RICOH

R5435x SERIES

Li-ION/POLYMER 2/3-CELL PROTECTOR Second protection IC

NO.EA-282-120409

OUTLINES

R5435x Series are CMOS-based high voltage tolerant over-charge protection ICs for Li-ion/Li-polymer secondary battery. The R5435x can detect overcharge of 2-cell to 3-cell Li-ion/Li-polymer batteries. The R5435x is consists of 3 voltage detectors, a voltage reference unit, an oscillator, a counter, a delay circuit, a logic circuit.

When the over-charge is detected, after the IC internally fixed delay time, the output of C_{OUT} becomes "H". After detecting over-charge, when the cell voltage becomes lower than the over-charge released voltage, the over-charge state is released.

If all the cells voltages become equal or less than the shutdown detector threshold, all the circuits are halted and shut down, as a result, the consumption current of IC itself (Shutdown current) is extremely reduced.

By connect short 2 cells other than monitored cell, over-charge and released delay time can be shortened. The output type is CMOS.

FEATURES

Manufactured with High Voltage Tolerant Process Absolute Maximum Rating				
Low supply current	Cell voltage 3.9V, for 3-	cell	Тур. 3.0μА	
• High accuracy detector threshold	Over-charge detector	(Ta=25°C)	±20mV	
		(Ta=0 to 60°C)	±25mV	
 Variety of detector threshold 				
Over-charge detector threshold	4.1V-4.55V step of 0.00	5V (Vdet1n) (n=1, 2, 3)		
Over-charge released voltage	VDET1n-0V to VDET1n-0.4	/ step of 0.05V (V _{REL1} n) (I	n=1, 2, 3)	
	MIN.3.95V			
Setting of Output delay time	Over-charge detector Out	put Delay options 2, 4, 6s(B	uilt-in delay)	
Shutdown Function	When all the cell voltage	ges become equal or less	than shutdown	
detector threshold, the IC will be into shutdown r	mode and the consumption of	current of IC itself becomes	extremely small.	
Even if one of the cells becomes equal or more the	nan shutdown released voltag	ge, the shutdown mode is re	eleased.	
Shutdown detector threshold	Typ. 3.5V±0.4V			
Shutdown Release Hysteresis	none			
Shutdown current	Max. 0.1µA			
• 2/3 cell protection enabler	By external wiring, 2 or	3-cell protection can be	selected.	
Over-charge released condition	Released by voltage ty	ре		
• Cout output	Cout: 4.7V regulator po	wer supply CMOS outpu	t. Active "H"	
Delay Time Shortening Function	As a result of specified	I setting, the delay times	are shortened,	
over-charge detector time is shortened from	2sec to 1/50, 4sec and 6s	sec to 1/80.		
ex. $V_{C2}=V_{C3}=V_{SS}$, the delay time for cell 1 is shown	ortened. Vc1=Vc2, Vc3=Vss	, the delay time for cell 2	is shortened.	
$V_{C1}=V_{C2}=V_{C3}$, the delay time for cell 3 is shore	tened.			
Small package	TSOT-23-6, DFN(PLP)	1616-6B		

BLOCK DIAGRAM

SELECTION GUIDE

In the R5435Xxxxx Series, input threshold of over-charge and output delay time can be designated according to the application.

Part Number is designated as follows:

(ex.)

R5435N 301 ↑ ↑ a b	AA ←Part Number ↑↑ cd
Code	Contents
а	Package Type N: TSOT-23-6, K: PLP1616-6B
b	Serial Number for the R5435 Series designating input threshold for over-charge detector
С	Designation of Output delay option
d	Designation of version symbols.

Code List

Code	V DET1 n(V) *1	V REL1 n(V) *1	tVdet1(s)	tV _{DTR1} (ms)
R5435x301AA	4.450	4.150	2	16
R5435x302BA	4.350	3.950	4	16
R5435x303AA	4.350	4.050	2	16
R5435x303CA	4.350	4.050	6	6
R5435x304AA	4.400	4.100	2	16
R5435x305AA	4.300	4.000	2	16
R5435x306BA	4.450	3.950	4	16

*1: n=1, 2, 3

PIN CONFIGURATIONS

DFN(PLP)1616-6B

PIN DESCRIPTION

TSOT-23-6

Pin No.	Symbol	Description
1	Vdd	V _{DD} Pin
2	Vc1	Positive terminal pin for Cell-1
3	Vc2	Positive terminal pin for Cell-2
4	V _{C3}	Positive terminal Pin for Cell-3
5	Vss	Vss pin. Ground pin for the IC
6	Соит	Output pin of over-charge detection

DFN(PLP)1616-6B

Pin No.	Symbol	Description
1	Vc2	Positive terminal pin for Cell-2
2	Vc1	Positive terminal pin for Cell-1
3	Vdd	V _{DD} Pin
4	Соит	Output pin of over-charge detection
5	Vss	Vss pin. Ground pin for the IC
6	V _{C3}	Positive terminal Pin for Cell-3

*The tab voltage level of the backside of the package is the substrate level (Vss).

