 V	0.27	0.7	1.1	V
V _{DET1}	Over-charge Threshold Voltage	R1 = 330 Ω	V _{DET1} -0.025	V _{DET1}	V _{DET1} +0.025	٧
tvdet1	Output Delay of Over-charge	V _{DD} = 3.6 V→4.5 V	0.67	1.0	1.55	S
tvrel1	Release Delay for VD1	V _{DD} = 4 V, V− = 0 V→1 V	10.7	16	24.8	ms
V _{DET2}	Over-discharge Threshold	Detect falling edge of supply voltage	V _{DET2} -0.040	V _{DET2}	V _{DET2} +0.040	٧
tvdet2	Output Delay of Over- discharge	V _{DD} = 3.6 V→2.0 V	13.4	20	31	ms
tvrel2	Release Delay for VD2	V _{DD} = 3 V, V− = 3 V→0 V	0.65	1.2	1.86	ms
V _{DET3}	Excess discharge-current threshold	Detect rising edge of 'Rsense' pin voltage, V- = Vrsense	V _{DET3} x0.83	V _{DET3}	V _{DET3} x1.17	V
tvdet3	Output delay of excess discharge-current	V _{DD} = 3.0 V, V _{RSENSE} = 0 V to 0.4 V, V ⁻ = V _{RSENSE}	7.5	12	18.6	ms
tvrel3	Output delay of release from excess discharge-current	$V_{DD} = 3.0 \text{ V}, V_{-} = 3 \text{ V to } 0 \text{ V}$ $V_{-} = V_{RSENSE}$	0.65	1.2	1.86	ms
	Short protection voltage (R5480xxxxCG)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.40	0.50	0.60	V
V _{SHORT}	Short protection voltage (R5480xxxxCL)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.130	0.18	0.230	V
	Short protection voltage (R5480xxxxUM)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.085	0.14	0.195	V
tshort	Output Delay of Short protection	V _{DD} = 3.0 V, V _{RSENSE} = 0 V to 3 V, V- = V _{RSENSE}	160	250	490	μs
Rshort	Reset resistance for excess discharge-current protection	V _{DD} = 3.6 V, V ⁻ = 1.0 V	17.3	45	73.3	kΩ
V_{DET4}	Excess charge-current threshold	Detect falling edge of 'Rsense' pin voltage, V- = Vrsense	V _{DET4} x1.17	V _{DET4}	V _{DET4} x0.83	٧
tvdet4	Output delay of excess charge-current	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to } -0.3$ V, V- = V_RSENSE	10.7	16	24.8	ms
t _{VREL4}	Output delay of release from excess charge-current	$V_{DD} = 3.0 \text{ V}, \text{ V-} = -1 \text{ V to } 0 \text{ V}$ V- = V _{RSENSE}	0.65	1.2	1.86	ms
V _{DS}	Delay Time Shortening Mode Voltage	V _{DD} = 3.6 V	-2.7	-2.0	-1.2	V
V _{OL1}	Nch ON-Voltage of Cout	$I_{OL} = 50 \mu A, V_{DD} = 4.5 V$		0.4	0.5	V
V _{OH1}	Pch ON-Voltage of Cout	$I_{OH} = -50 \mu A, V_{DD} = 3.9 V$	3.4	3.7		V
V _{OL2}	Nch ON-Voltage of Dout	$I_{OL} = 50 \mu A, V_{DD} = 2.0 V$		0.2	0.5	V
V _{OH2}	Pch ON-Voltage of Dout	$I_{OH} = -50 \mu A, V_{DD} = 3.9 V$	3.4	3.7		V
I _{DD}	Supply Current	V _{DD} = 3.9 V, V- =0 V		4.0	8.7	μΑ
ISTANDBY	Standby Current	$V_{DD} = 2.0 \text{ V}$			0.12	μΑ

NO.EA-308-170516

ELECTRICAL CHARACTERISTICS (continued)

