

System Clock for Embedded AMDTM based Systems

Recommended Application:

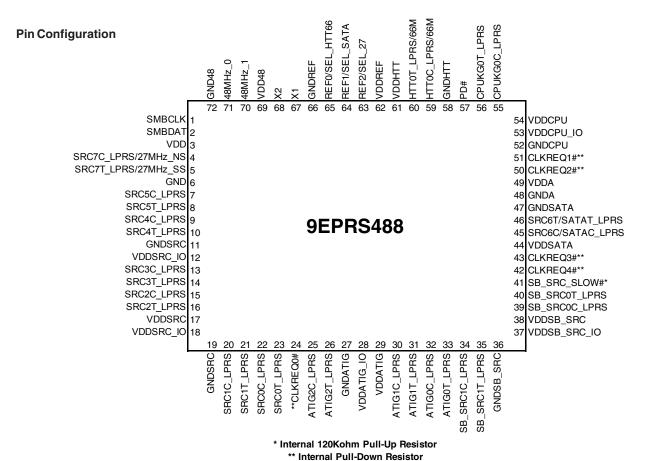
AMD M690T/780E systems

Output Features:

- Integrated series resistors on all differential outputs.
- 1 Greyhound compatible low-power CPU pair
- 6 low-power differential SRC pairs
- 2 low-power differential chipset SouthBridge SRC pairs
- 1 Selectable low-power differential 100MHz non-spread SATA/ SRC output
- 1 Selectable low-power differential SRC / 27MHz Single Ended output
- 1 Selectable HT3 100MHz low-power differential hypertransport clock / HT66MHz Single Ended output
- 2 48MHz USB clock
- 3 14.318MHz Reference clock
- 3 low-power differential ATIG pairs
- 5- Dedicated CLKREQ# pins

Key Specifications:

- CPU outputs cycle-to-cycle jitter < 150ps
- SRC outputs cycle-to-cycle jitter < 125ps
- SB_SRC outputs cycle-to-cycle jitter < 125ps
- +/- 100ppm frequency accuracy on CPU, SRC, ATIG
- Oppm frequency accuracy on 48MHz


Features/Benefits:

Power Saving Features:

SB_SRC_SLOW# input to throttle Chipset clocks (SB_SRC) to 80% of normal.

Optional Separate supply rail for SRC low Voltage I/O

- ~33% power saving when 1.5V is used for this rail
- Spread Spectrum for EMI reduction
- Outputs may be disabled via SMBus
- External crystal load capacitors for maximum frequency accuracy

1616—08/20/09

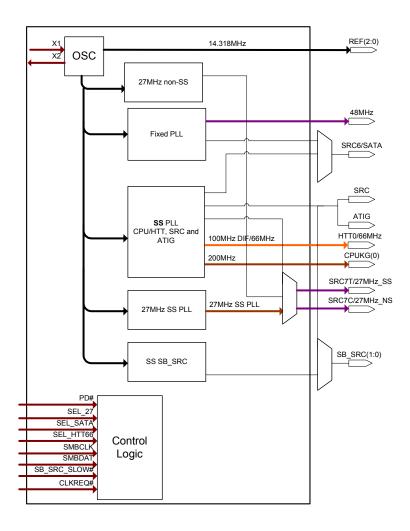
*Other names and brands may be claimed as the property of others.

Pin Description

PIN #	PIN NAME	PIN TYPE	DESCRIPTION
1	SMBCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
2	SMBDAT	I/O	Data pin for SMBus circuitry, 5V tolerant.
3	VDD	PWR	Power supply for SRC7/27MHz
F-			True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
4	SRC7C_LPRS/27MHz_NS	OUT	series resistor needed)/27MHz 3.3V Single-ended non-spread output for discrete graphics
			Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
5	SRC7T_LPRS/27MHz_SS	OUT	ohm series resistor needed)/27MHz 3.3V Single-ended spreading output for discrete graphics
6	GND	GND	Ground pin for SRC7/27MHz
	CIVE	GIVD	Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
7	SRC5C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
8	SRC5T_LPRS	OUT	series resistor needed)
			Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
9	SRC4C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
10	SRC4T_LPRS	OUT	series resistor needed)
11	GNDSRC	GND	Ground pin for the SRC outputs
12	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V
12			Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
13	SRC3C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
14	SRC3T_LPRS	OUT	series resistor needed)
			Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
15	SRC2C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
16	SRC2T_LPRS	OUT	series resistor needed)
17	VDDSRC	PWR	Supply for SRC core, 3.3V nominal
18	VDDSRC_IO	PWR	Power supply for differential SRC outputs, nominal 1.05V to 3.3V
19	GNDSRC_IO	GND	Ground pin for the SRC outputs
19	GNDShC	GIND	Complement clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33
20	SRC1C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
21	SRC1T_LPRS	OUT	series resistor needed)
			Complement clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33
22	SRC0C_LPRS	OUT	ohm series resistor needed)
			True clock of low power differential SRC clock pair. (no 500hm shunt resistor to GND and no 33 0hm
23	SRC0T_LPRS	OUT	series resistor needed)
			Clock Request pin for SRC0 outputs. If output is selected for control, then that output is controlled as
24	**CLKREQ0#	IN	follows:
24	CERNEQU#	IIN	0 = enabled, 1 = Low-Low
			Complementary clock of low-power differential push-pull PCI-Express pair with integrated series
25	ATIG2C_LPRS	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)
			True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no
26	ATIG2T_LPRS	OUT	500hm shunt resistor to GND and no 33 ohm series resistor needed)
27	GNDATIG	GND	Ground pin for the ATIG outputs
28	VDDATIG_IO	PWR	Power supply for differential ATIG outputs, nominal 1.05V to 3.3V
29	VDDATIG_IO	PWR	Power supply for ATIG core, nominal 3.3V
25	VDDATIG	FVVI	Complementary clock of low-power differential push-pull PCI-Express pair with integrated series
30	ATIG1C_LPRS	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)
			True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no
31	ATIG1T_LPRS	OUT	500hm shunt resistor to GND and no 33 ohm series resistor needed)
			Complementary clock of low-power differential push-pull PCI-Express pair with integrated series
32	ATIG0C_LPRS	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed)
-			True clock of low-power differential push-pull PCI-Express pair with integrated series resistor. (no
33	ATIG0T_LPRS	OUT	
-			500hm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 500hm shunt resistor
34	SB_SRC1C_LPRS	OUT	to GND and no 33 ohm series resistor needed
35	SB_SRC1T_LPRS	OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor to GND
26	CNDSB SBC	CND	and no 33 ohm series resistor needed
36	GNDSB_SRC	GND	Ground pin for the SB_SRC outputs

Pin Description (Continued)

