MOSFET - Power, Single N-Channel, µ8FL **30 V, 17 mΩ, 22 A**

NVTFS4C25N

Features

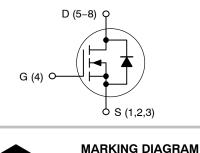
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVTFS4C25NWF Wettable Flanks Product
- NVT Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Param	neter		Symbol	Value	Unit
Drain-to-Source Voltage	Drain-to-Source Voltage				V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		$T_A = 25^{\circ}C$	۱ _D	10.1	А
Current R _{θJA} (Notes 1, 3, 5)	Steady State	T _A = 85°C		7.8	
Power Dissipation $R_{\theta JA}$		$T_A = 25^{\circ}C$	PD	3.0	W
(Notes 1, 3, 5)		T _A = 85°C		1.8	
Continuous Drain	Steady State	$T_{C} = 25^{\circ}C$	I _D	22.1	А
Current R _{ψJC} (Notes 1, 2, 4, 5)		$T_{C} = 85^{\circ}C$		17.1	
Power Dissipation		$T_{C} = 25^{\circ}C$	PD	14.3	W
R _{ψJC} (Notes 1, 2, 4, 5)		T _C = 85°C		8.6	
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	90	А
Operating Junction and S	Т _Ј , T _{stg}	–55 to +175	°C		
Source Current (Body Die	Source Current (Body Diode)				А
	Single Pulse Drain-to-Source Avalanche Energy (T_J = 25°C, I_L = 6.7 Apk, L = 0.5 mH)			11.2	mJ
Lead Temperature for So (1/8" from case for 10 s)	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				°C

MAXIMUM RATINGS (T = 25°C unless otherwise stated)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. The entire application environment impacts the thermal resistance values shown; they are not constants and are valid for the specific conditions noted.
- 2. Psi (ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to a single case surface.
- 3. Surface-mounted on FR4 board using 650 mm², 2 oz. Cu Pad.
- 4. Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.
- 5. Continuous DC current rating. Maximum current for pulses as long as one second is higher but dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	$17~\mathrm{m}\Omega @ 10~\mathrm{V}$	22 A
50 V	26.5 mΩ @ 4.5 V	22 1

N-Channel MOSFET

WDFN8 (µ8FL) CASE 511AB

S [S [S [G [O XXXX AYWW	
ecific Dev	vice Code fo	or

4C25	= Specific Device Code for
	NVMTS4C25N
25WF	= Specific Device Code of
	NVTFS4C25NWF
А	= Assembly Location
Y	= Year
WW	= Work Week
•	= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Notes 6, 7 and 9)	$\Psi_{\theta JC}$	10.5	°C/W
Junction-to-Ambient - Steady State (Notes 6 and 8)	$R_{\theta JA}$	50	0/00

6. The entire application environment impacts the thermal resistance values shown; they are not constants and are valid for the specific conditions noted.

7. Psi (ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to a single case surface. 8. Surface–mounted on FR4 board using 650 mm², 2 oz. Cu Pad.

9. Assumes heat-sink sufficiently large to maintain constant case temperature independent of device power.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

