Ultrafast Diode

50 A, 600 V

RURG5060

Description

The RURG5060 is an ultrafast diode with low forward voltage drop. This device is intended for use as freewheeling and clamping diodes in a variety of switching power supplies and other power switching applications. It is specially suited for use in switching power supplies and industrial application.

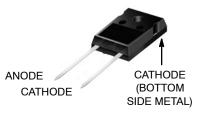
Features

- Ultrafast Recovery ($t_{rr} = 75 \text{ ns} (@ I_F = 50 \text{ A})$
- Max Forward Voltage($V_F = 1.6 V (@ T_C = 25 °C)$
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- This Device is Pb-Free and is RoHS Compliant

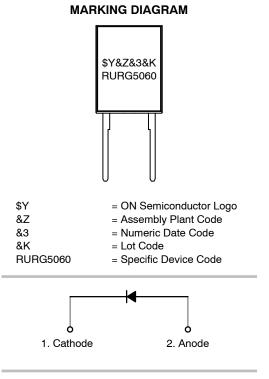
Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$ unless otherwise noted)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	600	V
Working Peak Reverse Voltage	V _{RWM}	600	V
DC Blocking Voltage	V _R	600	V
Average Rectified Forward Current (T _C = 102 $^{\circ}$ C)	I _{F(AV)}	50	A
Repetitive Peak Surge Current (Square Wave, 20 kHz)	I _{FRM}	100	A
Nonrepetitive Peak Surge Current (Halfwave 1 Phase, 60 Hz)	I _{FSM}	500	A
Maximum Power Dissipation	PD	150	W
Avalanche Energy (See Figure 7 and Figure 8)	E _{AVL}	40	mJ
Operating and Storage Temperature	T _{STG,} T _J	–65 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

JEDEC STYLE 2 LEAD TO-247 340CL

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

RURG5060

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Brand
RURG5060	TO-247-2L	RURG5060

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _F	Instantaneous Forward Voltage	I _F = 50 A			1.6	V
	(Pulse Width = 300 μs, Duty Cycle = 2%)	I _F = 50 A, T _C = 150°C			1.4	V
I _R	Instantaneous Reverse Current	V _R = 600 V			250	μA
		V _R = 600 V T _C = 150°C			1.5	mA
T _{rr}	Reverse Recovery Time at dIF/dt = 100A/ $\!\mu s$ (See Figure 6) Summation of t_a + t_b	I _F = 1 A, dI _F /dt = 100 A/μs			65	ns
		I _F = 50 A, dI _F /dt = 100 A/μs			75	ns
t _a	Time to Reach Peak Reverse Current at dlF/dt = $100A/\mu s$ (See Figure 6)	I _F = 50 A, dI _F /dt = 100 A/μs		30		ns
t _b	Time from Peak I_{RM} to Projected Zero Crossing of I_{RM} Based on a Straight Line from Peak I_{RM} Through 25% of I_{RM} (See Figure 6)	I _F = 50 A, dI _F /dt = 100 A/μs		20		ns
$R_{\theta JC}$	Thermal Resistance Junction to Case				1.0	°C/W

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RURG5060

TYPICAL PERFORMANCE CURVES

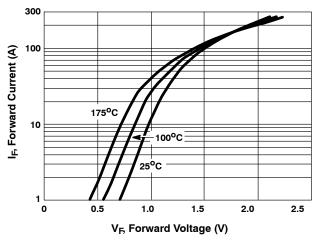


Figure 2. Reverse Current vs. Reverse Voltage

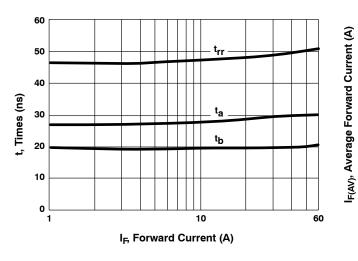


Figure 3. $T_{rr},\,t_a$ and t_b Curves vs. Forward Current

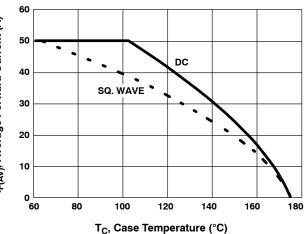
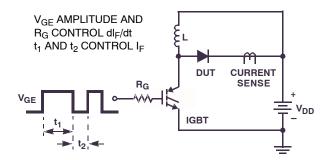



Figure 4. Current Derating Curve

RURG5060

TEST CIRCUITS AND WAVEFORMS

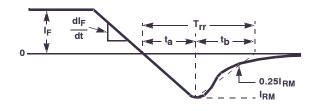


Figure 6. T_{rr} Waveforms and Definitions

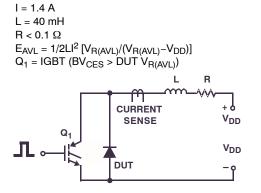


Figure 7. Avalanche Energy Test Circuit

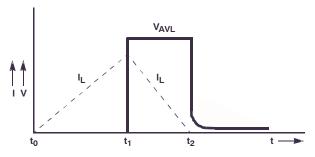


Figure 8. Avalanche Current and Voltage Waveforms

F

А

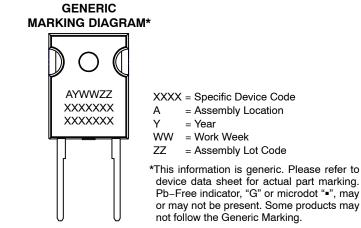
E2

E2/2 (2X)

TO-247-2LD CASE 340CL **ISSUE A** DATE 03 DEC 2019 Α *σ***P** — A2 D В

A1

С


L1 (2X) b2 – (2X) b \oplus 0.25 (M) B A(M)е

2

Q

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009. D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

DOCUMENT NUMBER:	98AON13850G Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-2LD		PAGE 1 OF 1

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

/─ ØP1 __

ΨΓ	\backslash	D2
S		D1

ON Semiconductor

	MILLIMETERS		
DIM	MIN	NOM	MAX
Α	4.58	4.70	4.82
A1	2.29	2.40	2.66
A2	1.30	1.50	1.70
b	1.17	1.26	1.35
b2	1.53	1.65	1.77
С	0.51	0.61	0.71
D	20.32	20.57	20.82
D1	16.37	16.57	16.77
D2	0.51	0.93	1.35
Е	15.37	15.62	15.87
E1	12.81	~	~
E2	4.96	5.08	5.20
е	~	11.12	~
L	15.75	16.00	16.25
L1	3.69	3.81	3.93
ØР	3.51	3.58	3.65
Ø P 1	6.61	6.73	6.85
Q	5.34	5.46	5.58
S	5.34	5.46	5.58

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