Pin	Description (Con	tinued)	
PIN#	PIN NAME	PIN TYPE	DESCRIPTION
37	VDDSB_SRC_IO	PWR	Power supply for differential SB_SRC outputs, nominal 1.05V to 3.3V
38	VDDSB_SRC	PWR	Supply for SB SRC PLL core, 3.3V nominal
39	SB_SRC0C_LPRS	OUT	Complement clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor
39	3B_3hC0C_LFh3	001	to GND and no 33 ohm series resistor needed
40	SB_SRC0T_LPRS	OUT	True clock of low power differential Chipset-to-Chipset SRC clock pair. (no 50ohm shunt resistor to GND
40	3B_3HC01_EFH3	001	and no 33 ohm series resistor needed
			When low, this real-time, level-sensitive input slows down the SB_SRC outputs to a user determined
41	SB_SRC_SLOW#*	IN	lower frequency to save power. The default lower frequency is 80 MHz.
			0 = Slow Down, 1 = normal operation.
			Clock Request pin for SRC4/5 outputs. If output is selected for control, then that output is controlled as
42	CLKREQ4#**	IN	follows:
			0 = enabled, 1 = Low-Low
			Clock Request pin for SRC3 outputs. If output is selected for control, then that output is controlled as
43	CLKREQ3#**	IN	follows:
			0 = enabled, 1 = Low-Low
44	VDDSATA	PWR	Power supply for SATA core logic, nominal 3.3V
45	SRC6C/SATAC_LPRS	OUT	Complement clock of low power differential SRC/SATA clock pair. (no 500hm shunt resistor to GND and
	0.1000,0.10 1.0		no 33 ohm series resistor needed)
46	SRC6T/SATAT_LPRS	OUT	True clock of low power differential SRC clock pair. (no 50ohm shunt resistor to GND and no 33 ohm
	_		series resistor needed)
47	GNDSATA	GND	Ground pin for the SRC outputs
48	GNDA	GND	Ground for the Analog Core
49	VDDA	PWR	3.3V Power for the Analog Core
			Clock Request pin for SRC2 outputs. If output is selected for control, then that output is controlled as
50	CLKREQ2#**	IN	follows:
			0 = enabled, 1 = Low-Low
			Clock Request pin for SRC1 outputs. If output is selected for control, then that output is controlled as
51	CLKREQ1#**	IN	follows:
	ONDODIA	ONE	0 = enabled, 1 = Low-Low
52	GNDCPU	GND	Ground pin for the CPU outputs
53	VDDCPU_IO	PWR	Power supply for differential CPU outputs, nominal 1.05V to 3.3V
54	VDDCPU	PWR	Supply for CPU core, 3.3V nominal
55	CPUKG0C_LPRS	OUT	Complementary signal of low-power differential push-pull AMD K8 "Greyhound" clock with integrated
		_	series resistor. (no 33 ohm series resistor needed) True signal of low-power differential push-pull AMD K8 "Greyhound" clock with integrated series
56	CPUKG0T_LPRS	OUT	
			resistor.(no 33 ohm series resistor needed) Enter /Exit Power Down.
57	PD#	IN	0 = Power Down, 1 = normal operation.
58	GNDHTT	PWR	Ground pin for the HTT outputs
50	GNDITTI	FVVII	Complementary signal of low-power differential push-pull hypertransport clock with integrated series
59	HTT0C LPRS/66M	OUT	resistor. (no 50ohm shunt resistor to GND and no 33 ohm series resistor needed) / 1.8V single ended
33	1111100_E1110/00W	001	66MHz hyper transport clock
			True signal of low-power differential push-pull hypertransport clock with integrated series resistor. (no
60	HTT0T_LPRS/66M	OUT	500hm shunt resistor to GND and no 33 ohm series resistor needed) /1.8V single ended 66MHz hyper
00	111101_E1110/00W	001	transport clock
61	VDDHTT	PWR	Supply for HTT clocks, nominal 3.3V.
62	VDDREF	PWR	Ref, XTAL power supply, nominal 3.3V
J_			14.318 MHz reference clock, 3.3V/3.3V Latched input to select 27MHz SS and non SS on SRC7
63	REF2/SEL_27	OUT	0 = 100MHz differential spreading SRC clock, 1 = 27MHz non-spreading singled clock on pin 4 and
	11212/022_27		27MHz spread clock on pin 5.
			14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select function of SRC6/SATA output
64	REF1/SEL_SATA	I/O	0 = 100MHz differential spreading SRC clock, 1 = 100MHz non-spreading differential SATA clock
			14.318 MHz 3.3V reference clock./ 3.3V tolerant latched input to select Hyper Transport Clock
65	REF0/SEL_HTT66	I/O	Frequency.
		., 0	0 = 100MHz differential HTT clock, 1 = 66MHz 3.3V single ended HTT clock
66	GNDREF	GND	Ground pin for the REF outputs.
67	X1	IN	Crystal input, nominally 14.318MHz
68	X2	OUT	Crystal output, nominally 14.318MHz
69	VDD48	PWR	Power pin for the 48MHz outputs and core. 3.3V
70	48MHz_1	OUT	48MHz clock output.
71	48MHz_0	OUT	48MHz clock output.
72	GND48	GND	Ground pin for the 48MHz outputs
1616 0			


1616—08/20/09

General Description

The **ICS9EPRS488** is a main clock synthesizer chip that provides all clocks required for AMD M690T or 780E embedded systems. An SMBus interface allows full control of the device.

Block Diagram

Power Groups

	Pin Number	f	Danasistica.
VDD	VDDIO	GND	Description
69		72	USB_48 outputs
3		6	SRC/27MHz Outputs
17		11,19	SRC Logic Core
	12,18		SRC differential outputs (IO's)
38		36	SB_SRC Core Logic
	37		SB_SRC differential outputs (IO's)
44		47	SRC/SATA differential output
29		27	ATIG Core Logic
	28		ATIG differential outputs (IO's)
49		48	3.3V Analog
54		52	CPUKG Core Logic
	53		CPUKG differential outputs (IO's)
61		58	HTTCLK output
62		66	REF outputs

1616—08/20/09

Table1: CPU/HTT, SRC and ATIG Frequency Selection Table

Byte 0			te 3			HTT				
Bit0	Bit3	Bit2	Bit1	Bit0	CPU (MHz)	Single- ended	Differential HTT	SRC/ATIG	Spread %	CPU OverClock
SS_EN	CPU FS3	CPU FS2	CPU FS1	CPU FS0	(IVITIZ)	SEL_HTT66 = 1	SEL_HTT66 = 0		76	%
0	0	0	0	0	173.63	57.88	86.81	86.81		-13%
0	0	0	0	1	177.17	59.06	88.58	88.58		-11%
0	0	0	1	0	180.78	60.26	90.39	90.39		-10%
0	0	0	1	1	184.47	61.49	92.24	92.24		-8%
0	0	1	0	0	188.24	62.75	94.12	94.12		-6%
0	0	1	0	1	192.08	64.03	96.04	96.04		-4%
0	0	1	1	0	196.00	65.33	98.00	98.00		-2%
0	0	1	1	1	200.00	66.67	100.00	100.00	Off	0%
0	1	0	0	0	204.00	68.00	102.00	102.00	011	2%
0	1	0	0	1	208.08	69.36	104.04	104.04		4%
0	1	0	1	0	212.24	70.75	106.12	106.12		6%
0	1	0	1	1	216.49	72.16	108.24	108.24		8%
0	1	1	0	0	220.82	73.61	110.41	110.41		10%
0	1	1	0	1	225.23	75.08	112.62	112.62		13%
0	1	1	1	0	229.74	76.58	114.87	114.87		15%
0	1	1	1	1	234.33	78.11	117.17	117.17		17%
1	0	0	0	0	173.63	57.88	86.81	86.81		-13%
1	0	0	0	1	175.00	59.06	88.58	88.58		-11%
1	0	0	1	0	180.78	60.26	90.39	90.39		-10%
1	0	0	1	1	184.47	61.49	92.24	92.24		-8%
1	0	1	0	0	188.24	62.75	94.12	94.12		-6%
1	0	1	0	1	192.08	64.03	96.04	96.04		-4%
1	0	1	1	0	196.00	65.33	98.00	98.00		-2%
1	0	1	1	1	200.00	66.67	100.00	100.00	-0.5%	0%
1	1	0	0	0	204.00	68.00	102.00	102.00	-0.576	2%
1	1	0	0	1	208.08	69.36	104.04	104.04		4%
1	1	0	1	0	212.24	70.75	106.12	106.12		6%
1	1	0	1	1	216.49	72.16	108.24	108.24		8%
1	1	1	0	0	220.82	73.61	110.41	110.41		10%
1	1	1	0	1	225.23	75.08	112.62	112.62		13%
1	1	1	1	0	229.74	76.58	114.87	114.87		15%
1	1	1	1	1	234.33	78.11	117.17	117.17		17%