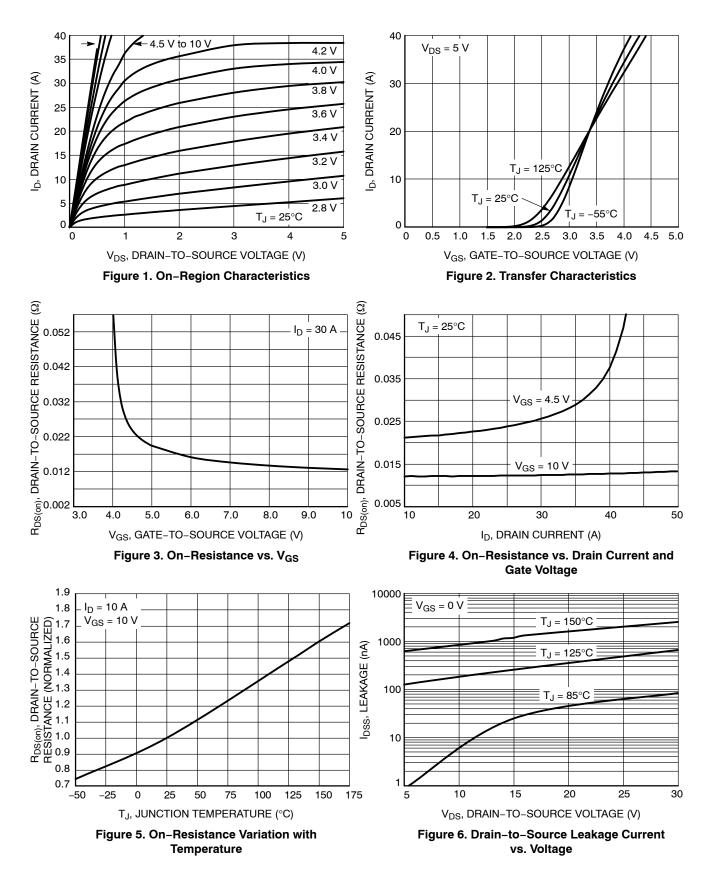
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D$	= 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				15.3		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	
		V _{DS} = 24 V	$T_J = 125^{\circ}C$			10	μA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 10)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 250 μA	1.3		2.2	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-4.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		13	17	
		V _{GS} = 4.5 V	I _D = 9 A		21	26.5	mΩ
Forward Transconductance	9 FS	V _{DS} = 1.5 V, I _D = 15 A			23		S
Gate Resistance	R _G	T _A = 25°C			1.0		Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			500		pF
Output Capacitance	C _{OSS}				295		
Reverse Transfer Capacitance	C _{RSS}				85		1
Capacitance Ratio	C _{RSS} /C _{ISS}	$V_{GS} = 0 V, V_{DS} = 1$	5 V, f = 1 MHz		0.170		
Total Gate Charge	Q _{G(TOT)}				5.1		
Threshold Gate Charge	Q _{G(TH)}				0.9		
Gate-to-Source Charge	Q _{GS}	V_{GS} = 4.5 V, V_{DS} =	15 V; I _D = 20 A		1.7		nC
Gate-to-Drain Charge	Q _{GD}				2.7		
Gate Plateau Voltage	V _{GP}				3.3		V
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} =	15 V; I _D = 20 A		10.3		nC
SWITCHING CHARACTERISTICS (Note	11)						
Turn-On Delay Time	t _{d(ON)}				8.0		
Rise Time	t _r	V _{GS} = 4.5 V, V _E	_{DS} = 15 V,		32		1
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 10 \text{ A}, \text{ R}_G$	= 3.0 Ω		10		ns
Fall Time	t _f				3.0		1
Turn–On Delay Time	t _{d(ON)}				4.0		İ
Rise Time	t _r	V _{GS} = 10 V, V _E	_{DS} = 15 V,		25		1
Turn–Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 15 {\rm A}, {\rm R}_{\rm G}$	= 3.0 Ω		13		ns
					1	1	1

10. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

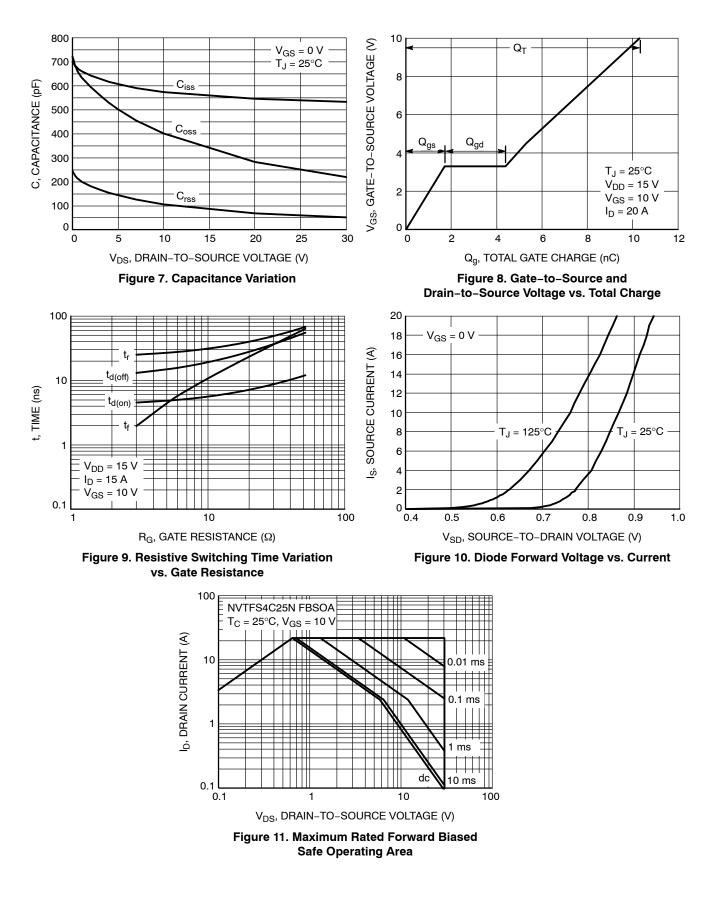
Fall Time

11. Switching characteristics are independent of operating junction temperatures.

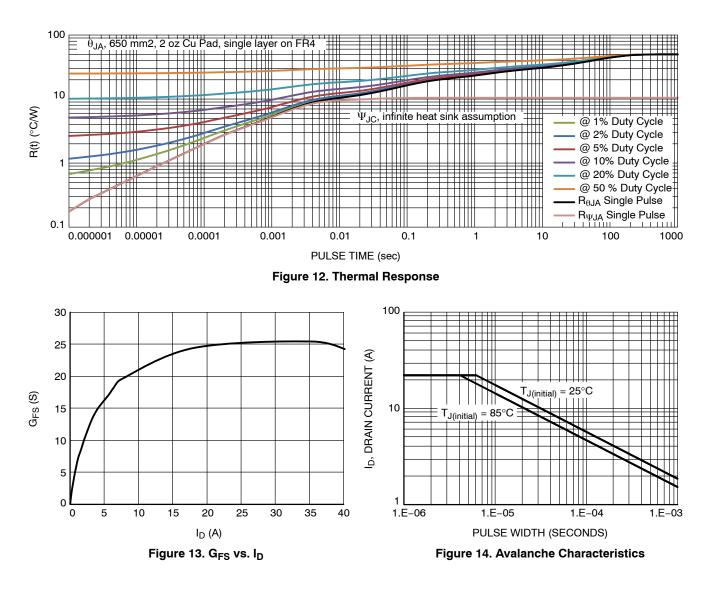
tf


2.0

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

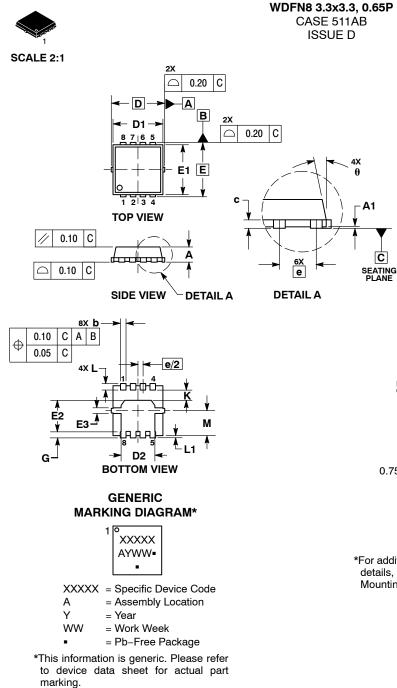

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS								
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 10 A	$T_J = 25^{\circ}C$		0.87	1.2	V	
		l _S = 10 A	$T_J = 125^{\circ}C$		0.75		v	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 30 A			18.2			
Charge Time	ta				9.8		ns	
Discharge Time	t _b				8.4			
Reverse Recovery Charge	Q _{RR}				5.7		nC	

10. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 11. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

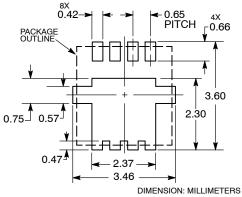
TYPICAL CHARACTERISTICS


ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVTFS4C25NTAG	4C25	WDFN8 (Pb-Free)	1500 / Tape & Reel
NVTFS4C25NWFTAG	25WF	WDFN8 (Pb–Free)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 23 APR 2012


Pb-Free indicator, "G" or microdot " .", may or may not be present.

NOTES: LES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. 1.

2. 3.

	м	LLIMETE	RS		INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	3.30 BSC			0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е	0.65 BSC			0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
м	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	CRIPTION: WDFN8 3.3X3.3, 0.65P PAGE						
	to make changes without further notice to any	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation					

rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative