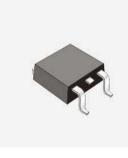
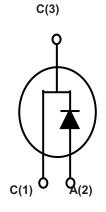


650V/5A Silicon Carbide Power Schottky Barrier Diode

Features

- Zero reverse recovery current
- Zero forward recovery voltage
- Temperature independent switching behavior
- High temperature operation
- High frequency operation


Key Characteristics				
V _{RRM}	650	V		
I _{F,} T _c ≤135 °C	10	Α		
Q _c	23	nC		



- Unipolar rectifier
- Substantially reduced switching losses
- No thermal run-away with parallel devices
- Reduced heat sink requirements

Applications

- SMPS, e.g., CCM PFC;
- Motor drives, Solar application, UPS, Wind turbine, Rail traction, EV/HEV

Package: TO-252

Part No.	Package Type	Marking
SC3S06505C	TO-252	06505

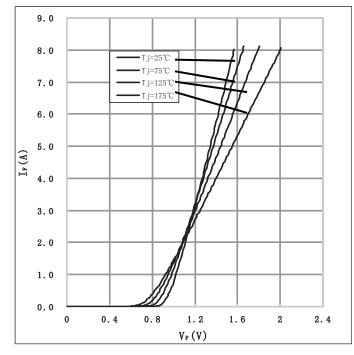
2016-12 REV:026

Maximum Ratings

Parameter	Symbol	Test Condition	Value	Unit
Repetitive Peak Reverse Voltage	V _{RRM}		650	V
Surge Peak Reverse Voltage	V _{RSM}		650	V
DC Blocking Voltage	V _{DC}		650	V
Continuous Forward		T _C =25℃	21.5	
	I _F	T _C =135℃	10	А
Current		T _C =160°C	5	
Repetitive Peak Forward		$T_c=25^{\circ}C$, tp=10ms, Half Sine	30	А
Surge Current	FRM	Wave, D=0.3		
Non-repetitive Peak	I _{FSM}	$T_{C}\text{=}25^{\circ}\text{C}\text{, tp}\text{=}10\text{ms}\text{, Half Sine}$	60	А
Forward Surge Current	FSM	Wave		
Power Dissipation	P _{TOT}	T _C =25 ℃	85.8	W
rower Dissipation		T _C =110°C	37.2	W
Operating Junction	Tj		-55℃ to 175℃	°C
Storage Temperature	T _{stg}		-55℃ to 175℃	°C
		M3 Screw		Nm
Mounting Torque		6-32 Screw		lbf-in

Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Unit
			Тур.	
Thermal resistance from junction to case	R_{thJC}		1.748	°C/W

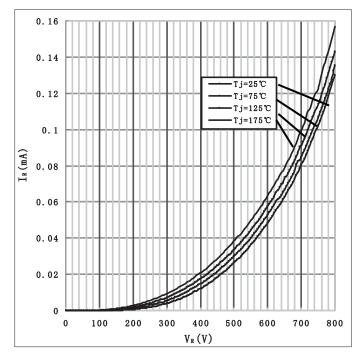

Electrical Characteristics

Parameter	Symbol	Test Conditions	Numerical		Unit	
Parameter	Symbol	Test conditions	Тур.	Max.	Unit	
	V	I _F =5A, T _j =25℃	1.35	1.7	v	
Forward Voltage	V _F	I _F =5A, T _j =175℃	1.55	2.5	V	
Deverse Current		V _R =650V, T _j =25℃	10	100	μΑ	
Reverse Current	I _R	V _R =650V, T _j =175℃	15	200		
		V _R =400V, T _j =150℃				
Total Capacitive Charge	Q _C	$Qc = \int_0^{VR} C(V)dV$	23	-	nC	
	С	V _R =0V, T _j =25 ℃, f=1MHZ	424	434	pF	
Total Capacitance		V _R =200V, T _j =25°C , f=1MHZ	44	45		
		V _R =400V, T _j =25°C , f=1MHZ	42.5	43		

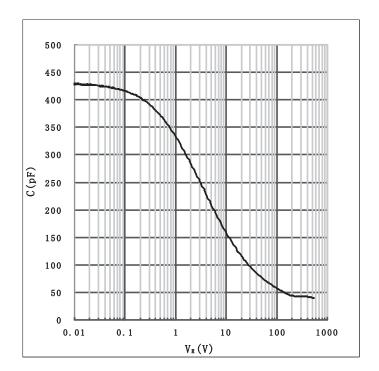
CRECTRON —

RATING AND CHARACTERISTICS CURVES (SC3S06505C)

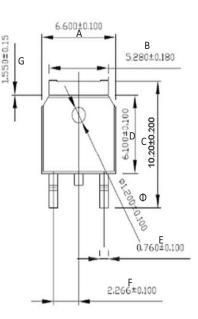
1) Forward IV characteristics as a function of Tj :



3) Current Derating


(10%, 30%, 50%, 70%, DC)

2) Reverse IV characteristics as a function of Tj :



4)Capacitance vs. reverse voltage

S 1.59±0.7

	DIM	Millimeters		Inches	
	DIW	Min.	Max.	Min.	Max.
	А	6.5	6.7	0.256	0.264
	В	5.1	5.46	0.201	0.215
	С	10	10.4	0.394	0.409
Н	D	6	6.2	0.236	0.244
2.3±0.02	Е	7.5	7.7	0.295	0.303
0.520±0.060	F	2.166	2.366	0.085	0.093
0.15±0.15	G	1.4	1.6	0.055	0.063
	Н	2.298	2.302	0.090	0.091
	Ι	0.46	0.58	0.018	0.023
	J	0	0.3	0.000	0.012
	К	2.55	2.9	0.100	0.114
	L	0.43	0.58	0.017	0.023
	М	0.89	2.29	0.035	0.090
0.505±0.075	Ф	1.1	1.3	0.043	0.051
0.505±0.075	Ψ	1.1	1.3	0.043	0.051

CRECTRON -

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