Table 2: SB_SRC Frequency Selection Table

Byte 0			te 4	,	CHOII TADIE		
Bit0	Bit3	Bit2	Bit1	Bit0	SRC	Spread	SB_SRC
CC EN	SB	SB	SB	SB	(MHz)	%	OverClock %
SS_EN	FS3	FS2	FS1	FS0			
0	0	0	0	0	80.00		-20%
0	0	0	0	1	81.25		-19%
0	0	0	1	0	82.63		-17%
0	0	0	1	1	84.00		-16%
0	0	1	0	0	85.25		-15%
0	0	1	0	1	86.63		-13%
0	0	1	1	0	88.00		-12%
0	0	1	1	1	89.25	Off	-11%
0	1	0	0	0	90.63		-9%
0	1	0	0	1	92.00	1	-8%
0	1	0	1	0	93.25		-7%
0	1	0	1	1	94.63		-5%
0	1	1	0	0	96.00		-4%
0	1	1	0	1	97.25		-3%
0	1	1	1	0	98.63		-1%
0	1	1	1	1	100.00		0%
1	0	0	0	0	80.00		20%
1	0	0	0	1	175.00		-19%
1	0	0	1	0	82.63		-17%
1	0	0	1	1	84.00		-16%
1	0	1	0	0	85.25		-15%
1	0	1	0	1	86.63		-13%
1	0	1	1	0	88.00		-12%
1	0	1	1	1	89.25	-0.50%	-11%
1	1	0	0	0	90.63] 5.5570	-9%
1	1	0	0	1	92.00	 	-8%
1	1	0	1	0	93.25		-7%
1	1	0	1	1	94.63	 	-5%
1	1	1	0	0	96.00	 	-4%
1	1	1	0	1	97.25	ļ	-3%
1	1	1	1	0	98.63	ļ	-1%
1	1	1	1	1	100.00		0%

Table 3: 27Mhz_Spread and Frequency Selection Table

SS Enable	SS3	SS2	SS1	SS0	27MHz_Spread	Spr	ead	
B2b1	Byte 4	Byte 4	Byte 4	Byte 4	(MHz)	% (whon	enabled)	
BZBT	bit 7	bit 6	bit 5	bit 4	(101112)	∕8 (WHEH	eliableu)	
0	0	0	0	0	27.00			
0	0	0	0	1	27.00			
0	0	0	1	0	27.00			
0	0	0	1	1	27.00			
0	0	1	0	0	27.00			
0	0	1	0	1	27.00			
0	0	1	1	0	27.00			
0	0	1	1	1	27.00	No S	pread	
0	1	0	0	0	27.00	110 3	preau	
0	1	0	0	1	27.00			
0	1	0	1	0	27.00			
0	1	0	1	1	27.00			
0	1	1	0	0	27.00			
0	1	1	0	1	27.00			
0	1	1	1	0	27.00			
0	1	1	1	1	27.00			
1	0	0	0	0	27.00	-0.50	Down	
1	0	0	0	1	27.00	-1.00	Down	
1	0	0	1	0	175.00	-1.50	Down	
1	0	0	1	1	27.00	-2.00	Down	
1	0	1	0	0	27.00	-0.75	Down	
1	0	1	0	1	27.00	-1.25	Down	
1	0	1	1	0	27.00	-1.75	Down	
1	0	1	1	1	27.00	-2.25	Down	
1	1	0	0	0	27.00	+/-0.25	Center	
1	1	0	0	1	27.00	+/-0.5	Center	
1	1	0	1	0	27.00	+/-0.75	Center	
1	1	0	1	1	27.00	+/-1.0	Center	
1	1	1	0	0	27.00	+/-0.25	Center	
1	1	1	0	1	27.00	+/-0.5	Center	
1	1	1	1	0	27.00	+/-0.75	Center	
1	1	1	1	1	27.00	+/-1.0	Center	

Table 4: CPU Divider Ratios

		Divider (3:2)											
	Bit	00		01		10		11	MSB				
(1:0)	00	0000	2	0100	4	1000	8	1100	16				
	01	0001	3	0101	6	1001	12	1101	24				
Divider	10	0010	5	0110	10	1010	20	1110	40				
l ≧	11	0011	15	0111	30	1011	60	1111	120				
	LSB	Address	Div	Address		Address	Div	Address	Div				

Table 5: SRC, SB_SRC, ATIG Divider Ratios

		Divider (3:2)										
	Bit	00		01		10		11	MSB			
(1:0)	00	0000	2	0100	4	1000	8	1100	16			
	01	0001	თ	0101	6	1001	12	1101	24			
jde	10	0010	5	0110	10	1010	20	1110	40			
Divider	11	0011	15	0111	14	1011	28	1111	56			
	LSB	Address	Div	Address		Address	Div	Address	Div			

Differential Output Power Management Table

PD#	CLKREQ#	SMBus Register OE	True output	output Output		Complement Output	
		Ů	Fre	ee-Run	CLKREQ# Selected		
1	0	Enable	Running	Running	Running	Running	
0	Х	X	Low/20K	Low	Low/20K	Low	
1	1	Enable	Running	Running	Low/20K	Low	
Х	Х	Disable	Low/20K	Low	Low/20K	Low	

Note: 20K means 20Kohm Pull Down

Singled-ended Power Management Table

PD#	SMBus Register OE	48MHz	27MHz	HTT66MHz	REF(2:0)
1	Enable	Running	Running	Running	Running
0	Enable	Low	Low	Low	Hi-Z

Absolute Max

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
3.3V Supply Voltage	VDDxxx	-		3.3	GND + 3.9V	V	1
Storage Temperature	Ts	-	-65		150	°C	1
Ambient Operating Temp	Tambient	-	0		70	°C	1
Case Temperature	Tcase	-			115	°C	1
Input ESD protection HBM	ESD prot	-	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	Notes
3.3V Core Supply Voltage	VDDxxx	-	3.135	3.3	3.465	V	1
Input High Voltage	V _{IH}	VDD = 3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1
Input Low Voltage	V _{IL}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	1
•	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			V V V uA	1
Low Threshold Input- High Voltage	V_{IH_FS}	VDD = 3.3 V +/-5%	0.7		$V_{DD} + 0.3$	V	1
Low Threshold Input- Low Voltage	V _{IL_FS}	VDD = 3.3 V +/-5%	V _{SS} - 0.3		0.35	V	1
Operating Current	I _{DD3.3OP}	3.3V VDD current, all outputs driven			175	mA	1
Powerdown Current	I _{DD3.3PD}	all diff pairs low/low			2	mA	1
Input Frequency	Fi	VDD = 3.3 V +/-5%		14.31818		MHz	2
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs			5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
	C _{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD to 1st clock			3	ms	1
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_PD		CPU output enable after PD de-assertion			300	us	1
Tfall_PD		PD fall time of			5	ns	1
Trise_PD		PD rise time of			5	ns	1
SMBus Voltage	V_{DDSMB}		2.7		5.5	V	1
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	1
Current sinking at $V_{OL} = 0.4 \text{ V}$	I _{PULLUPSMB}		4	6		mA	1
SMBCLK/SMBDAT Clock/Data Rise Time	T _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SMBCLK/SMBDAT Clock/Data Fall Time	T _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs.

