
Freescale Semiconductor

Data Sheet: Advance Information

Document Number: MCF54455 Rev. 8, 02/2012

RoHS

MCF54455

TEPBGA–360 23mm x 23mm

MCF5445*x* ColdFire Microprocessor Data Sheet

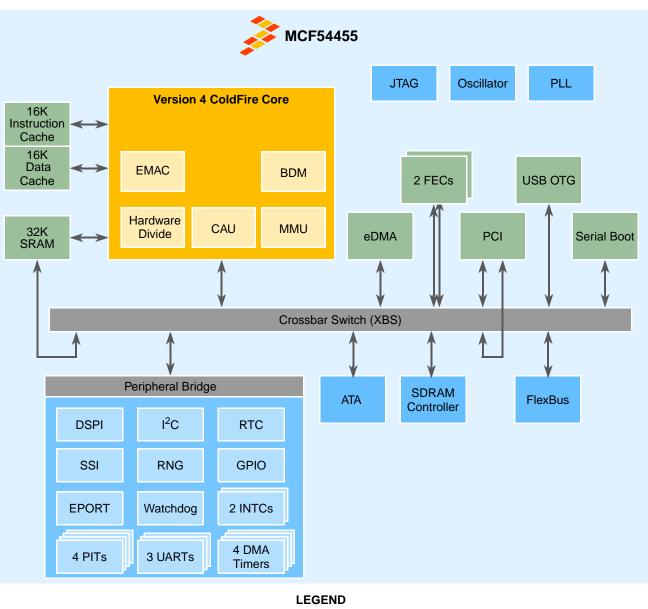
Features

- Version 4 ColdFire Core with MMU and EMAC
- Up to 410 Dhrystone 2.1 MIPS @ 266 MHz
- 16-KBytes instruction cache and 16-KBytes data cache
- 32-KBytes internal SRAM
- Support for booting from SPI-compatible flash, EEPROM, and FRAM devices
- Crossbar switch technology (XBS) for concurrent access to peripherals or RAM from multiple bus masters
- 16-channel DMA controller
- 16-bit 133-MHz DDR/mobile-DDR/DDR2 controller
- USB 2.0 On-the-Go controller with ULPI support
- 32-bit PCI controller @ 66MHz
- ATA/ATAPI controller
- 2 10/100 Ethernet MACs
- Coprocessor for acceleration of the DES, 3DES, AES, MD5, and SHA-1 algorithms
- Random number generator
- Synchronous serial interface (SSI)
- 4 periodic interrupt timers (PIT)
- 4 32-bit timers with DMA support
- DMA-supported serial peripheral interface (DSPI)
- 3 UARTs
- I²C bus interface

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2007-2012. All rights reserved.

Table of Contents


1	MCF	5445 <i>x</i> Family Comparison4
2		ring Information
3	Hard	ware Design Considerations
	3.1	Analog Power Filtering
	3.2	Oscillator Power Filtering
	3.3	Supply Voltage Sequencing
		3.3.1 Power-Up Sequence
		3.3.2 Power-Down Sequence
4	Pin A	ssignments and Reset States7
	4.1	Signal Multiplexing7
	4.2	Pinout—256 MAPBGA15
	4.3	Pinout—360 TEPBGA
5	Elect	rical Characteristics17
	5.1	Absolute Maximum Ratings17
	5.2	Thermal Characteristics
	5.3	ESD Protection
	5.4	DC Electrical Specifications
	5.5	ClockTiming Specifications
	5.6	Reset Timing Specifications
	5.7	FlexBus Timing Specifications
	5.8	SDRAM AC Timing Characteristics
	5.9	PCI Bus Timing Specifications

		5.9.1 Overshoot and Undershoot
	5.10	ULPI Timing Specifications
	5.11	SSI Timing Specifications
	5.12	I ² C Timing Specifications
	5.13	Fast Ethernet Timing Specifications
		5.13.1 Receive Signal Timing Specifications 33
		5.13.2 Transmit Signal Timing Specifications 34
		5.13.3 Asynchronous Input Signal Timing
		Specifications
		5.13.4 MII Serial Management Timing Specifications . 35
	5.14	32-Bit Timer Module Timing Specifications
	5.15	ATA Interface Timing Specifications
	5.16	DSPI Timing Specifications
	5.17	SBF Timing Specifications
	5.18	General Purpose I/O Timing Specifications
	5.19	JTAG and Boundary Scan Timing 40
	5.20	Debug AC Timing Specifications
6	Powe	r Consumption
7	Packa	age Information
8	Produ	uct Documentation 45
9	Revis	ion History

NP

ATA	 Advanced Technology Attachment Controller 	INTC	- Interrupt controller
BDM	- Background debug module	JTAG	 Joint Test Action Group interface
CAU	 Cryptography acceleration unit 	MMU	 Memory management unit
DSPI	 DMA serial peripheral interface 	PCI	 Peripheral Component Interconnect
eDMA	 Enhanced direct memory access 	PIT	 Programmable interrupt timers
EMAC	 Enchance multiply-accumulate unit 	PLL	 Phase locked loop module
EPORT	 Edge port module 	RNG	 Random Number Generator
FEC	 Fast Ethernet controller 	RTC	 Real time clock
GPIO	 General Purpose Input/Output 	SSI	 Synchronous Serial Interface
l ² C	 Inter-Intergrated Circuit 	USB OTG	- Universal Serial Bus On-the-Go controller

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

MCF5445x Family Comparison

1 MCF5445*x* Family Comparison

The following table compares the various device derivatives available within the MCF5445*x* family.

Table 1. MCF5445x Family Configurations

Module	MCF54450	MCF54451	MCF54452	MCF54453	MCF54454	MCF54455
ColdFire Version 4 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•
Core (System) Clock	up to 240 MHz up to 266 MHz					L
Peripheral Bus Clock (Core clock ÷ 2)	up to 1	20 MHz		up to 1	33 MHz	
External Bus Clock (Core clock ÷ 4)	up to 6	60 MHz		up to 6	6 MHz	
Performance (Dhrystone/2.1 MIPS)	up to	370		up to	o 410	
Independent Data/Instruction Cache			16 Kbyt	es each		
Static RAM (SRAM)			32 K	bytes		
PCI Controller	—	—	•	•	•	•
Cryptography Acceleration Unit (CAU)	—	•	—	•		•
ATA Controller	—	—	—	—	•	•
DDR SDRAM Controller	•	•	•	•	•	•
FlexBus External Interface	•	•	•	•	•	•
USB 2.0 On-the-Go	•	•	•	•	•	•
UTMI+ Low Pin Interface (ULPI)	•	•	•	•	•	•
Synchronous Serial Interface (SSI)	•	•	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2	2	2
UARTs	3	3	3	3	3	3
I ² C	•	•	•	•	•	•
DSPI	•	•	•	•	•	•
Real Time Clock	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4
Watchdog Timer (WDT)	•	•	•	•	•	•
Periodic Interrupt Timers (PIT)	4	4	4	4	4	4
Edge Port Module (EPORT)	•	•	•	•	•	•
Interrupt Controllers (INTC)	2	2	2	2	2	2
16-channel Direct Memory Access (DMA)	•	•	•	•	•	•
General Purpose I/O (GPIO)	•	•	•	•	•	•
JTAG - IEEE [®] 1149.1 Test Access Port	•	•	•	•	•	•
Package	256 M/	APBGA		360 TE	PBGA	I

2 Ordering Information

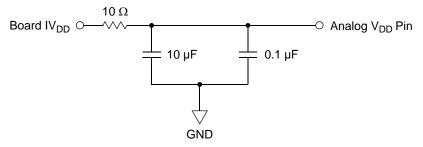
Table 2. Orderable Part Numbers

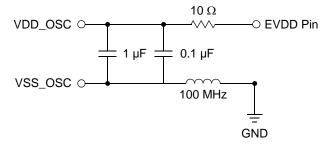
Freescale Part Number	Description	Package	Speed	Temperature
MCF54450CVM180	MCF54450 Microprocessor		180 MHz	-40° to +85 $^{\circ}$ C
MCF54450VM240	MCF34430 Microprocessor	256 MAPBGA	240 MHz	0° to +70° C
MCF54451CVM180	MCF54451 Microprocessor	230 WAI DOA	180 MHz	-40° to +85 $^{\circ}$ C
MCF54451VM240	MCF34431 Microprocessor		240 MHz	0° to +70° C
MCF54452CVR200			200 MHz	-40° to +85 $^{\circ}$ C
MCF54452YVR200	MCF54452 Microprocessor		200 MHz	–40° to +105° C
MCF54452VR266			266 MHz	0° to +70° C
MCF54453CVR200	MCF54453 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54453VR266	WCI 34433 WICIOPIOCE330	360 TEPBGA	266 MHz	0° to +70° C
MCF54454CVR200	MCF54454 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54454VR266			266 MHz	0° to +70° C
MCF54455CVR200	MCF54455 Microprocessor		200 MHz	-40° to +85 $^{\circ}$ C
MCF54455VR266			266 MHz	0° to +70° C

3 Hardware Design Considerations

3.1 Analog Power Filtering

To further enhance noise isolation, an external filter is strongly recommended for the analog V_{DD} pins (VDD_A_PLL, VDD_RTC). The filter shown in Figure 2 should be connected between the board IV_{DD} and the analog pins. The resistor and capacitors should be placed as close to the dedicated analog V_{DD} pin as possible. The 10- Ω resistor in the given filter is required. Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding voltage loss across the 10-ohm resistor are not valid.




Figure 2. System Analog V_{DD} Power Filter

Hardware Design Considerations

3.2 Oscillator Power Filtering

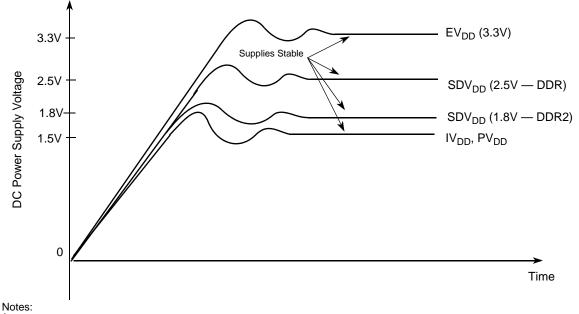

Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.

Figure 3. Oscillator Power Filter

3.3 Supply Voltage Sequencing

Figure 4 shows situations in sequencing the I/O V_{DD} (EV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PV_{DD}), and internal logic/core V_{DD} (IV_{DD}).

¹ Input voltage must not be greater than the supply voltage (EV_{DD}, SDV_{DD}, IV_{DD}, or PV_{DD}) by more than 0.5V at any time, including during power-up.

² Use 50 V/millisecond or slower rise time for all supplies.

Figure 4. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and EV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 1.8V) and EV_{DD} are specified relative to IV_{DD} .

3.3.1 Power-Up Sequence

If EV_{DD}/SDV_{DD} are powered up with the IV_{DD} at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to the EV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after EV_{DD}/SDV_{DD} powers up before IV_{DD} must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal ESD protection clamp diodes.

3.3.2 Power-Down Sequence

If IV_{DD}/PV_{DD} are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after IV_{DD} and PV_{DD} power down before EV_{DD} or SDV_{DD} must power down. There are no requirements for the fall times of the power supplies.