R5480x Electrical Characteristics

 $(Ta = -40^{\circ}C \text{ to } 85^{\circ}C)$


Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating Input Voltage	V _{DD} - V _{SS}	1.5		5.0	V
~	Maximum Operating Voltage	Voltage Defined as				
VNOCHG	for Inhibition of Charger	V _{DD} - V _{SS} , V _{DD} - V- = 4 V	0.27	0.7	1.15	V
V _{DET1}	Over-charge Threshold Voltage	R1 = 330 Ω	V _{DET1} -0.036	V _{DET1}	V _{DET1} +0.035	V
tvDET1	Output Delay of Over-charge	V _{DD} = 3.6 V→4.5 V	0.67	1.0	1.57	S
tvrel1	Release Delay for VD1	$V_{DD} = 4 \text{ V}, \text{ V} - = 0 \text{ V} \rightarrow 1 \text{ V}$	10.51	16	26.51	ms
V _{DET2}	Over-discharge Threshold	Detect falling edge of supply voltage	V _{DET2} -0.043	V _{DET2}	V _{DET2} +0.040	V
t _{VDET2}	Output Delay of Over- discharge	V _{DD} = 3.6 V→2.0 V	13.28	20	33.29	ms
tvrel2	Release Delay for VD2	V _{DD} = 3 V, V− = 3 V→0 V	0.65	1.2	2.056	ms
V _{DET3}	Excess discharge-current threshold	Detect rising edge of 'Rsense' pin voltage, V- = Vrsense	V _{DET3} x0.8	V _{DET3}	V _{DET3} x1.2	V
tvdet3	Output delay of excess discharge-current	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to } 0.4$ V, V = V _{RSENSE}	7.5	12	20.15	ms
tvrel3	Output delay of release from excess discharge-current	$V_{DD} = 3.0 \text{ V}, V_{-} = 3 \text{ V to } 0 \text{ V}$ $V_{-} = V_{RSENSE}$	0.65	1.2	2.067	ms
	Short protection voltage (R5480xxxxCG)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.40	0.50	0.60	V
V _{SHORT}	Short protection voltage (R5480xxxxCL)	VDD = 3.0 V, VRSENSE = V-	0.130	0.18	0.230	V
	Short protection voltage (R5480xxxxUM)	V _{DD} = 3.0 V, V _{RSENSE} = V-	0.085	0.14	0.195	V
tshort	Output Delay of Short protection	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to 3 V},$ $V = V_{RSENSE}$	160	250	506.7	μs
RSHORT	Reset resistance for excess discharge-current protection	V _{DD} = 3.6 V, V ⁻ = 1.0 V	17.3	45	77.6	kΩ
V _{DET4}	Excess charge-current threshold	Detect falling edge of 'Rsense' pin voltage, V- = Vrsense	V _{DET4} x1.17	V _{DET4}	V _{DET4} x0.83	V
tvdet4	Output delay of excess charge-current	$V_{DD} = 3.0 \text{ V}, V_{RSENSE} = 0 \text{ V to } -0.3$ V, V = V _{RSENSE}	10.38	16	26.57	ms
t _{VREL4}	Output delay of release from excess charge-current	$V_{DD} = 3.0 \text{ V}, V_{-} = -1 \text{ V to } 0 \text{ V}$ $V_{-} = V_{RSENSE}$	0.65	1.2	2.068	ms
V _{DS}	Delay Time Shortening Mode Voltage	V _{DD} = 3.6 V	-2.7	-2.0	-1.2	V
V _{OL1}	Nch ON-Voltage of Cout	$I_{OL} = 50 \mu A, V_{DD} = 4.5 V$		0.4	0.552	V
V _{OH1}	Pch ON-Voltage of Cout	$I_{OH} = -50 \mu A, V_{DD} = 3.9 V$	3.318	3.7		V
V _{OL2}	Nch ON-Voltage of Dout	$I_{OL} = 50 \mu A, V_{DD} = 2.0 V$		0.2	0.515	V
V _{OH2}	Pch ON-Voltage of Dout	$I_{OH} = -50 \mu A, V_{DD} = 3.9 V$	3.389	3.7		V
I _{DD}	Supply Current	V _{DD} = 3.9 V, V- =0 V		4.0	9.25	μΑ
ISTANDBY	Standby Current	V _{DD} = 2.0 V			0.12	μΑ

All of these specifications are guaranteed by design, not tested in mass production.

RICOH

APPLICATION INFORMATION

Typical Application Circuit

R1 and C1 stabilize a supply voltage to the R5480. A recommended R1 value is equal or less than $1k\Omega$. A large value of R1 makes detection voltage shift higher because of the conduction current flowed in the R5480x. Further, to stabilize the operation of R5480x, use the C1 with the value of $0.01\mu F$ or more.

R1 and R2 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage to the R5480x, battery pack. While small value of R1 and R2 may cause over power dissipation rating of the R5480x, therefore a total of "R1+R2" should be $1k\Omega$ or more. Besides, if a large value of R2 is set, release from over-discharge by connecting a charger might not be possible. Recommended R2 value is equal or less than $10k\Omega$.

R3 is a resistor for sensing an excess current. If the resistance value is too large, power loss becomes also large. By the excess current, if the R3 is not appropriate, the power loss may be beyond the power dissipation of R3. Choose an appropriate R3 according to the cell specification.

The typical application circuit diagram is just an example. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

NO.EA-308-170516

Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. Although the short protection circuit is built in the IC, if the positive terminal and the negative terminal of the battery pack are short, during the delay time of short limit detector, large current flows through the FET. Select an appropriate FET with large enough current capacity to prevent the IC from burning damage.