AC Electrical Characteristics - Low-Power DIF Outputs: CPUKG and HTT

		•					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Crossing Point Variation	ΔV_{CROSS}	Single-ended Measurement			140	mV	1,2,5
Frequency - CPU	f _{CPU}	Spread Specturm On	198.8		200	MHz	1,3
Frequency - HTT	f _{HTT}	Spread Specturm On	99.4		100	MHz	1,3
Long Term Accuracy	ppm	Spread Specturm Off	-300		+300	ppm	1,11
Rising Edge Slew Rate	S _{RISE}	Differential Measurement	0.5		10	V/ns	1,4
Falling Edge Slew Rate	S _{FALL}	Differential Measurement	0.5		10	V/ns	1,4
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
CPU, DIF HTT Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement			150	ps	1,6
Accumulated Jitter	t _{JACC}	See Notes			1	ns	1,7
Peak to Peak Differential Voltage	$V_{D(PK-PK)}$	Differential Measurement	400		2400	mV	1,8
Differential Voltage	V_D	Differential Measurement	200		1200	mV	1,9
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
Amplitude Variation	ΔV_D	Change in V _D DC cycle to cycle	-75		75	mV	1,10
CPU[1:0] Skew	CPU _{SKEW10}	Differential Measurement			100	ps	1

Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

²Single-ended measurement at crossing point. Value is maximum – minimum over all time. DC value of common mode is not

³Minimum Frequency is a result of 0.5% down spread spectrum

⁴Differential measurement through the range of ±100 mV, differential signal must remain monotonic and within slew rate spec when crossing through this region.

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ Max difference of t_{CYCLE} between any two adjacent cycles.

⁷ Accumulated tjc.over a 10 μs time period, measured with JIT2 TIE at 50ps interval.

⁸ VD(PK-PK) is the overall magnitude of the differential signal.

⁹ VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design, that ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed.

¹⁰ The difference in magnitude of two adjacent VD DC measurements. VD DC is the stable post overshoot and ring-back part of

¹¹ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

AC Electrical Characteristics - Low-Power DIF Outputs: SRC, SB_SRC and ATIG

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	0.6		4	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	0.6		4	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement			20	%	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot			1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300			mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300			mV	1
Crossing Point Voltage	V_{XABS}	Single-ended Measurement	300		550	mV	1,3,4
Crossing Point Variation	$V_{XABSVAR}$	Single-ended Measurement			140	mV	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45		55	%	1
SRC, ATIG, Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement			125	ps	1
SRC[5:0] Skew	SRC _{SKEW}	Differential Measurement			250	ps	1
SB_SRC[1:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1
ATIG[2:0] Skew	SRC _{SKEW}	Differential Measurement			100	ps	1

Notes on Electrical Characteristics:

Electrical Characteristics - Single-ended HTT 66MHz Clock

SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
ppm	see Tperiod min-max values	-100		100	ppm	1,2
т	66.67MHz output nominal	14.9955		15.0045	ns	2
l period	66.67MHz output spread	14.9955		15.0799	ns	2
V_{OH}	$I_{OH} = -1 \text{ mA}$	1.6	1.8	3.3	V	1
V_{OL}	I _{OL} = 1 mA		0	0.2	V	1
t _{r1}	$V_{OL} = 0.36 \text{ V}, V_{OH} = 1.44 \text{ V}$			1.5	ns	1
t _{f1}	$V_{OH} = 1.44 \text{ V}, V_{OL} = 0.36 \text{ V}$			1.5	ns	1
d _{t1}	$V_{T} = 0.9 V$	45		55	%	1
t _{jcyc-cyc}	$V_T = 0.9 \ V$			300	ps	1
t_{LTJ}	$V_T = 0.9 V$			1	ns	1
	$\begin{array}{c} \text{ppm} \\ \text{T_{period}} \\ \text{V_{OH}} \\ \text{V_{OL}} \\ \text{t_{r1}} \\ \text{t_{f1}} \\ \text{d_{t1}} \\ \text{$t_{\text{jcyc-cyc}}$} \end{array}$	$\begin{array}{c} \text{ppm} & \text{see Tperiod min-max values} \\ T_{\text{period}} & 66.67\text{MHz output nominal} \\ 66.67\text{MHz output spread} \\ V_{\text{OH}} & I_{\text{OH}} = -1 \text{ mA} \\ V_{\text{OL}} & I_{\text{OL}} = 1 \text{ mA} \\ t_{\text{r1}} & V_{\text{OL}} = 0.36 \text{ V}, V_{\text{OH}} = 1.44 \text{ V} \\ t_{\text{f1}} & V_{\text{OH}} = 1.44 \text{ V}, V_{\text{OL}} = 0.36 \text{ V} \\ d_{\text{t1}} & V_{\text{T}} = 0.9 \text{ V} \\ t_{\text{jcyc-cyc}} & V_{\text{T}} = 0.9 \text{ V} \\ t_{\text{LTJ}} & V_{\text{T}} = 0.9 \text{ V} \\ \end{array}$	$\begin{array}{c} \text{ppm} & \text{see Tperiod min-max values} & -100 \\ T_{\text{period}} & 66.67\text{MHz output nominal} & 14.9955 \\ 66.67\text{MHz output spread} & 14.9955 \\ V_{\text{OH}} & I_{\text{OH}} = -1 \text{ mA} & 1.6 \\ V_{\text{OL}} & I_{\text{OL}} = 1 \text{ mA} \\ t_{\text{r1}} & V_{\text{OL}} = 0.36 \text{ V}, V_{\text{OH}} = 1.44 \text{ V} \\ t_{\text{f1}} & V_{\text{OH}} = 1.44 \text{ V}, V_{\text{OL}} = 0.36 \text{ V} \\ d_{\text{t1}} & V_{\text{T}} = 0.9 \text{ V} \\ t_{\text{jcyc-cyc}} & V_{\text{T}} = 0.9 \text{ V} \\ \end{array}$	$\begin{array}{c} \text{ppm} & \text{see Tperiod min-max values} & -100 \\ \\ T_{\text{period}} & 66.67\text{MHz output nominal} & 14.9955 \\ \hline 66.67\text{MHz output spread} & 14.9955 \\ \hline V_{\text{OH}} & I_{\text{OH}} = -1 \text{ mA} & 1.6 & 1.8 \\ \hline V_{\text{OL}} & I_{\text{OL}} = 1 \text{ mA} & 0 \\ \hline t_{\text{r1}} & V_{\text{OL}} = 0.36 \text{ V}, \text{ V}_{\text{OH}} = 1.44 \text{ V} \\ \hline t_{\text{f1}} & V_{\text{OH}} = 1.44 \text{ V}, \text{ V}_{\text{OL}} = 0.36 \text{ V} \\ \hline d_{\text{t1}} & V_{\text{T}} = 0.9 \text{ V} & 45 \\ \hline t_{\text{jcyc-cyc}} & V_{\text{T}} = 0.9 \text{ V} \\ \hline t_{\text{LTJ}} & V_{\text{T}} = 0.9 \text{ V} \\ \hline \end{array}$	$\begin{array}{c} \text{ppm} & \text{see Tperiod min-max values} & \text{-}100 & 100 \\ \\ T_{\text{period}} & 66.67\text{MHz output nominal} & 14.9955 & 15.0045 \\ \hline 66.67\text{MHz output spread} & 14.9955 & 15.0799 \\ \hline V_{\text{OH}} & I_{\text{OH}} = \text{-}1 \text{ mA} & 1.6 & 1.8 & 3.3 \\ \hline V_{\text{OL}} & I_{\text{OL}} = 1 \text{ mA} & 0 & 0.2 \\ \hline t_{\text{r1}} & V_{\text{OL}} = 0.36 \text{ V}, \text{ V}_{\text{OH}} = 1.44 \text{ V} & 1.5 \\ \hline t_{\text{f1}} & V_{\text{OH}} = 1.44 \text{ V}, \text{ V}_{\text{OL}} = 0.36 \text{ V} & 1.5 \\ \hline d_{\text{t1}} & V_{\text{T}} = 0.9 \text{ V} & 45 & 55 \\ \hline t_{\text{jcyc-cyc}} & V_{\text{T}} = 0.9 \text{ V} & 300 \\ \hline \end{array}$	$\begin{array}{c} \text{ppm} & \text{see Tperiod min-max values} & -100 & 100 & \text{ppm} \\ \hline T_{\text{period}} & 66.67\text{MHz output nominal} & 14.9955 & 15.0045 & \text{ns} \\ \hline 66.67\text{MHz output spread} & 14.9955 & 15.0799 & \text{ns} \\ \hline V_{\text{OH}} & I_{\text{OH}} = -1 \text{ mA} & 1.6 & 1.8 & 3.3 & V \\ \hline V_{\text{OL}} & I_{\text{OL}} = 1 \text{ mA} & 0 & 0.2 & V \\ \hline t_{\text{r1}} & V_{\text{OL}} = 0.36 \text{ V}, V_{\text{OH}} = 1.44 \text{ V} & 1.5 & \text{ns} \\ \hline t_{\text{f1}} & V_{\text{OH}} = 1.44 \text{ V}, V_{\text{OL}} = 0.36 \text{ V} & 1.5 & \text{ns} \\ \hline d_{\text{t1}} & V_{\text{T}} = 0.9 \text{ V} & 45 & 55 & \% \\ \hline t_{\text{jcyc-cyc}} & V_{\text{T}} = 0.9 \text{ V} & 300 & \text{ps} \\ \hline \end{array}$