4 Pin Assignments and Reset States

4.1 Signal Multiplexing

The following table lists all the MCF5445*x* pins grouped by function. The Dir column is the direction for the primary function of the pin only. Refer to Section 4, "Pin Assignments and Reset States," for package diagrams. For a more detailed discussion of the MCF5445*x* signals, consult the *MCF54455 Reference Manual* (MCF54455RM).

NOTE

In this table and throughout this document, a single signal within a group is designated without square brackets (i.e., FB_AD23), while designations for multiple signals within a group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Most pins that are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the exceptions.

Pin	256 MAPBGA 360 TEPBGA							
FB_AD[31:0]		FB_AD[31:0] except when serial boot selects 0-bit boot port size.						
FB_BE/BWE[3:0]	FB_BE/E	3WE[3:0]						
FB_CS[3:1]	FB_CS[3:1]							
FB_OE	FB_	OE						
FB_R/W	FB_	R/W						
FB_TA	FB_TA							
FB_TS FB_TS								

Table 3. Special-Case Default Signal Functionality

Table 3. Special-Case Default Signal Functionality (continued)
--

Pin	256 MAPBGA	360 TEPBGA
PCI_GNT[3:0]	GPIO	PCI_GNT[3:0]
PCI_REQ[3:0]	GPIO	PCI_REQ[3:0]
IRQ1	GPIO	PCI_INTA and configured as an agent.
ATA_RESET	GPIO	ATA reset

Table 4. MCF5445x Signal Information and Muxing

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
			Reset					
RESET	—	_	—	U	I	EVDD	L4	Y18
RSTOUT	—	—	—	—	0	EVDD	M15	B17
			Clock					
EXTAL/PCI_CLK	—	—	—	—	I	EVDD	M16	A16
XTAL	—	_	_	U ³	0	EVDD	L16	A17
		Ма	ode Selection				·	
BOOTMOD[1:0]	—	_			I	EVDD	M5, M7	AB17, AB21
			FlexBus					
FB_AD[31:24]	PFBADH[7:0] ⁴	FB_D[31:24]	_	_	I/O	EVDD	A14, A13, D12, C12, B12, A12, D11, C11	J2, K4, J1, K1–3, L1, L4
FB_AD[23:16]	PFBADMH[7:0] ⁴	FB_D[23:16]	_	—	I/O	EVDD	B11, A11, D10, C10, B10, A10, D9, C9	L2, L3, M1–4, N1–2
FB_AD[15:8]	PFBADML[7:0] ⁴	FB_D[15:8]	—	_	I/O	EVDD	B9, A9, D8, C8, B8, A8, D7, C7	P1–2, R1–3, P4, T1–2
FB_AD[7:0]	PFBADL[7:0] ⁴	FB_D[7:0]	—	-	I/O	EVDD	B7, A7, D6, C6, B6, A6, D5, C5	T3–4, U1–3, V1–2, W1
FB_BE/BWE[3:2]	PBE[3:2]	FB_TSIZ[1:0]	_	—	0	EVDD	B5, A5	Y1, W2
FB_BE/BWE[1:0]	PBE[1:0]	_	—	—	0	EVDD	B4, A4	W3, Y2
FB_CLK	—	—	—	—	0	EVDD	B13	J3
FB_CS[3:1]	PCS[3:1]		—	—	0	EVDD	C2, D4, C3	W5, AA4, AB3
FB_CS0					0	EVDD	C4	Y4
FB_OE	PFBCTL3			—	0	EVDD	A2	AA1
FB_R/W	PFBCTL2		—	—	0	EVDD	B2	AA3
FB_TA	PFBCTL1	—		U	Ι	EVDD	B1	AB2

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
FB_TS	PFBCTL0	FB_ALE	FB_TBST	—	0	EVDD	A3	Y3
		PC	CI Controller ⁵					
PCI_AD[31:0]	—	FB_A[31:0]	_	_	I/O	EVDD	_	C11, D11, A10, B10, J4, G2, G3, F1, D12, C12, B12, A11, B11, B9, D9, D10, A8, B8, A5, B5, A4, A3, B3, D4, D3, E3–E1, F3, C2, D2, C1
_	_	FB_A[23:0]	_	_	I/O	EVDD	K14–13, J15–13, H13–15, G15–13, F14–13, E15–13, D16, B16, C15, B15, C14, D15, C16, D14	_
PCI_CBE[3:0]	—	—	—	—	I/O	EVDD	—	G4, E4, D1, B1
PCI_DEVSEL	—	—	—	—	0	EVDD	—	F2
PCI_FRAME	—	_	—	—	I/O	EVDD	—	B2
PCI_GNT3	PPCI7	ATA_DMACK	—	—	0	EVDD	—	B7
PCI_GNT[2:1]	PPCI[6:5]	_	—	—	0	EVDD	—	C8, C9
PCI_GNT0/ PCI_EXTREQ	PPCI4	_	—	—	0	EVDD	—	A9
PCI_IDSEL	—	_	—	—	I	EVDD	—	D5
PCI_IRDY	—	—	—	_	I/O	EVDD	—	C3
PCI_PAR	—	_	—	—	I/O	EVDD	_	C4
PCI_PERR	—	_	—	—	I/O	EVDD	—	B4
PCI_REQ3	PPCI3	ATA_INTRQ	—	_	I	EVDD	—	C7
PCI_REQ[2:1]	PPCI[2:1]	_	—	—	I	EVDD	—	D7, C5
PCI_REQ0/ PCI_EXTGNT	PPCI0		_	-	I	EVDD	—	A2
PCI_RST	—	—	—	—	0	EVDD	—	B6
PCI_SERR	—	_	—	—	I/O	EVDD	_	A6
PCI_STOP	—	_	—	—	I/O	EVDD	_	A7
PCI_TRDY	—	—	—	—	I/O	EVDD	—	C10
		SDR	AM Controller		•	•		
SD_A[13:0]	—	_	_	-	0	SDVDD	R1, P1, N2, P2, R2, T2, M4, N3, P3, R3, T3, T4, R4, N4	V22, U20–22, T19–22, R20–22, N19, P20–21

Table 4. MCF5445x Signal Information and Muxing (continued)

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
SD_BA[1:0]	—	_	_	—	0	SDVDD	P4, T5	P22, P19
SD_CAS	—	_	_	—	0	SDVDD	T6	L19
SD_CKE	—	_	_	—	0	SDVDD	N5	N22
SD_CLK	—	_	_	—	0	SDVDD	Т9	L22
SD_CLK	—	—	_	—	0	SDVDD	Т8	M22
SD_CS[1:0]	—	_	_	—	0	SDVDD	P6, R6	L20, M20
SD_D[31:16]	_	_	_	_	I/O	SDVDD	N6, T7, N7, P7, R7, R8, P8, N8, N9, T10, R10, P10, N10, T11, R11, P11	L21, K22, K21, K20, J20, J19, J21, J22, H20, G22, G21, G20, G19, F22, F21, F20
SD_DM[3:2]	_	_	_	—	0	SDVDD	P9, N12	H21, E21
SD_DQS[3:2]	—	—	_	—	0	SDVDD	R9, N11	H22, E22
SD_RAS	—	—	_	—	0	SDVDD	P5	N21
SD_VREF	—	—	_	—	I	SDVDD	M8	M21
SD_WE	—	—	_	—	0	SDVDD	R5	N20
		Externa	al Interrupts Port ⁶					
IRQ7	PIRQ7	_	_	_	I	EVDD	L1	ABB13
IRQ4	PIRQ4	—	SSI_CLKIN	—	I	EVDD	L2	ABB13
IRQ3	PIRQ3	_	_	—	I	EVDD	L3	AB14
IRQ1	PIRQ1	PCI_INTA		—	I	EVDD	F15	C6
			FEC0				I	
FEC0_MDC	PFECI2C3	_	_	_	0	EVDD	F3	AB8
FEC0_MDIO	PFECI2C2			_	I/O	EVDD	F2	Y7
FEC0_COL	PFEC0H4		ULPI_DATA7	_	I	EVDD	E1	AB7
FEC0_CRS	PFEC0H0	_	ULPI_DATA6	_	I	EVDD	F1	AA7
FEC0_RXCLK	PFEC0H3	_	ULPI_DATA1	_	I	EVDD	G1	AA8
FEC0_RXDV	PFEC0H2	FEC0_RMII_ CRS_DV		—	I	EVDD	G2	Y8
FEC0_RXD[3:2]	PFEC0L[3:2]	—	ULPI_DATA[5:4]	—	I	EVDD	G3, G4	AB9, Y9
FEC0_RXD1	PFEC0L1	FEC0_RMII_RXD1	_	—	I	EVDD	H1	W9
FEC0_RXD0	PFEC0H1	FEC0_RMII_RXD0	—	—	I	EVDD	H2	AB10
FEC0_RXER	PFEC0L0	FEC0_RMII_RXER	_	—	I	EVDD	H3	AA10

Table 4. MCF5445x Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA	
FEC0_TXCLK	PFEC0H7	FEC0_RMII_ REF_CLK	_	—	I	EVDD	H4	Y10	
FEC0_TXD[3:2]	PFEC0L[7:6]	—	ULPI_DATA[3:2]	—	0	EVDD	J1, J2	W10, AB11	
FEC0_TXD1	PFEC0L5	FEC0_RMII_TXD1	_	—	0	EVDD	J3	AA11	
FEC0_TXD0	PFEC0H5	FEC0_RMII_TXD0	_	—	0	EVDD	J4	Y11	
FEC0_TXEN	PFEC0H6	FEC0_RMII_TXEN	_	—	0	EVDD	K1	W11	
FEC0_TXER	PFEC0L4	—	ULPI_DATA0	—	0	EVDD	K2	AB12	
			FEC1				l		
FEC1_MDC	PFECI2C5	—	ATA_DIOR	_	0	EVDD	_	W20	
FEC1_MDIO	PFECI2C4	—	ATA_DIOW		I/O	EVDD	_	Y22	
FEC1_COL	PFEC1H4	—	ATA_DATA7		I	EVDD	-	AB18	
FEC1_CRS	PFEC1H0	—	ATA_DATA6		I	EVDD	-	AA18	
FEC1_RXCLK	PFEC1H3	—	ATA_DATA5		I	EVDD	-	W14	
FEC1_RXDV	PFEC1H2	FEC1_RMII_ CRS_DV	ATA_DATA15		I	EVDD		AB15	
FEC1_RXD[3:2]	PFEC1L[3:2]	—	ATA_DATA[4:3]	—	I	EVDD	—	AA15, Y15	
FEC1_RXD1	PFEC1L1	FEC1_RMII_RXD1	ATA_DATA14	—	I	EVDD	_	AA17	
FEC1_RXD0	PFEC1H1	FEC1_RMII_RXD0	ATA_DATA13	—	I	EVDD	_	Y17	
FEC1_RXER	PFEC1L0	FEC1_RMII_RXER	ATA_DATA12	—	I	EVDD	_	W17	
FEC1_TXCLK	PFEC1H7	FEC1_RMII_ REF_CLK	ATA_DATA11		I	EVDD		AB19	
FEC1_TXD[3:2]	PFEC1L[7:6]	—	ATA_DATA[2:1]	_	0	EVDD	—	Y19, W18	
FEC1_TXD1	PFEC1L5	FEC1_RMII_TXD1	ATA_DATA10	—	0	EVDD	_	AA19	
FEC1_TXD0	PFEC1H5	FEC1_RMII_TXD0	ATA_DATA9	—	0	EVDD	_	Y20	
FEC1_TXEN	PFEC1H6	FEC1_RMII_TXEN	ATA_DATA8	—	0	EVDD	_	AA21	
FEC1_TXER	PFEC1L4	—	ATA_DATA0	—	0	EVDD	_	AA22	
USB On-the-Go									
USB_DM	—	—	—	_	0	USB VDD	F16	A14	
USB_DP	_	—	_	—	0	USB VDD	E16	A15	
USB_VBUS_EN	PUSB1	USB_PULLUP	ULPI_NXT	—	0	USB VDD	E5	AA2	
USB_VBUS_OC	PUSB0	—	ULPI_STP	UD ⁷	I	USB VDD	B3	V4	

