Low Noise Amplifier with Bypass for LTE

GENERAL DESCRIPTION

NJG1169UX2 is low noise amplifier with bypass switch for LTE which covers frequency from 728 to 960MHz.

The NJG1169UX2 has a LNA pass-through function to select LNA active mode or bypass mode, and this IC achieves high gain, low noise figure and high linearity. Integrated ESD protection device on each port achieves excellent ESD robustness.

A very small and ultra-thin package of EPFFP6-X2 is adopted.

APPLICATIONS

LTE receive application

RF front-end modules, smartphones, data cards and others mobile application

FEATURES

Operating frequenciesOperating voltage

728 to 960MHz 1.5 to 3.3V

• Low current consumption 4.8/4.0mA typ. @ V_{DD}=2.8/1.8V

- High Gain
- Low Noise figure
- High IIP3

12.5dB typ. @V_{DD}=2.8V, f=880MHz 0.8dB typ. @V_{DD}=2.8V, f=880MHz

- 0dBm typ. @V_{DD}=2.8V, f=880MHz
- 2.5dB typ. @V_{DD}=2.8V, f=880MHz
- Ultra Small package size EPFFP6-X2 (Package size: 1.1mm x 0.7mm x 0.37mm typ.)
- RoHS compliant and Halogen Free

Insertion loss in bypass mode

MSL1

■ PIN CONFIGURATION

Pin Connection 1. GND 2. VDD 3. RFOUT 4. GND 5. RFIN 6. VCTL

TRUTH TABLE

"H"=V _{CTL} (H) "L"=V _{CTL} (L			
V _{CTL}	Mode		
L	Bypass mode		
Н	LNA active mode		

Note: Specifications and description listed in this datasheet are subject to change without notice

New Japan Radio Co., Ltd.

PACKAGE OUTLINE

NJG1169UX2

■ ABSOLUTE MAXIMUM RATINGS

		General condition	on: T_a =+25°C, Z_s =	-Z _I =50Ω
PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNITS
Supply voltage	V_{DD}		5.0	V
Control voltage	V _{CTL}		5.0	V
Input power	P_{in}	V _{DD} =2.8V	+15	dBm
Power dissipation	P _D	4-layer FR4 PCB with through-hole (101.5x114.5mm), T _j =150°C	430	mW
Operating temperature	T _{opr}		-40 to +105	°C
Storage temperature	T _{stg}		-55 to +150	°C

ELECTRICAL CHARACTERISTICS 1 (DC)

General condition: $T_a=+25^{\circ}C$, $Z_s=Z_l=50\Omega$

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating voltage	V_{DD}		1.5	-	3.3	V
Control voltage (High)	V _{CTL} (H)		1.3	1.8	3.3	V
Control voltage (Low)	V _{CTL} (L)		0	0	0.3	V
Operating current 1	I _{DD} 1	RF OFF, V _{DD} =2.8V V _{CTL} =1.8V	-	4.8	8.0	mA
Operating current 2	I _{DD} 2	RF OFF, V _{DD} =1.8V V _{CTL} =1.8V	-	4.0	7.5	mA
Operating current 3	I _{DD} 3	RF OFF, V _{DD} =2.8V, V _{CTL} =0V	-	15	60	μA
Operating current 4	I _{DD} 4	RF OFF, V _{DD} =1.8V, V _{CTL} =0V	-	10	60	μA
Control current	I _{CTL}	RF OFF, V _{CTL} =1.8V	-	7	20	μΑ

■ ELECTRICAL CHARACTERISTICS 2 (LNA active mode)

General Condition: VDI	D=2.8V, VCTL=1.	.8V, f _{RF} =880MHz,	$T_a = +25^{\circ}C, Z$	$Z_s = Z_l = 500$	D, with	applicatio	n circuit

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small signal gain 1	Gain1	Exclude PCB & connector losses(0.13dB)	10.0	12.5	15.0	dB
Noise figure 1	NF1	Exclude PCB & connector losses(0.06dB)	-	0.8	1.2	dB
Input power at 1dB gain compression point 1(1)	P-1dB (IN)1(1)		-10.0	+1.0	-	dBm
Input 3rd order intercept point 1(1)	IIP3_1(1)	$f1=f_{RF}$, $f2=f_{RF}+1MHz$, $P_{IN}=-24dBm$	-6.0	0	-	dBm
Gain settling time1(1)	Ts1(1)	Bypass to LNA active mode To be within 1dB of the final gain	-	2.0	5.0	μs
Gain settling time1(2)	Ts1(2)	LNA active to Bypass mode To be within 1dB of the final Insertion loss	-	1.0	4.0	μs
RF IN Return loss1(1)	RLi1(1)		6.0	11.0	-	dB
RF OUT Return loss1(1)	RLo1(1)		6.0	11.0	-	dB

■ ELECTRICAL CHARACTERISTICS 3 (Bypass mode)

General Condition: V_{DD} =2.8V, V_{CTL} =0V, f_{RF} =880MHz, T_a =+25°C, Z_s = Z_l =50 Ω , with application circuit

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Loss1	Loss1	Exclude PCB & connector losses(0.13dB)	-	2.5	4.0	dB
Input power at 1dB gain compression point 1(2)	P-1dB (IN)1(2)		0	+10.0	-	dBm
Input 3rd order intercept point 1(2)	IIP3_1(2)	f1=f _{RF} , f2=f _{RF} +1MHz, P _{IN} =-5dBm	0	+15.0	-	dBm
RF IN Return loss1(2)	RLi1(2)		6.0	10.0	-	dB
RF OUT Return loss1(2)	RLo1(2)		4.0	6.5	-	dB

■ ELECTRICAL CHARACTERISTICS 4 (LNA active mode)

General Condition: V _{DD} =1	.8V, V _{CTL} =1.8V, f _{RF} =880MHz,	$T_a = +25^{\circ}C, Z_s = Z_l = 50\Omega, T_s = 2000$	with application circuit

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Small signal gain 2	Gain2	Exclude PCB & connector losses(0.13dB)	-	12.0	-	dB
Noise figure 2	NF2	Exclude PCB & connector losses(0.06dB)	-	0.8	-	dB
Input power at 1dB gain compression point 2(1)	P-1dB (IN)2(1)		-	-2.0	-	dBm
Input 3rd order intercept point 2(1)	IIP3_2(1)	$f1=f_{RF}$, $f2=f_{RF}+1MHz$, $P_{IN}=-24dBm$	-	-0.5	-	dBm
Gain settling time2(1)	Ts2(1)	Bypass to LNA active mode To be within 1dB of the final gain	-	2.0	-	μs
Gain settling time2(2)	Ts2(2)	LNA active to Bypass mode To be within 1dB of the final Insertion loss	-	1.0	-	μs
RF IN Return loss2(1)	RLi2(1)		-	10.0	-	dB
RF OUT Return loss2(1)	RLo2(1)		-	10.0	-	dB

■ ELECTRICAL CHARACTERISTICS 5 (Bypass mode)

General Condition: $V_{DD}=1.8V$, $V_{CTL}=0V$, $f_{RF}=880MHz$, $T_a=+25^{\circ}C$, $Z_s=Z_I=50\Omega$, with application circuit

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Insertion Loss2	Loss2	Exclude PCB & connector losses(0.13dB)	-	2.5	-	dB
Input power at 1dB gain compression point 2(2)	P-1dB (IN) 2(2)		-	+10.0	-	dBm
Input 3rd order intercept point 2(2)	IIP3_2(2)	f1=f _{RF} , f2=f _{RF} +1MHz, P _{IN} =-5dBm	-	+15.0	-	dBm
RF IN Return loss 2(2)	RLi2(2)		-	9.0	-	dB
RF OUT Return loss 2(2)	RLo2(2)		-	6.0	-	dB

■ TERMINAL INFORMATION

No.	SYMBOL	DESCRIPTION
1	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.
2	VDD	Supply voltage terminal. Please connect bypass capacitor C1 with ground as close as possible.
3	RFOUT	RF output terminal. This terminal requires no DC blocking capacitor since this IC has internal output matching circuit including DC blocking capacitor.
4	GND	Ground terminal. This terminal should be connected to the ground plane as close as possible for excellent RF performance.
5	RFIN	RF input terminal. This terminal requires only a matching inductor L1, and does not require DC blocking capacitor.
6	VCTL	Control voltage terminal.

■ ELECTRICAL CHARACTERISTICS (LNA active mode)

Conditions: V_{DD} =2.8V, V_{CTL} =1.8V, f_{RF} =880MHz, T_a =+25°C, Z_s = Z_l =50 Ω , with application circuit

New Japan Radio Co., Ltd.

■ ELECTRICAL CHARACTERISTICS (LNA active mode)

Conditions:

 V_{DD} =2.8V, V_{CTL} =1.8V, f_{RF} =50 to 3000MHz, T_a =+25°C, Z_s = Z_I =50 Ω , with application circuit

New Japan Radio Co., Ltd.

■ ELECTRICAL CHARACTERISTICS (Bypass mode)

Conditions: V_{DD} =2.8V, V_{CTL} =0V, f_{RF} =880MHz, T_a =+25°C, Z_s = Z_l =50 Ω , with application circuit

New Japan Radio Co., Ltd.

■ ELECTRICAL CHARACTERISTICS (Bypass mode)

Conditions:

 $V_{\text{DD}}=2.8V, V_{\text{CTL}}=0V, f_{\text{RF}}=50 \text{ to } 3000 \text{MHz}, T_{a}=+25^{\circ}\text{C}, Z_{s}=Z_{\text{I}}=50\Omega, \text{ with application circuit}$

■ APPLICATION CIRCUIT

PARTS LIST

Parts ID	Value	Manufacture
L1	16nH	LQW15AN_00 Series (MURATA)
C1	1000pF	GRM03 Series (MURATA)

MEASUREMENT BLOCK DIAGRAM

Measuring instruments

NF Analyzer	: Keysight N8975A
Noise Source	: Keysight 346A

Setting the NF analyzer

Measurement mode form	
Device under test	: Amplifier
System downconverter : off	
Mode setup form	
Sideband	: LSB
Averages	: 8
Average mode	: Point
Bandwidth	: 4MHz
Loss comp	: off
Tcold	: setting the temperature of noise source (305.15K)

EVALUATION BOARD

PCB LAYOUT GUIDELINE

PRECAUTIONS

- All external parts should be placed as close as possible to the IC.
- For good RF performance, all GND terminals must be connected to PCB ground plane of substrate, and via-holes for GND should be placed near the IC.

■ RECOMMENDED FOOTPRINT PATTERN (EPFFP6-X2 PACKAGE)

11

<u>(||</u>

PKG: 1.1mm x 0.7mm Pin pitch: 0.4mm

- : Land
- : Mask (Open area) *Metal mask thickness: $100\mu m$
- : Resist (Open area)

■ PACKAGE OUTLINE (EPFFP6-X2)

TOP VIEW

SIDE VIEW

BOTTOM VIEW

Cautions on using this product

- This product contains Gallium-Arsenide (GaAs) which is a harmful material.
- Do NOT eat or put into mouth.
- Do NOT dispose in fire or break up this product.
- Do NOT chemically make gas or powder with this product.
- To waste this product, please obey the relating law of your country.

This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co., Ltd.