We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to humans or damages to property resulting from such failure, users should be careful enough to incorporate safe measures in design, such as redundancy, fire-containment, and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. If the positive terminal and the negative terminal of the battery pack are short, even though the short protection circuit is built in the IC, during the delay time until detecting the short circuit, a large current may flow through the FET. Select an FET with large enough current capacity in order to endure the large current during the delay time.

NO.EA-308-170516

Sense Resistance and On-resistance of the MOSFET Selection Guideline

Short mode is detected by the current base or the relation between VDD at short and total on-resistance of external MOSFETs for COUT and DOUT.

If short must be detected by the current base determined by V_{SHORT} and R3, the next formula must be true, otherwise, the short current limit becomes (VDD - 0.9)/(R3 + Rss (on))

$$\frac{\text{VDD} - 0.9}{\text{R3} + \text{RSS (on)}} \ge \frac{\text{VSHORT}}{\text{R3}}$$

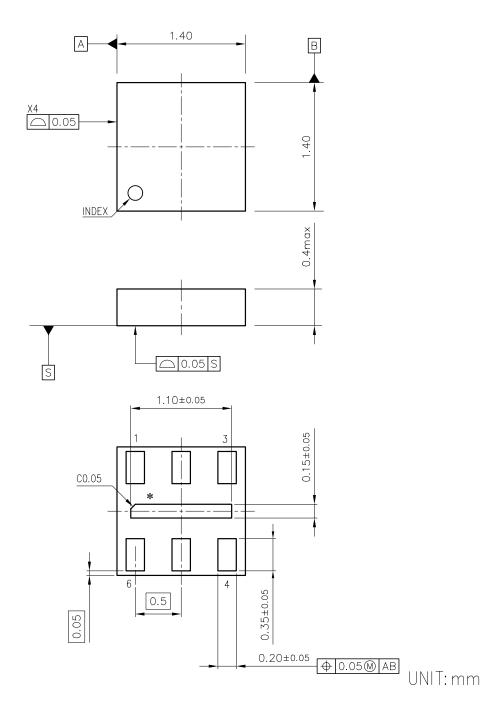
V_{SHORT} = 0.5 V (R5480xxxxCG), 0.18 V (R5480xxxxCL), 0.14 V (R5480xxxxUM)

R3 = External current sense resistance (Ω)

 R_{SS} (on) = external MOSFETs' total on-resistance (Ω)

 $V_{DD} = V_{DD}$ level at short mode. If V_{DD} goes down by the short current, the lowest level is V_{DD} .

Ex. 1


As the R_{SENSE}, in case that the 10 m Ω is selected as R3 and if the V_{DD} becomes 3.0 V, to detect short at 50 A with V_{SHORT} = 0.5 V, the R_{SS} (on) must be 32 m Ω or lower.

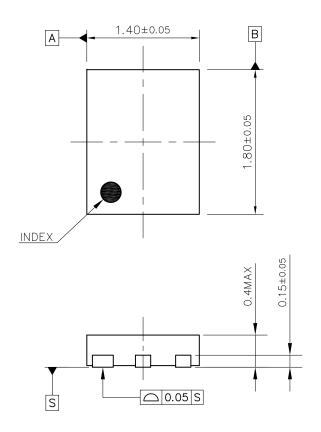
Fx 2

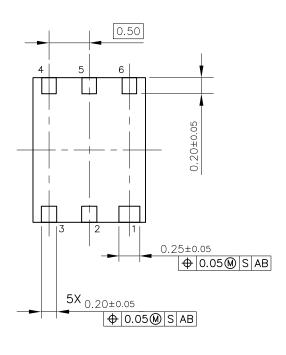
As the R_{SENSE}, in case the 20 m Ω is selected as R3 and if the V_{DD} becomes 3.0 V, to detect short at 25 A with V_{SHORT} = 0.5 V, the R_{SS} (on) must be 64 m Ω or lower.

If the Rss (on) value is higher than the value calculated by this formula, the short current limit will be less than the desired value.

Ver. A

DFN(PLP)1414-6 Package Dimensions


H.IMAI


RICOH

i

^{*} The tab on the bottom of the package shown by blue circle is No Connection.

Ver. A

DFN1814-6C Package Dimensions (Unit: mm)

RICOH

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Halogen Free

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan
Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc

(way, Suite 200 Campbell, CA 95008, U.S.A.

675 Campbell Technology Park Phone: +1-408-610-3105

Phone: +49-211-6546-0

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany

Ricoh Electronic Devices Korea Co., Ltd.

3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd.

Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch

1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District,

Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

Taipei officeRoom 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Downloaded from Arrow.com.