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
			ΑΤΑ					
ATA_BUFFER_EN	PATAH5	_	—	—	0	EVDD	_	Y13
ATA_CS[1:0]	PATAH[4:3]	_	—	—	0	EVDD	_	W21, W22
ATA_DA[2:0]	PATAH[2:0]	_	—	—	0	EVDD	_	V19–21
ATA_RESET	PATAL2	_	—	—	0	EVDD	_	W13
ATA_DMARQ	PATAL1	_	—	-	I	EVDD	—	AA14
ATA_IORDY	PATAL0	—	—	-	I	EVDD	—	Y14
		Re	al Time Clock					
EXTAL32K	_	_	—	_	I	EVDD	J16	A13
XTAL32K	_	_	—	_	0	EVDD	H16	A12
			SSI		1	1		
SSI_MCLK	PSSI4	_	—	_	0	EVDD	T13	D20
SSI_BCLK	PSSI3	U1CTS	—	-	I/O	EVDD	R13	E19
SSI_FS	PSSI2	U1RTS	—	—	I/O	EVDD	P12	E20
SSI_RXD	PSSI1	U1RXD	—	UD	I	EVDD	T12	D21
SSI_TXD	PSSI0	U1TXD	—	UD	0	EVDD	R12	D22
			l ² C	1		1	I	
I2C_SCL	PFECI2C1		U2TXD	U	I/O	EVDD	K3	AA12
I2C_SDA	PFECI2C0	_	U2RXD	U	I/O	EVDD	K4	Y12
			DMA	1		1	I	
DACK1	PDMA3		ULPI_DIR	_	0	EVDD	M14	C17
DREQ1	PDMA2	_	USB_CLKIN	U	I	EVDD	P16	C18
DACK0	PDMA1	DSPI_PCS3	—	_	0	EVDD	N15	A18
DREQ0	PDMA0	_	—	U	I	EVDD	N16	B18
			DSPI		1	1	1	
DSPI_PCS5/PCSS	PDSPI6		—	_	0	EVDD	N14	D18
DSPI_PCS2	PDSPI5	_	—	-	0	EVDD	L13	A19
DSPI_PCS1	PDSPI4	SBF_CS	—	-	0	EVDD	P14	B20
DSPI_PCS0/SS	PDSPI3		—	U	I/O	EVDD	R16	D17
DSPI_SCK	PDSPI2	SBF_CK	—	_	I/O	EVDD	R15	A20

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
DSPI_SIN	PDSPI1	SBF_DI	—	8	I	EVDD	P15	B19
DSPI_SOUT	PDSPI0	SBF_DO	—	—	0	EVDD	N13	C20
			UARTs					
U1CTS	PUART7	—	—	—	I	EVDD	_	V3
U1RTS	PUART6		—	—	0	EVDD	_	U4
U1RXD	PUART5		—	-	I	EVDD	_	P3
U1TXD	PUART4	_	—	_	0	EVDD	_	N3
UOCTS	PUART3	_	—	_	I	EVDD	M3	Y16
UORTS	PUART2	_	—	-	0	EVDD	M2	AA16
U0RXD	PUART1	_	—	_	I	EVDD	N1	AB16
U0TXD	PUART0		—	-	0	EVDD	M1	W15
Note: The UART1 an	d UART 2 signals	are multiplexed on th	e DMA timers and I	I2C pins.			1	1
		I	DMA Timers					
DT3IN	PTIMER3	DT3OUT	U2RXD	—	I	EVDD	C13	H2
DT2IN	PTIMER2	DT2OUT	U2TXD	_	I	EVDD	D13	H1
DT1IN	PTIMER1	DT1OUT	U2CTS	-	I	EVDD	B14	H3
DT0IN	PTIMER0	DT0OUT	U2RTS	-	I	EVDD	A15	G1
			BDM/JTAG ⁹			•		
PSTDDATA[7:0]		_	_	—	0	EVDD	E2, D1, F4, E3, D2, C1, E4, D3	AA6, AB6, AB5, W6, Y6, AA5, AB4, Y5
JTAG_EN	—		—	D	I	EVDD	M11	C21
PSTCLK	_	TCLK	—	-	I	EVDD	P13	C22
DSI		TDI	—	U	I	EVDD	T15	C19
DSO	_	TDO	—	-	0	EVDD	T14	A21
BKPT	—	TMS	—	U	I	EVDD	R14	B21
DSCLK	—	TRST	—	U	I	EVDD	M13	B22
	•		Test		•			
TEST		_	—	D	I	EVDD	M6	AB20
PLLTEST	—		—	—	0	EVDD	K16	D15

Table 4. MCF5445x Signal Information and Muxing (continued)

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Signal Name	GPIO	Alternate 1	Alternate 2	Pull-up (U) ¹ Pull-down (D)	Direction ²	Voltage Domain	MCF54450 MCF54451 256 MAPBGA	MCF54452 MCF54453 MCF54454 MCF54455 360 TEPBGA
		Po	wer Supplies					
IVDD	_	_	_	_			E6–12, F5, F12	D6, D8, D14, F4, H4, N4, R4, W4, W7, W8, W12, W16, W19
EVDD	_	_	_	_	_	—	G5, G12, H5, H12, J5, J12, K5, K12, L5–6, L12	D13, D19, G8, G11, G14, G16, J7, J16, L7, L16, N16, P7, R16, T8, T12, T14, T16
SD_VDD	—	—	—	—	—	—	L7–11, M9, M10	F19, H19, K19, M19, R19, U19
VDD_OSC	—	—	—	—	—	—	L14	B16
VDD_A_PLL	—	—	—	—	—	—	K15	C14
VDD_RTC	—	—	—	—	_	—	M12	C13
VSS	_					_	A1, A16, F6–11, G6–11, H6–11, J6–11, K6–11, T1, T16	A1, A22, B14, G7, G9–10, G12–13, G15, H7, H16, J9–14, K7, K9–14, K16, L9–14, M7, M9–M14, M16, N7, N9–14, P9–14, P16, R7, T7, T9–11, T13, T15, AB1, AB22
VSS_OSC	—	—	—	—	—	—	L15	C16

Table 4. MCF5445x Signal Information and Muxing (continued)

¹ Pull-ups are generally only enabled on pins with their primary function, except as noted.

² Refers to pin's primary function.

³ Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).

⁴ Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.

⁵ When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when booting as a PCI host.

For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ lines and IRQ1/PCI_INTA come up as GPIO.

- ⁶ GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning the alternate functions.
- ⁷ Depends on programmed polarity of the USB_VBUS_OC signal.
- ⁸ Pull-up when the serial boot facility (SBF) controls the pin
- ⁹ If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not responsible for assigning these pins.

4.2 Pinout—256 MAPBGA

The pinout for the MCF54450 and MCF54451 packages are shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	FB_OE	FB_TS	FB_BE/ BWE0	FB_BE/ BWE2	FB_AD 2	FB_AD 6	FB_AD 10	FB_AD 14	FB_AD 18	FB_AD 22	FB_AD 26	FB_AD 30	FB_AD 31	TOIN	VSS	A
в	FB_TA	FB_R/W	USB_ VBUS_ OC	F <u>B_BE</u> / BWE1	FB_BE/ BWE3	FB_AD	FB_AD 7	FB_AD 11	FB_AD 15	FB_AD 19	FB_AD 23	FB_AD 27	FB_CLK	T1IN	FB_A 4	FB_A 6	в
с	PST DDATA2	FB_CS3	FB_CS1	FB_CS0	FB_AD 0	FB_AD 4	FB_AD 8	FB_AD 12	FB_AD 16	FB_AD 20	FB_AD 24	FB_AD 28	T3IN	FB_A 3	FB_A 5	FB_A 1	с
D	PST DDATA6	PST DDATA3	PST DDATA0	FB_CS2	FB_AD 1	FB_AD 5	FB_AD 9	FB_AD 13	FB_AD 17	FB_AD 21	FB_AD 25	FB_AD 29	T2IN	FB_A 0	FB_A 2	FB_A 7	D
E	FEC0_ COL	PST DDATA7	PST DDATA4	PST DDATA1	USB_ VBUS_ EN	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	IVDD	FB_A 8	FB_A 9	FB_A 10	USB_ DP	E
F	FEC0_ CRS	FEC0_ MDIO	FEC0_ MDC	PST DDATA5	IVDD	VSS	VSS	VSS	VSS	VSS	VSS	IVDD	FB_A 11	FB_A 12	IRQ_1	USB_ DM	F
G	FEC0_ RXCLK	FEC0_ RXDV	FEC0_ RXD3	FEC0_ RXD2	EVDD	VSS	VSS	VSS	VSS	VSS	VSS	EVDD	FB_A 13	FB_A 14	FB_A 15	NC	G
н	FEC0_ RXD1	FEC0_ RXD0	FEC0_ RXER	FEC0_ TXCLK	EVDD	VSS	VSS	VSS	VSS	VSS	VSS	EVDD	FB_A 18	FB_A 17	FB_A 16	XTAL 32K	н
J	FEC0_ TXD3	FEC0_ TXD2	FEC0_ TXD1	FEC0_ TXD0	EVDD	VSS	VSS	VSS	VSS	VSS	VSS	EVDD	FB_A 19	FB_A 20	FB_A 21	EXTAL 32K	J
к	FEC0_ TXEN	FEC0_ TXER	I2C_ SCL	I2C_ SDA	EVDD	VSS	VSS	VSS	VSS	VSS	VSS	EVDD	FB_A 22	FB_A 23	VDD_A _PLL	PLL TEST	к
L	IRQ_7	IRQ_4	IRQ_3	RESET	EVDD	EVDD	SDVDD	SDVDD	SDVDD	SDVDD	SDVDD	EVDD	DSPI_ PCS2	VDD_ OSC	VSS_ OSC	XTAL	L
М	U0TXD	UORTS	UOCTS	SD_A7	BOOT MOD1	TEST	BOOT MOD0	SD_ VREF	SDVDD	SDVDD	JTAG_ EN	VDD_ RTC	TRST	DACK1	RST OUT	EXTAL	м
N	U0RXD	SD_A11	SD_A6	SD_A0	SD_ CKE	SD_D31	SD_D29	SD_D24	SD_D23	SD_D19	SD_ DQS2	SD_DM2	DSPI_ SOUT	DSPI_ PCS5	DACK0	DREQ0	N
Ρ	SD_A12	SD_A10	SD_A5	SD_BA1	SD_ RAS	SD_ CS1	SD_D28	SD_D25	SD_ DM3	SD_D20	SD_D16	SSI_FS	TCLK	DSPI_ PCS1	DSPI_ SIN	DREQ1	Р
R	SD_A13	SD_A9	SD_A4	SD_A1	SD_WE	SD_ CS0	SD_D27	SD_D26	SD_ DQS3	SD_D21	SD_D17	SSI_TXD	SSI_ BCLK	TMS	DSPI_ SCK	DSPI_ PCS0	R
т	VSS	SD_A8	SD_A3	SD_A2	SD_BA0	SD_ CAS	SD_D30	SD_ CLK	SD_ CLK	SD_D22	SD_D18	SSI_RXD	SSI_ MCLK	TDO	TDI	VSS	т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 5. MCF54450 and MCF54451 Pinout (256 MAPBGA)