Connect the tab to the Vss pin (Recommended) or leave the tab open.

ABSOLUTE MAXIMUM RATINGS

		Ta=25°C	C, Vss=0V	
Symbol	Item	Ratings	Unit	
Vdd	Supply voltage	-0.3 to 30	V	
	Input voltage			
Vc1	Positive input pin voltage for Cell-1	Vc2 -0.3 to Vc2+6.5	V	
Vc2	Positive input pin voltage for Cell-2	Vc3 –0.3 to Vc3+6.5	v	
Vсз	Positive input pin voltage for Cell-3	-0.3 to 6.5		
	Output voltage		V	
Vcout	Cout pin voltage	-0.3 to Vон1+0.3	v	
Р	Dewer dissipation	460 (TSOT-23-6)		
PD	Power dissipation	640 (PLP1616-6B)	mVV	
Та	Operating temperature range	-40 to 85	°C	
Tstg	Storage temperature range	-55 to 125	°C	

RICOH

ELECTRICAL CHARACTERISTICS

• R5435x301AA

		l	Jnless othe	rwise spec	ified, Ta=	25°C
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating input voltage	Voltage defined as VDD-VSS	3.3		15	V
Vorten	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.430	4.450	4.470	V
V DET 111	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.425	4.430	4.475	
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	4.100	4.150	4.200	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	1.6	2.0	2.4	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Iol=50µA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
Isнт	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	VCELLN=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested. *Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

R5435x302BA

		l	Jnless othe	rwise spec	ified, Ta=	25°C
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating input voltage	Voltage defined as VDD-VSS	3.3		15	V
Vortan	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.330	4.050	4.370	V
VDETIT	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.325	4.550	4.375	v
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	3.900	3.950	4.000	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	3.2	4.0	4.8	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Ιοι=50μΑ, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
Ізнт	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA
*Noto1	This expectition is guaranteed by desi	an not mass production tostad				

*Note1: This specification is guaranteed by design, not mass production tested. *Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

6

• R5435x303AA

•	Unless otherwise specified, Ta=25°C					
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating input voltage	Voltage defined as VDD-Vss	3.3		15	V
Vorten	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.330	4.050	4.370	
V DET 111	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.325	4.330	4.375	V
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	4.000	4.050	4.100	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	1.6	2.0	2.4	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50 µA, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Iol=50µA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
lsнт	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested.

*Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

R5435x303CA

	Unless otherwise specified, Ta=2				25°C	
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating input voltage	Voltage defined as VDD-Vss	3.3		15	V
Vorten	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.330	4 350	4.370	V
VDETITI	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.325	4.330	4.375	
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	4.000	4.050	4.100	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	4.8	6.0	7.2	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	2	6	10	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Iol=50μA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
Isнт	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested. *Note2: VCELLn means Cell-n's voltage. n=1, 2, 3 $\,$

R5435x304AA

				rwise spec	ified, Ta=	25°C
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{DD1}	Operating input voltage	Voltage defined as VDD-Vss	3.3		15	V
	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.380	1 100	4.420	V
V DET111	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.375	4.400	4.425	
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	4.050	4.100	4.150	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	1.6	2.0	2.4	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Iol=50μA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
Ізнт	Shutdown Current	VCELLN=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested.

*Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

R5435x305AA

				rwise speci	fied, Ta=2	25°C
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vdd1	Operating input voltage	Voltage defined as VDD-Vss	3.3		15	V
Vocto	CELLn Over-charge threshold	Detect rising edge of supply voltage (25°C)	4.280	1.000	4.320	V
VDETIT	(n=1,2,3)	Detect rising edge of supply voltage (0 to 60°C) *Note1	4.275	4.500	4.325	v
$V_{REL1}\mathbf{n}$	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	3.950	4.000	4.050	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	1.6	2.0	2.4	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
Vsнт	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1 -0.5	Vон1 -0.1		V
Vol	Cout Nch ON voltage	Iol=50µA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
ISHT	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested. *Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

8

• R5435x306BA

•		Unless otherwise specified, Ta=25°C				
Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined as VDD-Vss	3.3		15	V
Vdet1n	CELLn Over-charge threshold (n=1,2,3)	Detect rising edge of supply voltage (25°C)	4.430	4 450	4.470	V
		Detect rising edge of supply voltage (0 to 60°C) *Note1	4.425	4.450	4.475	v
V _{REL1} n	CELLn Over-charge released voltage (n=1,2,3)	Detect falling edge of supply voltage	3.900	3.950	4.000	V
tVdet1	Output delay of over-charge	Vcelln=3.9V, Vcell1=3.9V to 4.7V (n=2,3) *Note2	3.2	4.0	4.8	s
tV _{REL1}	Output delay of release from over-charge	Vcelln=3.9V, Vcell1=4.7V to 3.9V (n=2,3)	12.8	16	19.2	ms
VSHT	Shutdown detector threshold	Detect falling edge	3.1	3.5	3.9	V
tVdtr1	Output delay of over-charge timer reset	VCELLN=VDET1N+0.050V to VREL1N-0.100V to VDET1N+0.050V to VREL1N-0.100V	8	16	24	ms
Voh1	Cout Pch ON voltage1	Іон=0µА, Vcelln=4.7V (n=1,2,3)	4.0	4.7	5.4	V
Voh2	Cout Pch ON voltage2	Іон=-50µА, Vcelln=4.7V (n=1,2,3)	Vон1-0.5	Vон1-0.1		V
Vol	Cout Nch ON voltage	Iol=50µA, Vcelln=3.9V (n=1,2,3)		0.1	0.5	V
ISHT	Shutdown Current	Vcelln=3.1V (n=1,2,3)			0.1	μA
lss	Supply current	Vcelln=3.9V (n=1,2,3)		3.0	5.5	μA

*Note1: This specification is guaranteed by design, not mass production tested.

*Note2: VCELLn means Cell-n's voltage. n=1, 2, 3

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

OPERATION

VDET1n / Over-Charge Detectors (n=1, 2, 3)

While the cells are charged, the voltage between V_{C1} pin and V_{C2} pin (voltage of the Cell-1), the voltage between V_{C2} pin and V_{C3} pin (voltage of the Cell-2), and the voltage between V_{C3} pin and V_{ss} pin (voltage of the Cell-3) are supervised. If at least one of the cells' voltage becomes equal or more than the over-charge detector threshold, the over-charge is detected, and an external charge control Nch MOSFET turns on with C_{OUT} pin being at "H" level and by cutting a fuse on the charger path, and charge stops.

To reset the over-charge and make the C_{OUT} pin level to "L" again after detecting over-charge, in such conditions that a time when all the cells' voltages are down to a level lower than over-charge released voltage.

Internal fixed output delay times for over-charge detection, over-charge detector timer reset, release from over-charge exist. Even if one of voltage of the cells keeps its level more than the over-charge detector threshold, and output delay time passes, over-charge voltage is detected. If all the cell voltages become lower than the over-charge detector threshold within the output delay time of over-chare detector by noise or other reasons, the time period is less than over-charge detector timer reset output delay time, the over-charge delay time is accumulated and maintained, and the accumulated delay time reaches the output delay time of over-charge is detected. After detecting over-charge, even if all the cell voltages become equal or less than the released voltage from over-charge, if at least one of the cells voltage becomes higher than the released voltage from over-charge within the output delay time of the release from over-charge, then over-charge is not released.

The output type of the Cout pin is CMOS output between Vss and the built-in regulator, and "H" level of Cout pin is the output voltage of the built-in regulator. (Typ. 4.7V)

Shutdown Function

The voltage between V_{C1} pin and V_{C2} pin (the voltage of Cell-1), the voltage between V_{C2} pin and V_{C3} pin (Cell-2 voltage), and the voltage between V_{C3} pin and V_{SS} pin (Cell-3 voltage) are supervised. If all the cells voltages become equal or less than the shutdown detector threshold, all the circuits are halted and shut down, as a result, the consumption current of IC itself (Shutdown current) is extremely reduced. (Max. 0.1μ A)

After detecting shutdown, at least one of the cell voltages becomes equal or more than the shutdown detector threshold, the shutdown state is released.