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 22Ω (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that REF is at 14.31818MHz

Electrical Characteristics - USB - 48MHz

PARAMETER	SYMBOL	CONDITIONS*	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-100	0	100	ppm	1,2
Clock period	T _{period}	48.00MHz output nominal	20.8229		20.8344	ns	2
Clock Low Time	T _{low}	Measure from < 0.6V	9.3750		11.4580	ns	2
Clock High Time	T_{high}	Measure from > 2.0V	9.3750		11.4580	ns	2
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Outrot High Comment	,	V _{OH} @MIN = 1.0 V	-33			mA	1
Output High Current	I _{OH}	$V_{OH}@MAX = 3.135 V$			-33	mA	1
Output Low Current		V _{OL} @ MIN = 1.95 V	30			mA	1
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V			38	mA	1
Rise Time	t _{r_USB}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	0.5		1.5	ns	1
Fall Time	t _{f_USB}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	0.5		1.5	ns	1
Duty Cycle	d _{t1}	$V_T = 1.5 V$	45		55	%	1
Group Skew	t _{skew}	$V_{T} = 1.5 \text{ V}$			250	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V			130	ps	1,2

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 22Ω (unless otherwise specified)

Electrical Characteristics - 27MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	nnm	see Tperiod min-max values	-50		50	nnm	1,2
Long Accuracy	ppm	see Theriod Illin-Illax values	-15		15	ppm	1,2,3
Clock period	T _{period}	27.000MHz output nominal	37.0365		37.0376	ns	2
Output High Voltage(27SS)	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.1			V	1,10
Output High Voltage (27NSS)	V_{OH}	$I_{OH} = -1 \text{ mA}$	0.8			V	1,11
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	1
Output High Current		$V_{OH} = 1.0 \text{ V}$	-29			mA	1,10
Output High Current	I _{OH}	V _{OH} = 3.135 V			-23	mA	1,10
Output Low Current		V _{OL} = 1.95 V	29			mA	1,10
Output Low Current	I _{OL}	$V_{OL} = 0.4 V$			27	mA	1,10
Edge Rate	+	Rising/Falling edge rate	1 0	2	4	V/ns	-1
Luge nate	t _{slewr/f}	V _T @ 20%-80%	,	۷	4	V/115	'
Duty Cycle	d _{t1}	$V_T = 1.5 \text{ V}$	45		55	%	1
Jitter	t _{Itj}	Long Term (10us)			300	ps	1
Jitter	t _{jcyc-cyc}	$V_T = 1.5 V$			200	ps	1

 $^{^1\}mbox{Guaranteed}$ by design and characterization, not 100% tested in production.

¹Guaranteed by design and characterization, not 100% tested in production.

²ICS recommended and/or chipset vendor layout guidelines must be followed to meet this specification

 $^{^{\}rm 2}\,{\rm Slew}$ rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

 $^{^{10}}$ $V_{DD} = 3.3V$

 $^{^{11}} V_{DD} = 1.1 V$

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-100		100	ppm	1,2
Clock period	T_{period}	14.318MHz output nominal	69.8270		69.8550	ns	2
Clock Low Time	T _{low}	Measure from < 0.6V	30.9290		37.9130	ns	2
Clock High Time	T_{high}	Measure from > 2.0V	30.9290		37.9130	ns	2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4			V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.4	V	1
Output High Current	I _{OH}	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-29		-23	mA	1
Output Low Current	I _{OL}	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	29		27	mA	1
Rise Time	t _{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1		1.5	ns	1
Fall Time	t _{f1}	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1		1.5	ns	1
Skew	t _{sk1}	V _T = 1.5 V			250	ps	1
Duty Cycle	d _{t1}	$V_{T} = 1.5 \text{ V}$	45		55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V			200	ps	1

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, CL = 5 pF with Rs = 22Ω (unless otherwise specified)

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

General SMBus serial interface information for the ICS9EPRS488

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

In	dex Block W	/rit	e Operation
Co	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	re Address D2 _(H)		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begii	nning Byte N		
			ACK
	0	ţe	
	0	X Byte	0
	0	×	0
	·		0
Byt	e N + X - 1		
	·		ACK
Р	stoP hit		

In	Index Block Read Operation					
Cor	troller (Host)	IC	S (Slave/Receiver)			
Т	starT bit					
	e Address D2 _(H)					
WR	WRite					
		ACK				
Begi	nning Byte = N					
	-		ACK			
RT	Repeat starT					
Slave	e Address D3 _(H)					
RD	ReaD					
			ACK			
		Data Byte Count = X				
	ACK	<u> </u>				
			Beginning Byte N			
	ACK					
		X Byte	0			
	0	<u>6</u>	0			
	0	×	0			
	0					
			Byte N + X - 1			
N	Not acknowledge					
Р	stoP bit					

SMBus Table: Latched Input Readback Output Enable Control Register

Byte	0	Name	Description	Туре	0	1	Default
	Bit 7	SEL_HTT66 readback	Hypertransport Select	R	100MHz Differential HTT clock	66 MHz 3.3V Single- ended HTT clock	Latch
	Bit 6	SEL_SATA readback	SATA Select	R	SRC6/SATA pair is SRC SS capable output	SRC6/SATA pair is SATA non-spread output	Latch
	Bit 5	REF0_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 4	REF1_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 3	REF2_OE	Output Enable	RW	Hi-Z	Enabled	1
	Bit 2	48MHz_1_OE	Output Enable	RW	Low	Enabled	1
	Bit 1	48MHz_0_OE	Output Enable	RW	Low	Enabled	1
	Bit 0	SS_Enable	Spread Spectrum Enable (CPU, SRC, SB_SRC, ATIG)	RW	Spread Off	Spread On	0