4.3 Pinout—360 TEPBGA

The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
Α	GND	PCI_ REQ0	PCI_ AD10	PCI_ AD11	PCI_ AD13	PCI_ SERR	PCI_ STOP	PCI_ AD15	PCI_ GNT0	PCI_ AD29	PCI_ AD20	XTAL 32K	EXTAL 32K	USB_ DM	USB_ DP	EXTAL	XTAL	DACKO	DSPI_ PCS2	DSPI_ SCK	TDO	GND	А
в	PCI_ CBE0	PCI_ FRAME	PCI_ AD9	PCI_ PERR	PCI_ AD12	PCI_ RST	PCI_ GNT3	PCI_ AD14	PCI_ AD18	PCI_ AD28	PCI_ AD19	PCI_ AD21	NC	GND	NC	VDD_ OSC	RST OUT	DREQ0	DSPI_ SIN	DSPI_ PCS1	TMS	TRST	в
с	PCI_ AD0	PCI_ AD2	PCI_ IRDY	PCI_ PAR	PCI_ REQ1	IRQ1	PCI_ REQ3	PCI_ GNT2	PCI_ GNT1	PCI_ TRDY	PCI_ AD31	PCI_ AD22	VDD_ RTC	VDD_ A_PLL	NC	VSS_ OSC	DACK1	DREQ1	TDI	DSPI_ SOUT	JTAG_ EN	TCLK	с
D	PCI_ CBE1	PCI_ AD1	PCI_ AD7	PCI_ AD8	PCI_ IDSEL	IVDD	PCI_ REQ2	IVDD	PCI_ AD17	PCI_ AD16	PCI_ AD30	PCI_ AD23	EVDD	IVDD	PLL TEST	NC	DSPI_ PCS0	DSPI_ PCS5	EVDD	SSI_ MCLK	SSI_ RXD	SSI_ TXD	D
Е	PCI_ AD4	PCI_ AD5	PCI_ AD6	PCI_ CBE2											-				SSI_ BCLK	SSI_FS	SD_ DM2	SD_ DQS2	E
F	PCI_ AD24	PCI_DE VSEL	PCI_ AD3	IVDD															SDVDD	SD_D16	SD_D17	SD_D18	F
G	TOIN	PCI_ AD26	PCI_ AD25	PCI_ CBE3			GND	EVDD	GND	GND	EVDD	GND	GND	EVDD	GND	EVDD			SD_D19	SD_D20	SD_D21	SD_D22	G
н	T2IN	T3IN	T1IN	IVDD			GND									GND			SDVDD	SD_D23	SD_ DM3	SD_ DQS3	н
J	FB_AD 29	FB_AD 31	FB_CLK	PCI_ AD27			EVDD		GND	GND	GND	GND	GND	GND		EVDD			SD_D26	SD_D27	SD_D25	SD_D24	J
к	FB_AD 28	FB_AD 27	FB_AD 26	FB_AD 30			GND		GND	GND	GND	GND	GND	GND		GND			SDVDD	SD_D28	SD_D29	SD_D30	к
L	FB_AD 25	FB_AD 23	FB_AD 22	FB_AD 24			EVDD		GND	GND	GND	GND	GND	GND		EVDD			SD_ CAS	SD_ CS1	SD_D31	SD_ CLK	L
м	FB_AD 21	FB_AD 20	FB_AD 19	FB_AD 18			GND		GND	GND	GND	GND	GND	GND		GND			SDVDD	SD_ CS0	SD_ VREF	SD_ CLK	м
N	FB_AD 17	FB_AD 16	U1TXD	IVDD			GND		GND	GND	GND	GND	GND	GND		EVDD			SD_A2	SD_WE	SD_ RAS	SD_ CKE	N
Р	FB_AD 15	FB_AD 14	U1RXD	FB_AD 10			EVDD		GND	GND	GND	GND	GND	GND		GND			SD_ BA0	SD_A1	SD_A0	SD_ BA1	Р
R	FB_AD 13	FB_AD 12	FB_AD 11	IVDD			GND									EVDD			SDVDD	SD_A5	SD_A4	SD_A3	R
т	FB_AD 9	FB_AD 8	FB_AD 7	FB_AD 6			GND	EVDD	GND	GND	GND	EVDD	GND	EVDD	GND	EVDD			SD_A9	SD_A8	SD_A7	SD_A6	т
U	FB_AD 5	FB_AD 4	FB_AD 3	U1RTS													•		SDVDD	SD_A12	SD_A11	SD_A10	U
v	FB_AD	FB_AD	U1CTS	USB_ VBUS_ OC															ATA_ DA2	ATA_ DA1	ATA_ DA0	SD_A13	v
w	FB_AD	FB_BE/ BWE2	FB_BE/ BWE1	IVDD	FB_CS3	PST DDATA4	IVDD	IVDD	FEC0_ RXD1	FEC0_ TXD3	FEC0_ TXEN	IVDD	ATA_ RESET	FEC1_ RXCLK	U0TXD	IVDD	FEC1_ RXER	FEC1_ TXD2	IVDD	FEC1_ MDC	ATA_ CS1	ATA_ CS0	w
Y	FB_BE/	FB_BE/	FB_TS	FB_CS0	PST	PST	FEC0_	FEC0_	FEC0_	FEC0_	FEC0_	12C_	ATA_BU FFER_	ATA_	FEC1_	UOCTS	FEC1_	RESET	FEC1_	FEC1_	NC	FEC1_	Y
·	BWE3	BWE0 USB	FD_13	FB_030	DDATA0	DDATA3	MDIO	RXDV	RXD2	TXCLK	TXD0	SDA	EN	IORDY	RXD2	00013	RXD0	REGET	TXD3	TXD0	INC.	MDIO	
AA	FB_OE	VBUS_ EN	FB_R/W	FB_CS2	PST DDATA2	PST DDATA7	FEC0_ CRS	FEC0_ RXCLK	NC	FEC0_ RXER	FEC0_ TXD1	I2C_ SCL	IRQ4	ATA_ DMARQ	FEC1_ RXD3	UORTS	FEC1_ RXD1	FEC1_ CRS	FEC1_ TXD1	NC	FEC1_ TXEN	FEC1_ TXER	AA
AB	GND	FB_TA	FB_CS1	PST DDATA1	PST DDATA5	PST DDATA6	FEC0_ COL	FEC0_ MDC	FEC0_ RXD3	FEC0_ RXD0	FEC0_ TXD2	FEC0_ TXER	IRQ7	IRQ3	FEC1_ RXDV	UORXD	BOOT MOD1	FEC1_ COL	FEC1_ TXCLK	TEST	BOOT MOD0	GND	АВ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	

Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)

This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This section contains detailed information on DC/AC electrical characteristics and AC timing specifications.

The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will be met. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this MCU document supersede any values found in the module specifications.

5.1 Absolute Maximum Ratings

Rating	Symbol	Pin Name	Value	Units
External I/O pad supply voltage	EV _{DD}	EVDD	-0.3 to +4.0	V
Internal oscillator supply voltage	OSCV _{DD}	VDD_OSC	-0.3 to +4.0	V
Real-time clock supply voltage	RTCV _{DD}	VDD_RTC	-0.5 to +2.0	V
Internal logic supply voltage	IV _{DD}	IVDD	-0.5 to +2.0	V
SDRAM I/O pad supply voltage	SDV _{DD}	SD_VDD	-0.3 to +4.0	V
PLL supply voltage	PV _{DD}	VDD_A_PLL	-0.5 to +2.0	V
Digital input voltage ³	V _{IN}	_	-0.3 to +3.6	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{3, 4, 5}	I _{DD}	—	25	mA
Operating temperature range (packaged)	Т _А (Т _L - Т _Н)	_	-40 to +85	°C
Storage temperature range	T _{stg}	_	-55 to +150	°C

Table 5. Absolute Maximum Ratings^{1, 2}

Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or EV_{DD}).

³ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.

⁴ All functional non-supply pins are internally clamped to V_{SS} and EV_{DD}.

⁵ Power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > EV_{DD}$) is greater than I_{DD} , the injection current may flow out of EV_{DD} and could result in external power supply going out of regulation. Ensure the external EV_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MPU is not consuming power (ex; no clock). The power supply must maintain regulation within operating EV_{DD} range during instantaneous and operating maximum current conditions.

5.2 Thermal Characteristics

Characteristic		Symbol	256 MAPBGA	360 TEPBGA	Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JA}	29 ^{1,2}	24 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	25 ^{1,2}	21 ^{1,2}	°C/W
Junction to board		θ_{JB}	18 ³	15 ³	°C/W
Junction to case		θ_{JC}	10 ⁴	11 ⁴	°C/W
Junction to top of package		Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		Тj	105	105	°C

Table 6. Thermal Characteristics

 θ_{JMA} and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

- ² Per JEDEC JESD51-6 with the board horizontal.
- ³ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁵ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 Eqn. 1

Where:

T_A	= Ambient Temperature, °C
Q_{JMA}	= Package Thermal Resistance, Junction-to-Ambient, $^{\circ}C/W$
P _D	$= P_{INT} + P_{I/O}$
P_{INT}	= I_{DD} $ imes$ IV $_{DD}$, Watts - Chip Internal Power
P _{I/O}	= Power Dissipation on Input and Output Pins - User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A \times 273^{\circ}C) + Q_{JMA} \times P_D^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

5.3 ESD Protection

Table 7.	ESD	Protection	Characteristics ^{1, 2}
----------	-----	------------	---------------------------------