DS (Delay Shortening) Function

By connect short 2 cells other than monitored cell, over-charge and released delay time can be shortened. Table of the cell of delay time shortened and direct wiring positions

Delay time shortened CELL	Direct wiring positions
CELL1	V_{C2} pin and V_{C3} pin, V_{C3} pin and V_{SS} pin
CELL2	V_{C1} pin and V_{C2} pin, V_{C3} pin and V_{SS} pin
CELL3	V_{C1} pin and V_{C2} pin, V_{C2} pin and V_{C3} pin

• 2-cell/ 3-cell protection alternative

When the IC should be used as a 2-cell protection IC, connect short Vc3 pin and Vss pin.

TIMING CHART

Over-charge operation

TYPICAL APPLICATIONS

(1) Circuit example (3-cell protection)

*In terms of the order of connecting cells, the positive terminal of the cell 1 should be the last. Otherwise, COUT may output "H" tentatively, and the fuse may be fused.

External parts ratings

Symbol	Тур.	Unit	Range
Rvdd	100	Ω	100~1000
R1	1000	Ω	330~1000
R2	1000	Ω	330~1000
R3	1000	Ω	330~1000
CVDD	0.1	uF	0.01~1
C1	0.1	uF	0.01~1
C2	0.1	uF	0.01~1
C3	0.1	uF	0.01~1

Technical Notes

The voltage fluctuation is stabilized with R_{VDD} and C_{VDD} . If a small R_{VDD} is set, in the case of the large transient may happen to the cell voltage, by the flowing current, the IC may be unstable. If a large R_{VDD} is set, by the consumption current of the IC itself, the voltage difference between V_{DD} pin and V_{C1} pin is generated, and unexpected operation may result. Therefore, the appropriate value range of R_{VDD} is from 100Ω to $1k\Omega$. To make a stable operation of the IC, the appropriate value range of C_{VDD} is from 0.01μ F to 1.0μ F.

The voltage fluctuation is stabilized with R1 to R3 and C1 to C3. If a R1 to R3 is too large, by the conduction current at detection, the detector threshold may shift higher. Therefore, the appropriate value range of R1 to R3 is equal or less than $1k\Omega$. To make a stable operation of the IC, the appropriate value range of C1 to C3 is 0.01μ F or more.

The typical application circuit diagrams are just examples. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. During the time until the fuse is open after detecting over-charge, a large current may flow through the FET. Select an FET with large enough current capacity in order to endure the large current.

Ricoh cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Ricoh product. If technical notes are not complied with the circuit which is used Ricoh product, Ricoh is not responsible for any damages and any accidents.

To connect the SC protector, connect the SC protector to the cell must be the last.

*SC protector

Contact: Sony Chemical & Information Device Company Ltd. Zip code 141-0032

1-11-2 Osaki, Shinagawa, Tokyo Gate-city Osaki East Tower 8F Phone 03-5435-3946 http://www.sonycid.jp

TEST CIRCUITS

Typical Characteristics were obtained with using those above circuits:

- Test Circuit A: Typical characteristics 1), 2)
- Test Circuit B: Typical characteristics 3), 4), 6)
- Test Circuit C: Typical characteristics 5)
- Test Circuit D: Typical characteristics 7)
- Test Circuit E: Typical characteristics 8)
- Test Circuit F: Typical characteristics 9)
- Test Circuit G: Typical characteristics 10), 11)

TYPICAL CHRACTERSTICS

Part1. vs. Temperature

1) Over-charge voltage Threshold (CELLn) vs. Temperature 2) Over-charge Released Voltage (CELLn) vs.

3) Output Delay of Over-charge vs. Temperature R5435N301AA

) Over-charge Released Voltage (CELLn) vs. Temperature R5435N301AA

R5435N302BA

6) Output Delay of Over-charge Timer Reset vs. Temperature 7) Cout Pch ON Voltage 1 vs. Temperature R5435N301AA R5435N301AA

9) Cout Nch ON Voltage vs. Temperature R5435N301AA

RICOH

Part2. Delay Time dependence on V_{DD} 1) Output Delay of Over-charge vs. V_{DD}

2) Output Delay of Release from Over-charge vs. V_{DD}

R5435N302BA

RICOH

Part3. Supply Current dependence on V_DD (R5435N301AA)

C1

3-cell protector Supply Current vs. VDD

Part4. Over-charge detector, Release voltage from Over-charge dependence on External Resistance value (R5435N301AA)

Over-charge Detector/Released Voltage from Over-charge vs. R1 (CELL1)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc. 675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A. Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V.

Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49::211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D (Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1623