SMBus Table:Output Enable Control Register

Byte	1	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC7/27MHz_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SRC6/SATA_OE Enable	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	SRC5_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 4	SRC4_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 3	SRC3_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	SRC2_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	SRC1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 0	SRC0_OE	Output Enable	RW	Low/Low	Enabled	1

SMBus Table: Output Enable and 48MHz Slew Rate Control Register

Byte	2	Name	Control Function	Туре	0	1	Default
	Bit 7	SB_SRC1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 6	SB_SRC0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 5	48MHz 0 Slew Rate	Slew Rate Control	RW	These bits program the ended outputs. The m 1.9V/ns and the minimum. The slew rate selections.	naximum slew rate is m slew rate is 1.1V/ns.	1
	Bit 4	+olvii iz_o_olew Hate	Siew Hate Control	1100	11 = 1.9V/ns 10 = 1.6V/ns 01 = 1.1V/ns 00 = tristated		1
	Bit 3	ATIG1_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 2	ATIG0_OE	Output Enable	RW	Low/Low	Enabled	1
	Bit 1	27MHz_SS_Enable	Spread Spectrum Enable 27MHz_SS	RW	Spread Off Spread On		0
	Bit 0	Reserved	Reserved	RW	-	-	Х

SMBus Table: CPU/HTT Frequency Control Register

	Swibas Table. Of Office Trequency Control neglister									
Byte	3	Name	Control Function	Туре	0	1	Default			
	Bit 7	CPU0_OE	Output enable	RW	Low/Low	Enable	1			
	Bit 6	SEL_27 readback	SRC7/27MHz Select	R	SRC7 Output	27MHz Output	Latch			
	Bit 5	ATIG2_OE	Output Enable	RW	Low/Low	Enabled	1			
	Bit 4	HTT/66MHz_OE	Output Enable	RW	Low/Low	Enabled	1			
	Bit 3	CPU_FS3	CPU Frequency Select	RW	See CPU/HTT/SRC/AT	See CPU/HTT/SRC/ATIG Frequency Select Table Default value corresponds to 200MHz.				
	Bit 2	CPU_FS2	CPU Frequency Select	RW						
	Bit 1	CPU_FS1	CPU Frequency Select	RW	Note that the HTT frequency tracks the CPU		1			
	Bit 0	CPU_FS0	CPU Frequency Select LSB	RW	freque	frequency.				

1616—08/20/09

SMBus Table: SB_SRC Frequency Control Register

Byte	4	Name	Control Function	Туре	0	1	Default
	Bit 7	S3		RW	S[1:0]: 00 = -0	.5% Default,	0
	Bit 6	S2	27 SSC	RW	01 =1.0%, 10 = -1.5%, 11 = -2%. See Table 3: 27Mhz_Spread, LCDCLK Spread and Frequency Selection Table for additional selections.		0
	Bit 5	S1	Spread Select	RW			0
	Bit 4	S0	Opread Gelect	RW			0
Ī	Bit 3	SB_SRC_FS3	SB_SRC Frequency Select	RW			1
	Bit 2	SB_SRC_FS2	SB_SRC Frequency Select	RW	See SB_SRC Frequ	ency Select Table.	1
	Bit 1	SB_SRC_FS1	SB_SRC Frequency Select	RW			1
	Bit 0	SB_SRC_FS0	SB_SRC Freq. Select LSB	RW			1

SMBus Table: 27MHz Slew Rate Control Register

Byte	5	Name	Control Function	Туре	0	1	Default
Bit 7 27M SS Slew Rate Slew Rate		Slew Rate Control	RW	These bits program the slew rate of the single ended outputs. The maximum slew rate is		1	
	Bit 6	27W_00_0low Flate	Slow Flate Soffition	1114		9V/ns and the minimum slew rate is 1.1V/ns. The slew rate selection is as follows:	
	Bit 5	27M NS Slow Pato	Slew Rate Control	RW	11 = 1. 10 = 1.	6V/ns	1
	Bit 4	27M_NS_Slew Rate Bit 4	Siew hate Control	1100	01 = 1.1V/ns 00 = tristated		1
ı	Bit 3	SB_SRC Source	SB_SRC Source Selection	RW	SB_SRC PLL	SRC PLL	1
I	Bit 2		Reserv	/ed	·		0
	Bit 1		Reserv	/ed			0
	Bit 0		Reserv	/ed			0

SMBus Table: I/O Vout Control Register

Byte	6	Name	Control Function	Туре	0	1	Default
	Bit 7	SRC Diff AMP	SRC Differential output	RW	00 = 700 mV	01 = 800mV	0
	Bit 6	SRC Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 5	CPU Diff AMP	CPU Differential output	RW	00 = 700mV	01 = 800mV	0
	Bit 4	CPU Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 3	SB_SRC Diff AMP	SB_SRC Differential output	RW	00 = 700mV	01 = 800mV	0
	Bit 2	SB_SRC Diff AMP	Amplitude Control	RW	10 = 900mV	11 = 1000mV	1
	Bit 1		Reserv	ved	-	-	Х
	Bit 0		Reserv	ved .			Х

SMBus Table: Vendor & Revision ID Register

Byte	7	Name	Control Function	Туре	0	1	Default
	Bit 7	RID3		R	-	-	0
	Bit 6	RID2	REVISION ID	R	-	-	1
	Bit 5	RID1	TIEVISION ID	R	-	-	0
	Bit 4	RID0		R	-	-	0
	Bit 3	VID3		R	-	-	0
	Bit 2	VID2	VENDOR ID	R	-	-	0
	Bit 1	VID1	VENDOR ID	R	-	-	0
	Bit 0	VID0		R	-	-	1

SMBus Table: Byte Count Register

Byte	8	Name	Control Function	Type	0	1	Default
	Bit 7		Reserv	ved			0
	Bit 6		Reserv	ved			0
	Bit 5 BC5 Byte Count bit 5 (MSB) RW		0				
	Bit 4	Bit 4 BC4 Byte Count bit 4 RW			0		
	Bit 3	BC3	Byte Count bit 3	RW	Determines the number	of bytes that are read	1
	Bit 2	BC2	Byte Count bit 2	RW	back from the device	e. Default is 0F hex.	1
	Bit 1	BC1	Byte Count bit 1	RW	RW		1
	Bit 0	BC0	Byte Count bit 0 (LSB)	RW			1

SMBus Table: WatchDog Timer Control Register

Byte	9	Name	Control Function	Туре	0	1	Default
	Bit 7	HWD_EN	Watchdog Hard Alarm Enable	RW	Disable and Reload Hartd Alarm Timer, Clear WD Hard status bit.	Enable Timer	0
	Bit 6	SWD_EN	Watchdog Soft Alarm Enable	RW	Disable	Enable	0
	Bit 5	WD Hard Status	WD Hard Alarm Status	R	Normal	Alarm	Х
	Bit 4	WD Soft Status	WD Soft Alarm Status	R	Normal	Alarm	X
	Bit 3	WDTCtrl	Watch Dog Alarm Time base Control	RW	290ms Base	1160ms Base	0
	Bit 2	HWD2	WD Hard Alarm Timer Bit 2	RW	These bits represent the	number of Watch Dog	1
	Bit 1	HWD1	WD Hard Alarm Timer Bit 1	RW	Time Base Units that p	ass before the Watch	1
	Bit 0	HWD0	WD Hard Alarm Timer Bit 0	RW	Alarm expires. Defau	It is 7 X 290ms = 2s.	1