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

5.4 DC Electrical Specifications

Characteristic Symbol Min Max Units Internal logic supply voltage¹ IV_{DD} 1.35 1.65 V PLL analog operation voltage range PVnn V 1.35 1.65 External I/O pad supply voltage V **EV**_{DD} 3.0 3.6 V Internal oscillator supply voltage OSCV_{DD} 3.0 3.6 Real-time clock supply voltage **RTCV**_{DD} V 1.35 1.65 SDRAM I/O pad supply voltage - DDR mode V 2.25 2.75 SDV_{DD} SDRAM I/O pad supply voltage - DDR2 mode SDVDD 1.7 1.9 V SDRAM I/O pad supply voltage - Mobile DDR mode 1.7 1.9 V SDV_{DD} V SDRAM input reference voltage **SDV**_{REF} 0.51 x SDV_{DD} 0.49 x SDV_{DD} 0.7 x EV_{DD} V Input High Voltage VIH 3.65 $V_{SS} - 0.3$ V Input Low Voltage 0.35 x EV_{DD} VII Input Hysteresis V_{HYS} 0.06 x EV_{DD} mV Input Leakage Current² -2.5 2.5 μΑ l_{in} $V_{in} = V_{DD}$ or V_{SS} , Input-only pins Input Leakage Current³ l_{in} -5 5 μΑ $V_{in} = V_{DD}$ or V_{SS} , Input-only pins High Impedance (Off-State) Leakage Current⁴ -10.0 10.0 μΑ loz $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins Output High Voltage (All input/output and all output pins) VOH $0.85 \times EV_{DD}$ V $I_{OH} = -5.0 \text{ mA}$ Output Low Voltage (All input/output and all output pins) $0.15 \times EV_{DD}$ V VOL $I_{OI} = 5.0 \text{mA}$

Table 8. DC Electrical Specifications

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

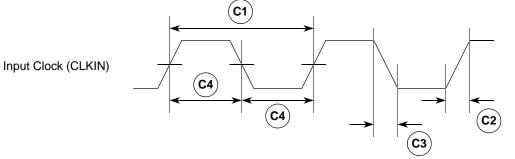
Characteristic	Symbol	Min	Max	Units
Weak Internal Pull Up Device Current, tested at V _{IL} Max. 5	I _{APU}	-10	-130	μA
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load Capacitance Low drive strength High drive strength	CL		25 50	pF
DC Injection Current ^{3, 7, 8, 9} $V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$ Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10	1.0 10	mA

Table 8. DC Electrical Specifications

 IV_{DD} and PV_{DD} should be at the same voltage. PV_{DD} should have a filtered input. Please see the PLL section of this specification for an example circuit. There are three PV_{DD} inputs, one for each PLL. A filter circuit should used on each PV_{DD} input.

- ² Valid for all parts, EXCEPT the MCF54452YVR200.
- ³ Valid just the MCF54452YVR200 part number.
- ⁴ Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 μA min/max.
- ⁵ Refer to the *MCF54455 Reference Manual* signals description chapter for pins having weak internal pull-up devices.
- ⁶ This parameter is characterized before qualification rather than 100% tested.
- ⁷ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD} .
- ⁸ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁹ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, the system clock is not present during the power-up sequence until the PLL has attained lock.

5.5 Clock Timing Specifications


The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier. The PLL can also be disabled, and an external oscillator can directly clock the device.

The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip peripherals. The MCF5445*x* devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing a 50% duty-cycle input clock aids in simplifying overall system design.

Item	Specification	Min	Max	Unit
C1	Cycle time	15	40	ns
1 / C1	Frequency	25	66.66	MHz
C2	Rise time (20% of vdd to 80% of vdd)	-	2	ns
C3	Fall time (80% of vdd to 20% of vdd)	-	2	ns
C4	Duty cycle (at 50% of vdd)	40	60	%

Table 9. Input Clock Timing Requirements

Figure 7. Input Clock Timing Diagram

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	PLL Reference Frequency Range Crystal reference External reference	f _{ref_crystal} f _{ref_ext}	16 16	40 66.66	MHz MHz
2	Core/System Frequency	f _{sys}	512 Hz ¹	266.67 MHz	—
	Core/System Clock Period	t _{sys}	—	1/f _{sys}	ns
19	VCO Frequency ($f_{vco} = f_{ref} \times PFDR$)	f _{vco}	300	540	MHz
3	Crystal Start-up Time ^{2, 3}	t _{cst}	_	10	ms
4	EXTAL Input High Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{IHEXT} V _{IHEXT}	V _{XTAL} + 0.4 E _{VDD} /2 + 0.4		V V
5	EXTAL Input Low Voltage Crystal Mode ⁴ All other modes (External, Limp)	V _{ILEXT} V _{ILEXT}		V _{XTAL} - 0.4 E _{VDD} /2 - 0.4	V V
6	EXTAL Input Rise & Fall Time (20% to 80% E _{VDD}) (External, Limp)		1	2	ns
7	PLL Lock Time ^{3, 5}	t _{lpll}		50000	CLKIN
8	Duty Cycle of reference ³ (External, Limp)	t _{dc}	40	60	%
9	XTAL Current	I _{XTAL}	1	3	mA
10	Total on-chip stray capacitance on XTAL	C _{S_XTAL}	-	1.5	pF

Table 10. PLL Electrical Characteristics

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Num	Characteristic	Symbol	Min. Value	Max. Value	Unit
11	Total on-chip stray capacitance on EXTAL	C _{S_EXTAL}	—	1.5	pF
12	Crystal capacitive load	CL	See crystal spec		
13	Discrete load capacitance for XTAL Discrete load capacitance for EXTAL	C _{L_XTAL} C _{L_EXTAL}	_	$\begin{array}{c} 2\times (C_L - \\ C_{S_XTAL} - \\ C_{S_EXTAL} - \\ C_{S_PCB})^6 \end{array}$	pF
14	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{sys}
15	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{sys}
17	CLKOUT Period Jitter, ^{3, 4, 7} Measured at f _{SYS} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter	C _{jitter}		10 TBD	% FB_CLK % FB_CLK

Table 10. PLL Electrical Characteristics (continued)

¹ The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz \div 32,768). When the PLL is enabled, the minimum system frequency (f_{sys}) is 150 MHz.

² This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock reference only.

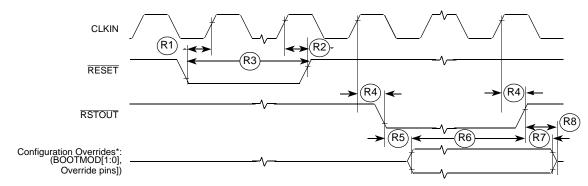
- ³ Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ This parameter is guaranteed by design rather than 100% tested.
- ⁵ This specification is the PLL lock time only and does not include oscillator start-up time.

⁶ C_{S PCB} is the measured PCB stray capacitance on EXTAL and XTAL.

⁷ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via PLL V_{DD}, EV_{DD}, and V_{SS} and variation in crystal oscillator frequency increase the Cjitter percentage for a given interval.

5.6 Reset Timing Specifications

Table 11 lists specifications for the reset timing parameters shown in Figure 8.


Table 11. Reset and Configuration Override Timing

Num	Characteristic	Min	Max	Unit
R1 ¹	RESET valid to CLKIN (setup)	9		ns
R2	CLKIN to RESET invalid (hold)	1.5		ns
R3	RESET valid time ²	5	_	CLKIN cycles
R4	CLKIN to RSTOUT valid	—	10	ns
R5	RSTOUT valid to Configuration Override inputs valid	0	—	ns
R6	Configuration Override inputs valid to RSTOUT invalid (setup)	20	_	CLKIN cycles
R7	Configuration Override inputs invalid after RSTOUT invalid (hold)	0	—	ns
R8	RSTOUT invalid to Configuration Override inputs High Impedance	—	1	CLKIN cycles

¹ RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if recognition on a particular clock is required.

² During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to the system. Thus, RESET must be held a minimum of 100 ns.

5.7 FlexBus Timing Specifications

A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

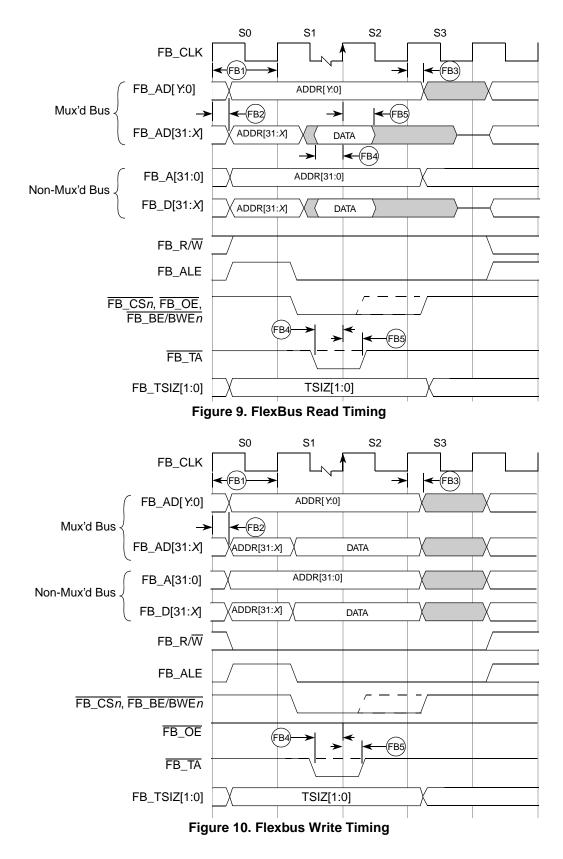
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Characteristic	Min	Мах	Unit	Notes
	Frequency of Operation	25	66.66	MHz	
FB1	Clock Period	15	40	ns	
FB2	Output Valid	—	7.0	ns	1
FB3	Output Hold	1.0	—	ns	1
FB4	Input Setup	3.0		ns	2
FB5	Input Hold	0		ns	2

Table 12. FlexBus AC Timing Specifications

¹ Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], and FB_TS.

² Specification is valid for all FB_AD[31:0] and FB_TA.


NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 32-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

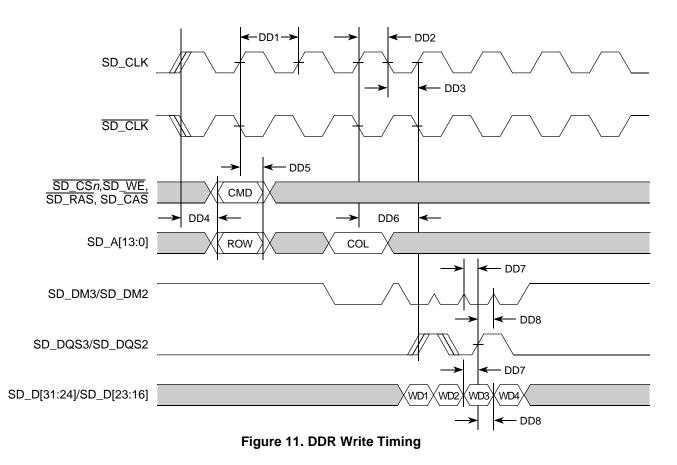
The address and data busses are muxed between the FlexBus and PCI controller. At the end of the read and write bus cycles the address signals are indeterminate.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

5.8 SDRAM AC Timing Characteristics

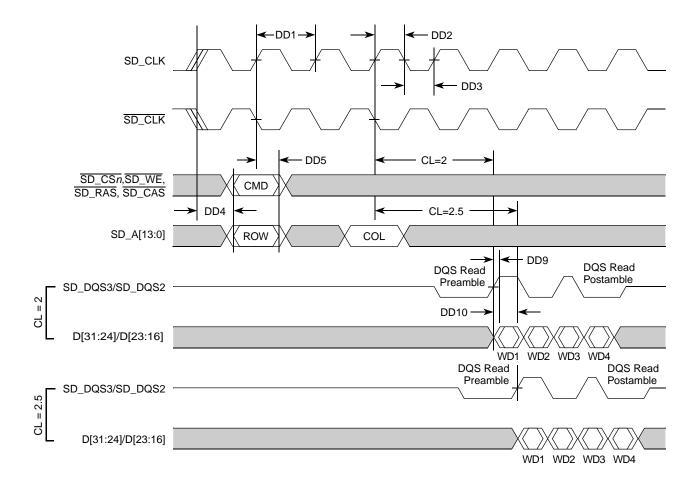
The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing numbers are relative to the four DQS byte lanes.

