Switch-mode Power Rectifiers

DPAK-3 Surface Mount Package

MBRD620CT, NRVBD620VCT, SBRV620CT Series

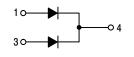
These state-of-the-art devices are designed for use in switching power supplies, inverters and as free wheeling diodes.

Features

- Extremely Fast Switching
- Extremely Low Forward Drop
- Platinum Barrier with Avalanche Guardrings
- NRVBD and SBRV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- ESD Ratings:
 - Machine Model = C
 - Human Body Model = 3B


ON Semiconductor®

www.onsemi.com

SCHOTTKY BARRIER RECTIFIERS 6.0 AMPERES, 20 – 60 VOLTS

DPAK CASE 369C

MARKING DIAGRAM

A= Assembly Location*Y= YearWW= Work WeekB6x0T= Device Codex= 2, 3, 4, 5, or 6G= Pb-Free Package

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

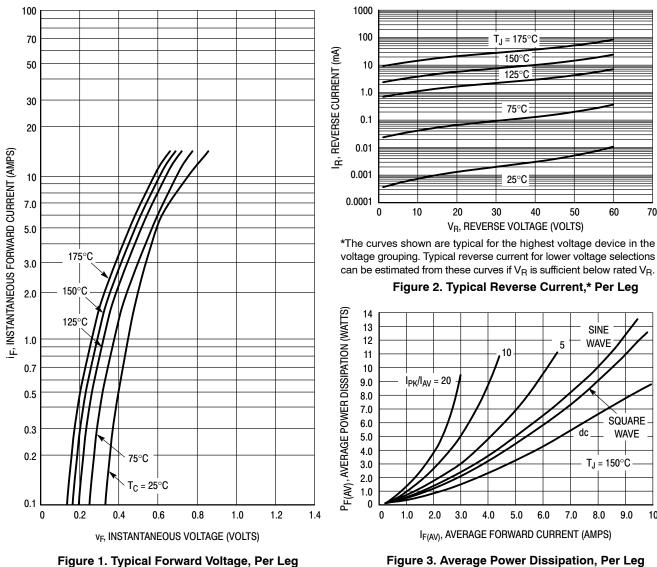
		MBRD/NRVBD/SBRV					
Rating	Symbol	620CT	630CT	640CT	650CT	660CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	50	60	V
Average Rectified Forward Current T _C = 130°C Per Diode Per Device	I _{F(AV)}			3 6			A
Peak Repetitive Forward Current, T _C = 130°C (Square Wave, Duty = 0.5) Per Diode	I _{FRM}			6			A
Nonrepetitive Peak Surge Current – (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}			75			A
Peak Repetitive Reverse Surge Current (2 µs, 1 kHz)	I _{RRM}			1			А
Operating Junction Temperature (Note 1)	TJ		_	65 to +17	'5		°C
Storage Temperature	T _{stg}		_	65 to +17	'5		°C
Voltage Rate of Change (Rated V _R)	dv/dt			10,000			V/μs

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

THERMAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	6	°C/W
Maximum Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	80	°C/W


2. Rating applies when surface mounted on the minimum pad size recommended.

ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Value	Unit
	V _F	0.7 0.65 0.9 0.85	V
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 125^{\circ}C$)	İR	0.1 15	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS

40

50

60

SINE

WAVE

dc

SQUARE

WAVE

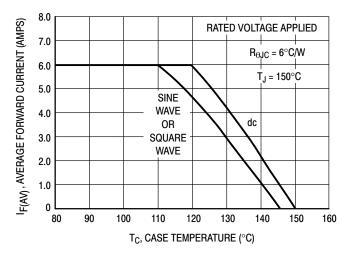
9.0

10

 $T_J = 150^{\circ}C$

8.0

5


6.0

7.0

70

Figure 1. Typical Forward Voltage, Per Leg

www.onsemi.com 3

TYPICAL CHARACTERISTICS

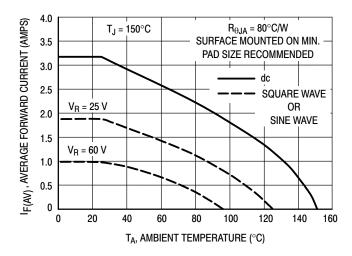
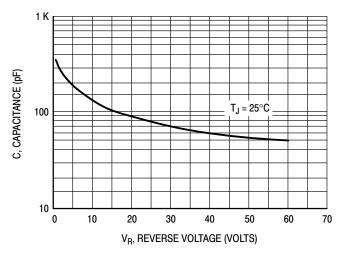
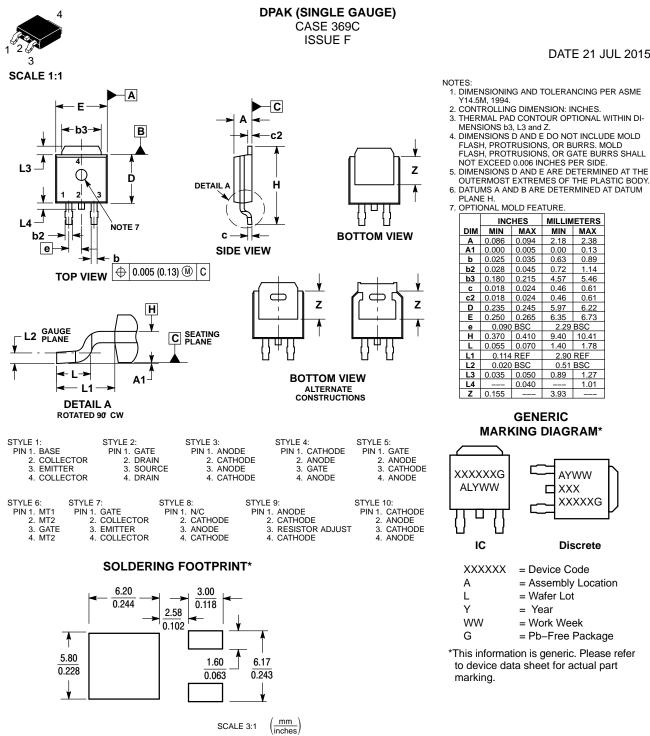



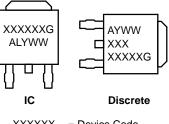
Figure 5. Current Derating, Ambient, Per Leg


ORDERING INFORMATION

Device	Package	Shipping [†]
MBRD620CTT4G		2500 / Tape & Reel
MBRD630CTT4G		2500 / Tape & Reel
MBRD640CTG	1	75 Units / Rail
NRVBD640CTG*		75 Units / Rail
NRVBD640CTG-VF01*	1	75 Units / Rail
MBRD640CTT4G	1	2500 / Tape & Reel
NRVBD640CTT4G*	1	2500 / Tape & Reel
NRVBD640VCTT4G*	1	2500 / Tape & Reel
SBRV640VCTT4G*	1	2500 / Tape & Reel
MBRD650CTG	1	75 Units / Rail
MBRD650CTT4G		2500 / Tape & Reel
NRVBD650CTG-VF01*	DPAK (Pb-Free)	2500 / Tape & Reel
NRVBD650CTT4G*		2500 / Tape & Reel
NRVBD650CTT4G-VF01*	1	2500 / Tape & Reel
MBRD660CTG	1	75 Units / Rail
NRVBD660CTG*	1	75 Units / Rail
NRVBD660CTG-VF01*	1	75 Units / Rail
MBRD660CTRLG	1	1800 / Tape & Reel
NRVBD660CTRLG*	1	1800 / Tape & Reel
MBRD660CTT4G	1	2500 / Tape & Reel
NRVBD660CTT4G*	1	2500 / Tape & Reel
SBRV660VCTT4G*	1	2500 / Tape & Reel
SNRVBD660CTT4G*	1	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NRVBD and SBRV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101

Qualified and PPAP Capable.


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolle			
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except			
NEW STANDARD:	REF TO JEDEC TO-252	"CONTROLLED COPY" in red.			
DESCRIPTION:	DPAK SINGLE GAUGE SURFACE MOUNT		PAGE 1 OF 2		

DATE 21 JUL 2015

- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL

OPTIONAL MOLD FEATURE.					
	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

XXXXXX	= Device Code
A	= Assembly Location
L	= Wafer Lot
Y	= Year
WW	= Work Week
G	= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY L. GAN	24 SEP 2001
А	ADDED STYLE 8. REQ. BY S. ALLEN.	06 AUG 2008
В	ADDED STYLE 9. REQ. BY D. WARNER.	16 JAN 2009
С	ADDED STYLE 10. REQ. BY S. ALLEN.	09 JUN 2009
D	RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.	29 JUN 2010
E	ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAM-BALIZA.	06 FEB 2014
F	ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.	21 JUL 2015

ON Semiconductor and with application or use of any product or circuit, and specifically disclaims any and all liability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be robided in scilluct data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters such the solution of the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the BSCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death application is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2015 July, 2015 – Rev. F

Downloaded from Arrow.com.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