SMBus Table: WD Timer Safe Frequency Control Register

Byte	10	Name	Control Function	Туре	0	1	Default
	Bit 7	SWD2	WD Soft Alarm Timer Bit 2	RW	These bits represent the	number of Watch Dog	1
	Bit 6	SWD1	WD Soft Alarm Timer Bit 1	RW	Time Base Units that p	ass before the Watch	1
	Bit 5	SWD0	WD Soft Alarm Timer Bit 0	RW	Alarm expires. Defau	ılt is 7 X 290ms = 2s.	1
	Bit 4	WD SF4		RW	These bits configure the	safe frequency that the	0
	Bit 3	WD SF3		RW	device returns to if the W	atchdog Timer expires.	0
	Bit 2	WD SF2	Watch Dog Safe Freq	RW	The value show here co	rresponds to the power	1
	Bit 1	WD SF1	Programming bits	RW	•	the device. See the various	
	Bit 0	WD SF0		RW	Frequency Select T freque		1

SMBus Table: CPU PLL Frequency Control Register

Byte	11	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div2	N Divider Prog bit 2	RW			Χ
	Bit 6	N Div1	N Divider Prog bit 1	RW			Χ
	Bit 5	M Div5		RW	The decimal representati	on of M and N Divider in	Χ
	Bit 4	M Div4		RW	Byte 11 and 12 will config	ure the VCO frequency.	Χ
	Bit 3	M Div3	M Divider Programming bits	RW	Default at power up = B	•	Χ
	Bit 2	M Div2	IN DIVIDE L'TOGLATITILIS DIS	RW	Frequency = 14.318 x	Ndiv(10:0)/Mdiv(5:0) .	Χ
	Bit 1	M Div1		RW			Χ
	Bit 0	M Div0		RW			Χ

SMBus Table: CPU PLL Frequency Control Register

Byte	12	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10		RW			Х
	Bit 6	N Div9		RW			X
	Bit 5	N Div8		RW	The decimal representati	mal representation of M and N Divider in and 12 will configure the VCO frequency. at power up = Byte 3 Rom table. VCO ency = 14.318 x Ndiv(10:0)/Mdiv(5:0).	Х
	Bit 4	N Div7	N Divider Programming	RW	1 '		` '
	Bit 3	N Div6	b(10:3)	RW			Х
	Bit 2	N Div5		RW	Frequency = 14.318 x		Х
	Bit 1	N Div4		RW			Х
	Bit 0	N Div3		RW			Х

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte	13	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW			Х
	Bit 6	SSP6		RW			Х
	Bit 5	SSP5		RW	Bytes 13 and 14 set the CPU/HTT/SRC/ATIG spread pecentage.Please contact ICS for the		Х
	Bit 4	SSP4	Spread Spectrum	RW			Х
	Bit 3	SSP3	Programming b(7:0)	RW			X
	Bit 2	SSP2		RW	αρριοριιαι	appropriate values.	
	Bit 1	SSP1		RW			Х
	Bit 0	SSP0		RW			Χ

SMBus Table: CPU PLL Spread Spectrum Control Register

Byte	14	Name	Control Function	Туре	0	1	Default
	Bit 7		Reserv	/ed			Х
	Bit 6	SSP14		RW			X
	Bit 5	SSP13		RW	Bytes 13 and 14 set the CPU/HTT/SRC/ATIG		Χ
	Bit 4	SSP12	Carood Capatrum	RW			X
	Bit 3	SSP11	Spread Spectrum Programming b(14:8)	RW	spread pecentage.Plea	se contact ICS for the	Χ
	Bit 2	SSP10	1 Togramming b(14.0)	RW	appropriat	e values.	X
	Bit 1	SSP9		RW			Χ
	Bit 0	SSP8		RW			Х

SMBUS Table: CPU Output Divider Register

Byte	15	Name	Control Function	Туре	0	1	Default
	Bit 7	CPU NDiv0	LSB N Divider Programming	RW	CPU M/N pro	ogramming.	Х
	Bit 6		Reserv	red			Х
	Bit 5		Reserv	/ed			Х
	Bit 4	Reserved				Х	
	Bit 3	CPUDiv3		RW	0000:/2 ; 0100:/4	1000:/8 ; 1100:/16	Х
	Bit 2	CPUDiv2	CPU Divider Ratio	RW	0001:/3 ; 0101:/6	1001:/12 ; 1101:/24	Х
	Bit 1	CPUDiv1	Programming Bits	RW	0010:/5 ; 0110:/10	1010:/20 ; 1110:/40	Х
	Bit 0	CPUDiv0		RW	0011:/15 ; 0111:/18	1011:/36 ; 1111:/72	Х

SMBUS Table: SB_SRC Frequency Control Register

Byte	16	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div2	N Divider Prog bit 2	RW			Χ
	Bit 6	N Div1	N Divider Prog bit 1	RW			Χ
	Bit 5	M Div5		RW	The decimal representati	on of M and N Divider in	Χ
	Bit 4	M Div4		RW	Byte 16 and 17 configu	ire the SB_SRC VCO	Χ
	Bit 3	M Div3	M Divider Programming	RW	frequency. See M/N Cad		Χ
	Bit 2	M Div2	bit (5:0)	RW	frequency	formulas.	Χ
	Bit 1	M Div1		RW			Χ
	Bit 0	M Div0		RW			Χ

1616—08/20/09

SMBUS Table: SB_SRC Frequency Control Register

Byte	17	Name	Control Function	Туре	0	1	Default
	Bit 7	N Div10	F	RW		X	
	Bit 6	N Div9		RW			X
	Bit 5	N Div8		RW	The decimal representation of M and N Divider in		Х
	Bit 4	N Div7	N Divider Programming	RW	Byte 16 and 17 configu	ire the SB_SRC VCO	Х
	Bit 3	N Div6	Byte16 bit(7:0) and Byte15 bit(7:6)	RW	frequency. See M/N Cad	culation Tables for VCO	Х
	Bit 2	N Div5	Dil(7.0)	RW	frequency	formulas.	Х
	Bit 1	N Div4		RW			X
Ī	Bit 0	N Div3		RW			Х

SMBUS Table: SB_SRC Spread Spectrum Control Register

Byte	18	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP7		RW			Χ
	Bit 6	SSP6		RW			X
	Bit 5	SSP5		RW	Distance 10 and 10 and the the CD CDC anyond		Χ
	Bit 4	SSP4	Spread Spectrum	RW	,	lytes 18 and 19 set the the SB_SRC spread pecentages. Please contact ICS for the	
	Bit 3	SSP3	Programming bit(7:0)	RW		appropriate values.	X
	Bit 2	SSP2		RW	арргорпал	αρριομπαίε values.	
	Bit 1	SSP1		RW			
	Bit 0	SSP0		RW			Χ

SMBUS Table: SB_SRC Spread Spectrum Control Register

Byte	19	Name	Control Function	Туре	0	1	Default
	Bit 7	SSP15		RW			Χ
	Bit 6	SSP14		RW			X
	Bit 5	SSP13	1	RW Bytes 18 and 19 set the the SB_SRC sprea	the CR CRC aproad	Χ	
	Bit 4	SSP12	Spread Spectrum	RW	pecentages. Please		X
	Bit 3	SSP11	Programming bit(14:8)	RW	appropriat		Χ
	Bit 2	SSP10		RW	арргорна	e values.	X
	Bit 1	SSP9		RW			
	Bit 0	SSP8		RW			X