Num	Characteristic	Symbol	Min	Мах	Unit	Notes
	Frequency of Operation		60	133.33	MHz	1
DD1	Clock Period	t _{SDCK}	7.5	16.67	ns	
DD2	Pulse Width High	t _{SDCKH}	0.45	0.55	t _{SDCK}	2
DD3	Pulse Width Low	t _{SDCKL}	0.45	0.55	t _{SDCK}	3
DD4	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , SD_CS[1:0] — Output Valid	t _{CMV}		(0.5 x t _{SDCK}) + 1.0ns	ns	3
DD5	Address, SD_CKE, <u>SD_CAS</u> , <u>SD_RAS</u> , <u>SD_WE</u> , <u>SD_CS</u> [1:0] — Output Hold	^t смн	2.0	_	ns	
DD6	Write Command to first DQS Latching Transition	t _{DQSS}	(1.0 x t _{SDCK}) - 0.6ns	(1.0 x t _{SDCK}) + 0.6ns	ns	
DD7	Data and Data Mask Output Setup (DQ>DQS) Relative to DQS (DDR Write Mode)	t _{QS}	1.0	_	ns	4 5
DD8	Data and Data Mask Output Hold (DQS>DQ) Relative to DQS (DDR Write Mode)	t _{QH}	1.0	_	ns	6
DD9	Input Data Skew Relative to DQS (Input Setup)	t _{IS}	—	1.0	ns	7
DD10	Input Data Hold Relative to DQS.	t _{IH}	(0.25 x t _{SDCK}) + 0.5ns	_	ns	8


Table 13. SDRAM Timing Specifications

¹ The SDRAM interface operates at the same frequency as the internal system bus.

² Pulse width high plus pulse width low cannot exceed min and max clock period.


- ³ Command output valid should be 1/2 the memory bus clock (t_{SDCK}) plus some minor adjustments for process, temperature, and voltage variations.
- ⁴ This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁵ The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid for each subsequent DQS edge.
- ⁶ This specification relates to the required hold time of DDR memories. SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]
- ⁷ Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
- ⁸ Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes invalid.

5.9 PCI Bus Timing Specifications

The PCI bus on the device is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Refer to the PCI 2.2 spec for a more detailed timing analysis.

Table 14. PCI	Timing	Specifications ^{1,2}
---------------	--------	-------------------------------

Num	Characteristic	33 MHz ³		66 MHz ³		
		Min	Max	Min	Max	Unit
	Frequency of Operation	—	33.33	33.33	66.66	MHz
P1	Clock Period	30	_	15	30	ns
P2	Bused PCI signals — input setup	7.0	_	3.0	—	ns
P3	PCI_GNT[3:0]/PCI_REQ[3:0] — input setup	10.0	_	5.0	_	ns
P4	All PCI signals — input hold	0	_	0	—	ns
P5	Bused PCI signals — output valid	—	11.0	—	6.0	ns

Num Characteristic	33 MHz ³		66 MHz ³			
	Gharacteristic	Min	Max	Min	Max	Unit
P6	PCI_REQ[3:0]/PCI_GNT[3:0] — output valid	_	12.0	_	6.0	ns
P7	All PCI signals — output hold	2.0	_	1.0	_	ns

Table 14.	PCI Timing	Specifications ^{1,2}	(continued)
-----------	------------	-------------------------------	-------------

¹ The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.

² All PCI signals are bused signals except for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as point-to-point signals by the PCI Specification.

³ The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.

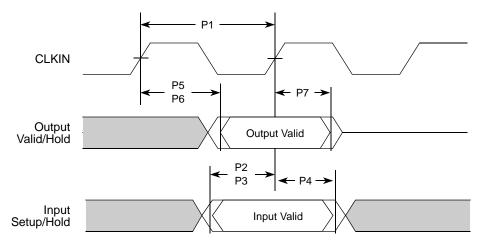


Figure 13. PCI Timing

5.9.1 Overshoot and Undershoot

Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the specification limits.

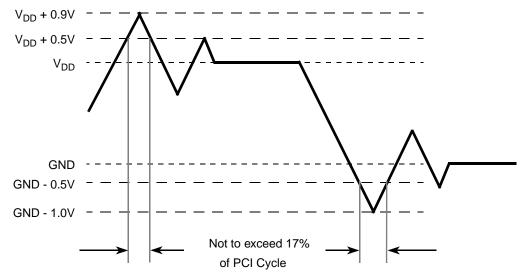
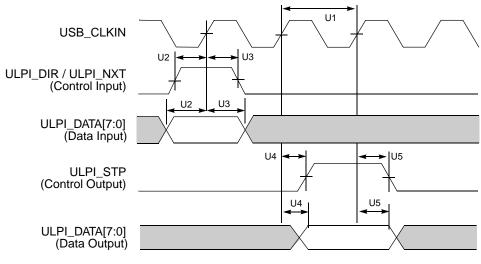


Figure 14. Overshoot and Undershoot Limits

5.10 ULPI Timing Specifications

The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured with respect to the clock as seen at the USB_CLKIN pin on the MCF5445*x*. The ULPI PHY is the source of the 60MHz clock.


NOTE

The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL or input on the USB_CLKIN pin.

Num	Characteristic	Min	Nominal	Max	Units
	USB_CLKIN operating frequency	_	60	_	MHz
	USB_CLKIN duty cycle		50		%
U1	USB_CLKIN clock period	_	16.67	_	ns
U2	Input Setup (control and data)	5.0	_	_	ns
U3	Input Hold (control and data)	1.0	—		ns
U4	Output Valid (control and data)	_	—	9.5	ns
U5	Output Hold (control and data)	1.0	—	_	

Table 15. ULPI Interface Timing

5.11 SSI Timing Specifications

This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync (SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.

Num	Description	Symbol	Min	Мах	Units	Notes
S1	SSI_MCLK cycle time	t _{MCLK}	$2 imes t_{SYS}$		ns	2
S2	SSI_MCLK pulse width high / low		45%	55%	t _{MCLK}	
S3	SSI_BCLK cycle time	t _{BCLK}	$8 imes t_{SYS}$	_	ns	3
S4	SSI_BCLK pulse width		45%	55%	t _{BCLK}	
S5	SSI_BCLK to SSI_FS output valid		—	15	ns	
S6	SSI_BCLK to SSI_FS output invalid		0	_	ns	
S7	SSI_BCLK to SSI_TXD valid		—	15	ns	
S8	SSI_BCLK to SSI_TXD invalid / high impedence		-2	_	ns	
S9	SSI_RXD / SSI_FS input setup before SSI_BCLK		10	_	ns	
S10	SSI_RXD / SSI_FS input hold after SSI_BCLK		0	_	ns	

Table 16. SSI Timing — Master Modes¹

¹ All timings specified with a capactive load of 25pF.

² SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (f_{svs}).

³ SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (f_{sys}).

Num	Description	Symbol	Min	Max	Units	Notes
S11	SSI_BCLK cycle time	t _{BCLK}	$8 imes t_{SYS}$	—	ns	
S12	SSI_BCLK pulse width high / low		45%	55%	t _{BCLK}	
S13	SSI_FS input setup before SSI_BCLK		10		ns	
S14	SSI_FS input hold after SSI_BCLK		2		ns	
S15	SSI_BCLK to SSI_TXD / SSI_FS output valid			15	ns	
S16	SSI_BCLK to SSI_TXD / SSI_FS output invalid / high impedence		0	—	ns	
S17	SSI_RXD setup before SSI_BCLK		10		ns	
S18	SSI_RXD hold after SSI_BCLK		2		ns	

¹ All timings specified with a capactive load of 25pF.

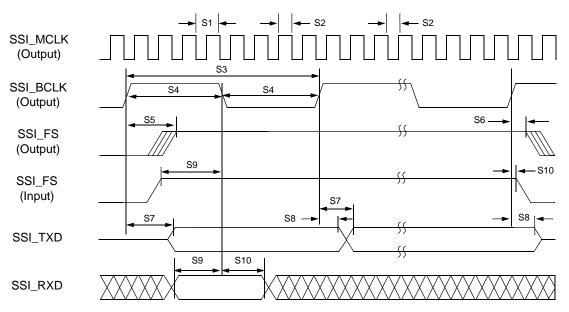


Figure 16. SSI Timing—Master Modes

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

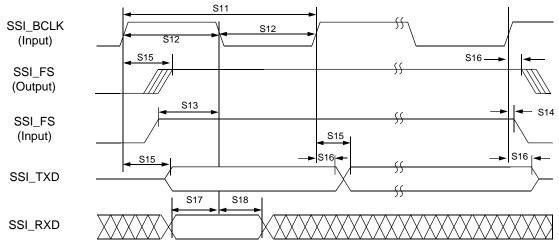


Figure 17. SSI Timing—Slave Modes

5.12 I²C Timing Specifications

Table 18 lists specifications for the I^2C input timing parameters shown in Figure 18.

Table 18. I ² C Input Timing S	pecifications between SCL and SDA
---	-----------------------------------

Num	Characteristic	Min	Max	Units
11	Start condition hold time	2	—	t _{SYS}
12	Clock low period	8	—	t _{SYS}
13	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5$ V to $V_{IH} = 2.4$ V)		1	ms
14	Data hold time	0	_	ns
15	I2C_SCL/I2C_SDA fall time ($V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	4	—	t _{SYS}
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	2	—	t _{SYS}
19	Stop condition setup time	2	_	t _{SYS}

Table 19 lists specifications for the I^2C output timing parameters shown in Figure 18.

Table 19. I ² C Outpu	t Timing Specifications	between SCL and SDA
----------------------------------	-------------------------	---------------------

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	6		t _{SYS}
12 ¹	Clock low period	10	_	t _{SYS}
13 ²	I2C_SCL/I2C_SDA rise time ($V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V}$)	—	_	μs
14 ¹	Data hold time	7	_	t _{SYS}
15 ³	I2C_SCL/I2C_SDA fall time (V _{IH} = 2.4 V to V _{IL} = 0.5 V)	—	3	ns

1

Num	Characteristic	Min	Max	Units
16 ¹	Clock high time	10	_	t _{SYS}
17 ¹	Data setup time	2	_	t _{SYS}
18 ¹	Start condition setup time (for repeated start condition only)	20	_	t _{SYS}
19 ¹	Stop condition setup time	10	_	t _{SYS}

Table 19. I²C Output Timing Specifications between SCL and SDA (continued)

Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I^2C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR. However, the numbers given in Table 19 are minimum values.

² Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.

³ Specified at a nominal 50-pF load.

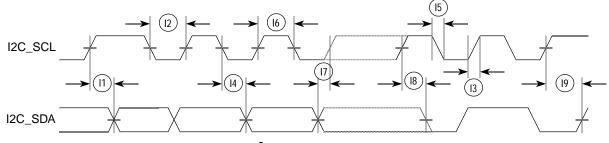


Figure 18. I²C Input/Output Timings

5.13 Fast Ethernet Timing Specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

5.13.1 Receive Signal Timing Specifications

The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.

Num	Characteristic	MII Mode		RMII	Mode	Unit	
		Min	Max	Min	Мах	ont	
	RXCLK frequency	_	25		50	MHz	
E1	RXD[n:0], RXDV, RXER to RXCLK setup ¹	5	_	4	_	ns	
E2	RXCLK to RXD[n:0], RXDV, RXER hold ¹	5	_	2	_	ns	
E3	RXCLK pulse width high	35%	65%	35%	65%	RXCLK period	
E4	RXCLK pulse width low	35%	65%	35%	65%	RXCLK period	

Table 20. Receive Signal Timing

In MII mode, n = 3; In RMII mode, n = 1

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

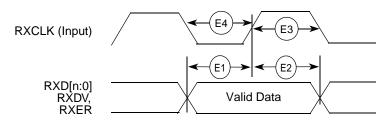


Figure 19. MII Receive Signal Timing Diagram

5.13.2 Transmit Signal Timing Specifications

Table 21. Transmit Signal Timing

Num	Characteristic	MII Mode		RMII	Mode	Unit	
Num	Characteristic	Min	Мах	Min	Мах	Unit	
	TXCLK frequency		25	_	50	MHz	
E5	TXCLK to TXD[n:0], TXEN, TXER invalid ¹	5	_	5	_	ns	
E6	TXCLK to TXD[n:0], TXEN, TXER valid ¹	_	25	_	14	ns	
E7	TXCLK pulse width high	35%	65%	35%	65%	t _{TXCLK}	
E8	TXCLK pulse width low	35%	65%	35%	65%	t _{TXCLK}	

¹ In MII mode, n = 3; In RMII mode, n = 1

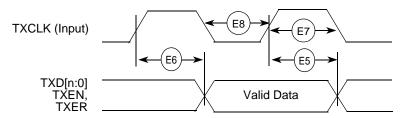


Figure 20. MII Transmit Signal Timing Diagram

5.13.3 Asynchronous Input Signal Timing Specifications

Table 22. MII Transmit Signal Timing

Num	Characteristic	Min	Max	Unit
E9	CRS, COL minimum pulse width	1.5		TXCLK period

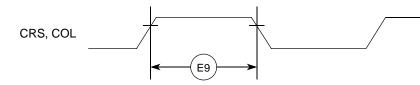


Figure 21. MII Async Inputs Timing Diagram

5.13.4 MII Serial Management Timing Specifications

Table 23. MII Serial Management Channel Signal Timing

Num	Characteristic	Symbol	Min	Мах	Unit
E10	MDC cycle time	t _{MDC}	400	_	ns
E11	MDC pulse width		40	60	% t _{MDC}
E12	MDC to MDIO output valid		_	375	ns
E13	MDC to MDIO output invalid		25		ns
E14	MDIO input to MDC setup		10	_	ns
E15	MDIO input to MDC hold		0	_	ns

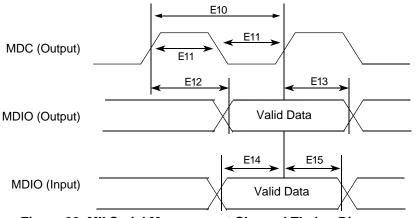


Figure 22. MII Serial Management Channel TIming Diagram

5.14 32-Bit Timer Module Timing Specifications

Table 24 lists timer module AC timings.

Name	Characteristic		Max	Unit
T1	DTnIN cycle time ($n = 0.3$)		_	t _{sys/2}
T2	DTnIN pulse width ($n = 0.3$)			t _{sys/2}

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

5.15 ATA Interface Timing Specifications

The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the *ATA/ATAPI-6 Specficiation* and the ATA controller chapter of the *MCF54455 Reference Manual* for timing diagrams of the various modes of operation.

The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section of the *MCF54455 Reference Manual*. These timing equations must be fulfilled for the ATA host to meet timing. Table 25 provides implementation specific timing parameters necessary to complete the timing equations.

Name	Characteristic	Symbol	Min	Max	Unit	Notes
A1	Setup time — ATA_IORDY to SYSCLK falling	t _{SUI}	4.0		ns	
A2	Hold time — ATA_IORDY from SYSCLK falling	t _{HI}	3.0	_	ns	
A3	A3 Setup time — ATA_DATA[15:0] to SYSCLK rising		4.0	_	ns	
A4	A4 Propagation delay — SYSCLK rising to all outputs		_	7.0	ns	3
A5	A5 Output skew		—	1.5	ns	3
A6	A6 Setup time — ATA_DATA[15:0] valid to ATA_IORDY		2.0	_	ns	4
A7	Hold time — ATA_IORDY to ATA_DATA[15:0] invalid	t _{I_DH}	3.5	_	ns	4

Table 25. ATA Interface Timing Specifications^{1,2}

¹ These parameters are guaranteed by design and not testable.

² All timings specified with a capacitive load of 40pF.

³ Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]

⁴ Applies to Ultra DMA data-in burst only

5.16 DSPI Timing Specifications

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the *MCF54455 Reference Manual* for information on the modified transfer formats used for communicating with slower peripheral devices.

Name	Characteristic	Symbol	Min	Max	Unit	Notes
DS1	DSPI_SCK Cycle Time	t _{SCK}	4 x t _{SYS}	_	ns	2
DS2	DSPI_SCK Duty Cycle	—	(t _{sck} ÷ 2) - 2.0	$(t_{sck} \div 2) + 2.0$	ns	3
Master M	ode					
DS3	DSPI_PCS <i>n</i> to DSPI_SCK delay	t _{CSC}	$(2 \times t_{SYS})$ - 1.5	_	ns	4
DS4	DSPI_SCK to DSPI_PCS <i>n</i> delay	t _{ASC}	$(2 \times t_{SYS})$ - 3.0	_	ns	5
DS5	DSPI_SCK to DSPI_SOUT valid	—	—	5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	—	-5	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	—	9	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	—	0	_	ns	
Slave Mo	Slave Mode					
DS9	DSPI_SCK to DSPI_SOUT valid		—	10	ns	

Table 26. DSPI Module AC Timing Specifications¹

Name	Characteristic	Symbol	Min	Мах	Unit	Notes	
DS10	DSPI_SCK to DSPI_SOUT invalid		0	_	ns		
DS11	DSPI_SIN to DSPI_SCK input setup	_	2	_	ns		
DS12	DSPI_SCK to DSPI_SIN input hold	_	7	_	ns		
DS13	DSPI_SS active to DSPI_SOUT driven	_	_	10	ns		
DS14	DSPI_SS inactive to DSPI_SOUT not driven	_	—	10	ns		

Table 26. DSPI Module AC Timing Specifications¹ (continued)

¹ Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTAR*n*[CPHA] = 0. Data is sampled on the DSPI_SIN pin on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.

² When in master mode, the baud rate is programmable in DCTAR*n*[DBR], DCTAR*n*[PBR], and DCTAR*n*[BR].

³ This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTAR*n*[DBR], DCTAR*n*[CPHA], and DCTAR*n*[PBR].

⁴ The DSPI_PCS*n* to DSPI_SCK delay is programmable in DCTAR*n*[PCSSCK] and DCTAR*n*[CSSCK].

⁵ The DSPI_SCK to DSPI_PCS*n* delay is programmable in DCTAR*n*[PASC] and DCTAR*n*[ASC].

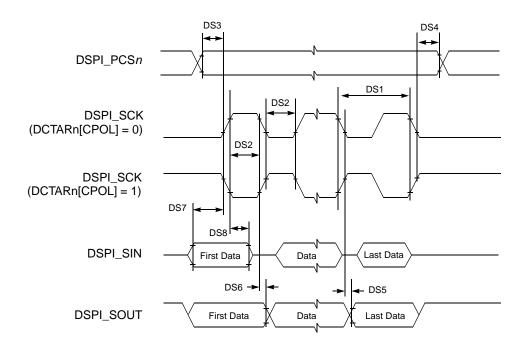


Figure 23. DSPI Classic SPI Timing—Master Mode

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

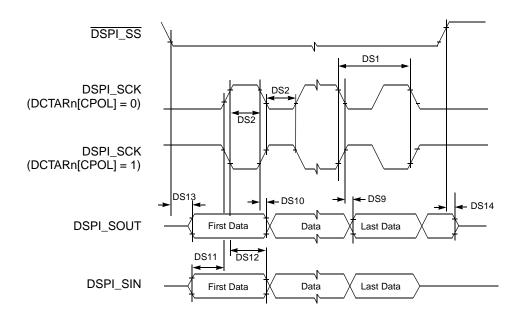


Figure 24. DSPI Classic SPI Timing—Slave Mode

5.17 SBF Timing Specifications

The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.

Name	Characteristic	Symbol	Min	Мах	Unit	Notes
SB1	SBF_CK Cycle Time	t _{SBFCK}	40		ns	1
SB2	SBF_CK High/Low Time	_	30%	_	t _{SBFCK}	
SB3	SBF_CS to SBF_CK delay	_	t _{SBFCK} - 2.0	_	ns	
SB4	SBF_CK to SBF_CS delay	_	t _{SBFCK} - 2.0	_	ns	
SB5	SBF_CK to SBF_DO valid	_	-5	_	ns	
SB6	SBF_CK to SBF_DO invalid	—	5	_	ns	
SB7	SBF_DI to SBF_SCK input setup	_	10	_	ns	
SB8	SBF_CK to SBF_DI input hold	—	0		ns	

At reset, the SBF_CK cycle time is $t_{REF} \times 67$. The first byte of data read from the serial memory contains a divider value that is used to set the SBF_CK cycle time for the duration of the serial boot process.

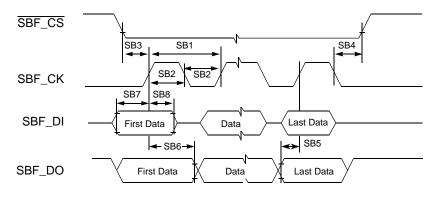


Figure 25. SBF Timing

5.18 General Purpose I/O Timing Specifications

Table 28. GPIO Timing¹

Num	Characteristic	Min	Max	Unit
G1	FB_CLK High to GPIO Output Valid	_	9	ns
G2	FB_CLK High to GPIO Output Invalid	1.5	_	ns
G3 GPIO Input Valid to FB_CLK High 9 —		_	ns	
G4	FB_CLK High to GPIO Input Invalid	1.5	—	ns

¹ These general purpose specifications apply to the following signals: IRQ*n*, all UART signals, all timer signals, DACK*n* and DREQ*n*, and all signals configured as GPIO.