SMBUS Table: SB_SRC Output Divider Control Register

Byte	20	Name	Control Function	Туре	0	1	Default
	Bit 7	SB_SRC NDiv0	SB_SRC NDiv0 LSB N Divider Programming RW SB_SRC M/N programming.				Χ
	Bit 6		Reserved				Χ
	Bit 5		Reserved				
	Bit 4		Reserved				Χ
	Bit 3	SB_SRCDiv3		RW	0000:/2 ; 0100:/4	1000:/8 ; 1100:/16	Χ
	Bit 2	SB_SRCDiv2	SRC Divider Ratio	RW	0001:/3 ; 0101:/6	1001:/12 ; 1101:/24	Χ
	Bit 1	SB_SRCDiv1	Programming Bits	RW	0010:/5 ; 0110:/10	1010:/20 ; 1110:/40	Χ
	Bit 0	SB_SRCDiv0		RW	0011:/15 ; 0111:/18	1011:/36 ; 1111:/72	Χ

SMBus Table: Device ID register

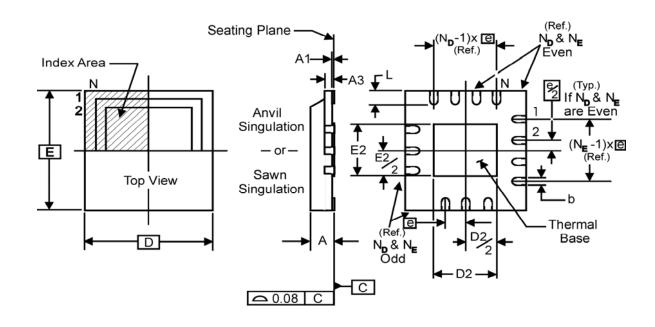
		CINEGO TUBICI ECTICO IE I					
Byte	21	Name	Control Function	Type	0	1	Default
	Bit 7	Device ID7		R			0
	Bit 6	Device ID6		R			1
	Bit 5	Device ID5		R			1
	Bit 4	Device ID4	Device ID	R	76 h		1
	Bit 3	Device ID3	Device ID	R	701	iex	0
	Bit 2	Device ID2		R			
	Bit 1	Device ID1		R			1
	Bit 0	Device ID0		R			0

SMBus Table: CLKREQ# Configuration Register

	Cinduo Tubio: Office Configuration Regiotor							
Byte	22	Name	Control Function	Туре	0	1	Default	
	Bit 7	CPU/HTT/SRC/ATIG M/N En	CPU/HTT/SRC/ATIG PLL M/N Prog. Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0	
	Bit 6	SB_SRC M/N En	SB_SRC M/N Prog. Enable	RW	M/N Prog. Disabled	M/N Prog. Enabled	0	
	Bit 5	Reserved	Reserved	RW	-	-	0	
	Bit 4	Reserved	Reserved	RW	-	-	0	
	Bit 3	Reserved	Reserved	RW	-	-	0	
	Bit 2	Reserved	Reserved	RW	-	-	Χ	
	Bit 1	Reserved	Reserved	RW	-	-	Х	
Ī	Bit 0	Reserved	Reserved	RW	-	-	Х	

SMBus Table: CLKREQ# Configuration Register

Byte	23	Name	Control Function	Туре	0	1	Default
	Bit 7	Reserved	Reserved	RW	-	-	0
	Bit 6	Reserved	Reserved	RW	-	-	0
	Bit 5	CLKREQ4#_Enable	CLKREQ4# controls SRC5	RW	Not Controlled	Controlled	1
	Bit 4	CLKREQ4#_Enable	CLKREQ4# controls SRC4	RW	Not Controlled	Controlled	1
	Bit 3	CLKREQ3#_Enable	CLKREQ3# controls SRC3	RW	Not Controlled	Controlled	1
	Bit 2	CLKREQ2#_Enable	CLKREQ2# controls SRC2	RW	Not Controlled	Controlled	1
	Bit 1	CLKREQ1#_Enable	CLKREQ1# controls SRC1	RW	Not Controlled	Controlled	1
	Bit 0	CLKREQ0#_Enable	CLKREQ0# controls SRC0	RW	Not Controlled	Controlled	1


SMBus Table: Test Mode Configuration Register

Byte	24	Name	Control Function	Туре	0	1	Default
	Bit 7	Test_Md_Sel	Selects Test Mode	RW	Normal mode	All ouputs are REF/N	0
	Bit 6	DIAG Enable#	DIAG enable CPU and LCD PLL	RW	Reset forces B24[6:4,2,0] to 0	DIAG mode Enabled	0
	Bit 5	CPU PLL_LOCK signal	CPU PLL Lock Detect	R	unlocked	Locked	HW
	Bit 4	27MHz PLL_LOCK signal	27MHz PLL Lock Detect	R	unlocked	Locked	HW
	Bit 3	Fixed PLL_LOCK signal	Fixed PLL Lock Detect	R	unlocked	Locked	HW
	Bit 2	SRC PLL_LOCK signal	Fixed PLL Lock Detect	R	unlocked	Locked	HW
	Bit 1	Frequency Check	Primary PLL or external crystal Frequency Accuracy	R	Not Accurate	Accurate	HW
	Bit 0	PWRGD Status	Power on Reset Status	R	Invalid voltage levels on any of the VDDs. CKPWRGD is not asserted or external XTAL not detected.	Valid voltage levels exist on all the VDD. CKPWRGD is asserted and external XTAL is detected.	HW

SMBus Table:Slew Rate Select Register

Byte	25	Name	Control Function	Туре	0	1	Default
	Bit 7	48MHz 1 Slew Rate	Slew Rate Control	RW	These bits program the slew rate of the single	1	
	Bit 6	40W112_1_0low 1 tate	0.011 1 10.10 0011.11 01		ended outputs. The maximum slew rate is		1
	Bit 5	REF2 Slew Rate	Slew Rate Control	RW	1.9V/ns and the minimum slew rate is 1.1V/ns.	1	
	Bit 4	nerz_siew nate	Giew Hate Control	1100	The slew rate selec	ction is as follows:	1
	Bit 3	REF1 Slew Rate	Slew Rate Control	RW	11 = 1.		1
	Bit 2	TIET I_Siew Hate	Siew Hate Control	1100	10 = 1.		1
	Bit 1	REF0 Slew Rate	Slew Rate Control	RW	01 = 1.1V/ns		1
	Bit 0	REFU_Siew Rate	Siew Hate Control		00 = tris	stated	1

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.		
Α	0.8	1.0		
A1	0	0.05		
А3	0.25 Re	eference		
b	0.18	0.3		
е	0.50 BASIC			

DIMENSIONS

SYMBOL	ICS 72L TOLERANCE
N	72
N_D	18
N _E	18
D x E BASIC	10.00 x 10.00
D2 MIN. / MAX.	5.75 / 6.15
E2 MIN. / MAX.	5.75 / 6.15
L MIN. / MAX.	0.30/ 0.50

Ordering Information

Part/Order Number	Shipping Packaging	Package	Temperature
9EPRS488CKLF	Tubes	72-pin MLF	0 to +70° C
9EPRS488CKLFT	Tape and Reel	72-pin MLF	0 to +70° C

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. Due to package size constraints, actual top-side marking may differ from the full orderable part number.

Revision History

Rev.	Issue Date	Description	Page #
0.1	7/31/2009	Initial Release	-
Α	8/20/2009	Release to final	-

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/