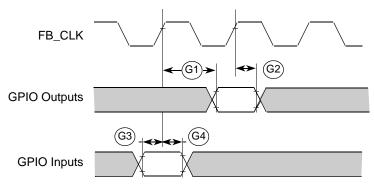


Figure 26. GPIO Timing

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

5.19 JTAG and Boundary Scan Timing

Table 29. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Min	Max	Unit
J1	TCLK Frequency of Operation	DC	20	MHz
J2	TCLK Cycle Period	50	_	ns
J3	TCLK Clock Pulse Width	20	30	ns
J4	TCLK Rise and Fall Times	_	3	ns
J5	Boundary Scan Input Data Setup Time to TCLK Rise	5	—	ns
J6	Boundary Scan Input Data Hold Time after TCLK Rise		—	ns
J7	TCLK Low to Boundary Scan Output Data Valid	_	33	ns
J8	TCLK Low to Boundary Scan Output High Z	_	33	ns
J9	TMS, TDI Input Data Setup Time to TCLK Rise	4	—	ns
J10	TMS, TDI Input Data Hold Time after TCLK Rise	10	—	ns
J11	TCLK Low to TDO Data Valid	_	11	ns
J12	TCLK Low to TDO High Z	—	11	ns
J13	TRST Assert Time	50	_	ns
J14	TRST Setup Time (Negation) to TCLK High	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.

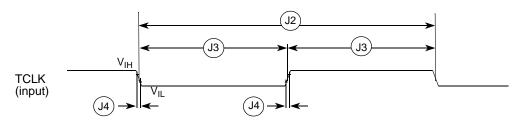
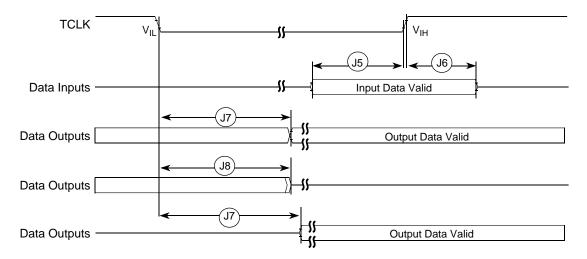
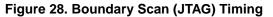




Figure 27. Test Clock Input Timing

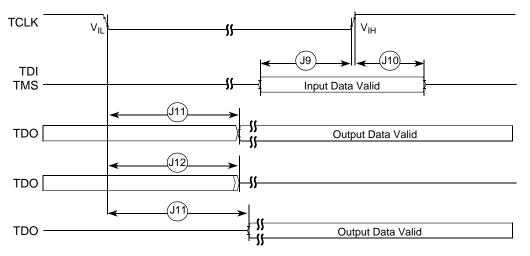
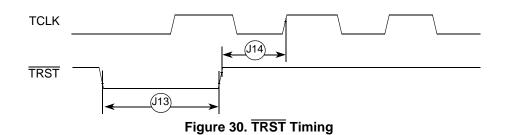



Figure 29. Test Access Port Timing

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

5.20 Debug AC Timing Specifications

Table 30 lists specifications for the debug AC timing parameters shown in Figure 31 and Table 32.

Num	Characteristic	Min	Мах	Units
D0	PSTCLK cycle time	1	1	t _{SYS}
D1	PSTCLK rising to PSTDDATA valid		3.0	ns
D2	PSTCLK rising to PSTDDATA invalid	1.5	_	ns
D3	DSI-to-DSCLK setup	1	_	PSTCLK
D4 ¹	D4 ¹ DSCLK-to-DSO hold		_	PSTCLK
D5	DSCLK cycle time	5	—	PSTCLK
D6	BKPT assertion time	1	—	PSTCLK

 Table 30. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of PSTCLK.

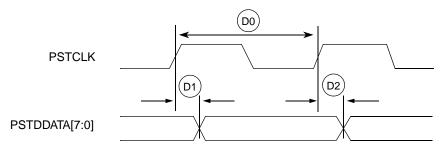


Figure 31. Real-Time Trace AC Timing

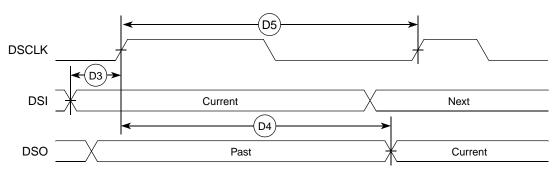


Figure 32. BDM Serial Port AC Timing

6 Power Consumption

All power consumption data is lab data measured on an M54455EVB running the Freescale Linux BSP.

Core Freq.		Idle	MP3 Playback	TFTP Download	USB HS File Copy	Units
	IV _{DD}	215.6	288.8	274.4	263.7	
000 1411	EV _{DD}	27.6	33.6	32.6	32.4	mA
266 MHz	SDV _{DD}	142.9	158.2	161.1	158.0	
	Total Power	672	829	809	787	mW
	IV _{DD}	163.8	228.0	213.8	207.9	
000 1411	EV _{DD}	29.9	34.7	34.3	33.8	mA
200 MHz	SDV _{DD}	142.2	158.5	160.0	153.4	
	Total Power	601	742	722	699	mW

Table 31. MCF4455 Application Power Consumption¹

¹ All voltage rails at nominal values: $IV_{DD} = 1.5 V$, $EV_{DD} = 3.3 V$, and $SDV_{DD} = 1.8 V$.

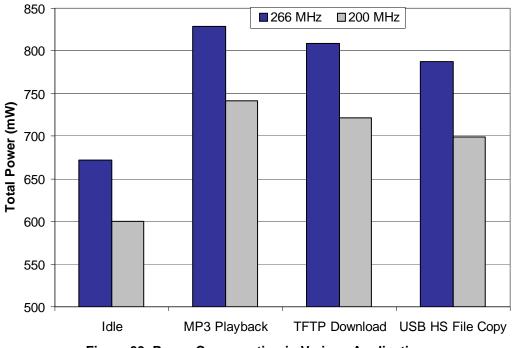


Figure 33. Power Consumption in Various Applications

Power Consumption

All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.

Mode	Voltago Supply	System Frequency				
Mode	Voltage Supply	166 (Typ) ³	200 (Typ) ³	233 (Typ) ³	266 (Typ) ³	266 (Peak) ⁴
RUN	IV _{DD} (mA)	93.4	110.9	128.2	145.4	202.1
KUN	Power (mW)	140.1	166.3	192.4	218.1	303.2
WAIT/DOZE	IV _{DD} (mA)	28.0	32.7	37.5	41.1	100.2
WAII/DOZE	Power (mW)	42.0	49.1	56.2	61.7	150.3
STOP 0	IV _{DD} (mA)	17.1	19.8	22.5	25.2	25.2
5101 0	Power (mW)	25.7	29.7	33.7	37.8	37.8
STOP 1	IV _{DD} (mA)	17.9	19.8	22.4	25.1	25.1
5101 1	Power (mW)	26.8	29.6	33.6	37.6	37.6
STOP 2	IV _{DD} (mA)	5.7	5.7	5.7	5.7	5.7
01012	Power (mW)	8.6	8.6	8.6	8.6	8.6
STOP 3	IV _{DD} (mA)	1.8	1.8	1.8	1.8	1.8
0101 3	Power (mW)	2.6	2.6	2.6	2.6	2.6

Table 32. Current Consumption in Low-Power Modes^{1,2}

¹ All values are measured on an M54455EVB with 1.5V IV_{DD} power supply. Tests performed at room temperature.

² Refer to the Power Management chapter in the *MCF54455 Reference Manual* for more information on low-power modes.

³ All peripheral clocks are off except UARTO, INTCO, IACK, edge port, reset controller, CCM, PLL, and FlexBus prior to entering low-power mode.

⁴ All peripheral clocks on prior to entering low-power mode.

Package Information

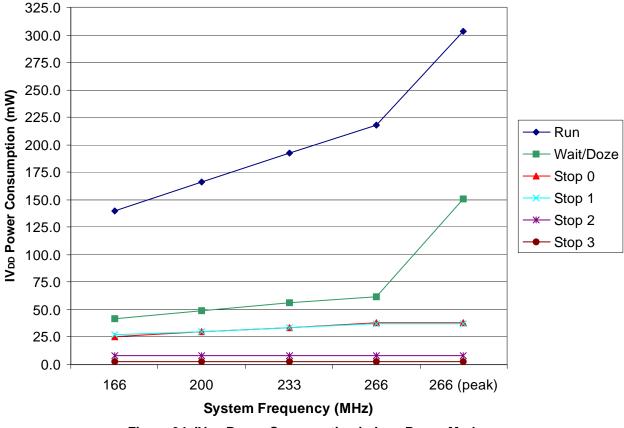


Figure 34. IV_{DD} Power Consumption in Low-Power Modes

7 Package Information

The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire. Table 33 lists the case outline numbers per device. Use these numbers in the web page's keyword search engine to find the latest package outline drawings.

Device	Package Type	Case Outline Numbers
MCF54450	256 MAPBGA	98ARH98219A
MCF54451	200 MIAI DOA	304111302134
MCF54452		
MCF54453	360 TEPBGA	98ARE10605D
MCF54454	JUUTEFBOA	30ANE 10003D
MCF54455		

Table 33.	Package	Information
-----------	---------	-------------

8 Product Documentation

Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.

MCF5445x ColdFire Microprocessor Data Sheet, Rev. 8

Revision History

9 Revision History

Table 34 summarizes revisions to this document.

Table 34. Revision History

Rev. No.	Date	Summary of Changes	
0	Sept 17, 2007	Initial public release.	
1	Feb 15, 2008	Corrected VSS pin locations in MCF5445 <i>x</i> signal information and muxing table for the 360 TEPBGA package: changed "M9, M16, M17" to "M9–M14, M16" Updated FlexBus read and write timing diagrams and added two notes before them. Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams. Added power consumption section.	
2	May 1, 2008	 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the PCI_AD bus is limited to 24-bits. In Absolute Maximum Ratings table, changed RTCV_{DD} specification from "-0.3 to +4.0" to "-0.5 to +2.0". In DC Electrical Specifications table: Changed RTCV_{DD} specification from 3.0–3.6 to 1.35–1.65. Changed High Impedance (Off-State) Leakage Current (I_{OZ}) specification from ±1 to ±10µA, and added footnote to this spec: "Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current is distributed among them. With all I/Os high, this spec reduces to ±2 µA min/max." 	
3	Dec 1, 2008	 Changed "360PBGA" heading to "360 TEPBGA" in Table 6. Changed the following specs in Table 13: Minimum frequency of operation from — to 60MHz. Maximum clock period from — to 16.67 ns. 	
4	Apr 12, 2009	 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller: In Table 4, in PCI_AD<i>n</i> signal section, added a separate row for each package, with PCI_AD<i>n</i> signals shown as — for 256-pin devices. In Figure 5, changed the PCI_AD<i>n</i> pins to their alternative function, FB_A<i>n</i>. 	
5	Apr 27, 2009	In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it's temperature entry from "0° to $+70^{\circ}$ C" to " -40° to $+85^{\circ}$ C".	
6	Oct 15, 2009	In Table 8 changed Input Leakage Current (I_{in}) from ±1.0 to ±2.5µA.	
7	Oct 18, 2011	In Table 2, added MCF54452YVR200 part number, with temperature range from -40° to $+105^{\circ}$ C. In Table 8, added Input Leakage Current (I _{in}) values for MCF54452YVR200 part number.	
8	Jan 18, 2012	In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.	

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF54455 Rev. 8 02/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2012. All rights reserved.

