

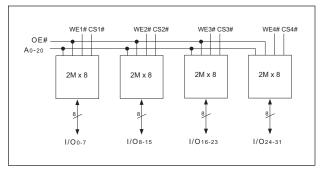
2Mx32 5V NOR FLASH MODULE

FEATURES

- Access Time of 90, 120, 150ns
- Packaging:
 - 66 pin, PGA Type, 1.185" square, Hermetic Ceramic HIP (Package 401).
 - 68 lead, Hermetic CQFP (G2U), 22.4mm (0.880") square (Package 510) 3.56mm (0.140") height. Designed to fit JEDEC 68 lead 0.990" CQFJ footprint (FIGURE 3)
- Sector Architecture
 - 32 equal size sectors of 64KBytes per each 2Mx8 chip
 - Any combination of sectors can be erased. Also supports full chip erase.
- Minimum 100,000 Write/Erase Cycles Minimum
- Organized as 2Mx32

- Commercial, Industrial, and Military Temperature Ranges
- 5 Volt Read and Write. 5V ± 10% Supply.
- Low Power CMOS
- Data# Polling and Toggle Bit feature for detection of program or erase cycle completion.
- Supports reading or programming data to a sector not being erased.
- RESET# pin resets internal state machine to the read mode.
- Built in Decoupling Caps and Multiple Ground Pins for Low Noise Operation, Separate Power and Ground Planes to improve noise immunity

Note: For programming information refer to Flash Programming 16M5 Application Note.


FIGURE 1 - PIN CONFIGURATION FOR WF2M32-XHX5

Top View									
1	12	23	34	45	56				
O 1/08	○ WE2#	○ I/O15	1/024 🔘	Vcc 🔾	I/O31 (
O 1/O9	OCS2#	○ I/O14	I/O25 (CS4#	I/O30 🔵				
O I/O10	OGND	○ I/O13	I/O26 (WE4#	I/O29 🔵				
○ A14	O I/O11	O I/O12	A7 🔾	1/027 🔾	I/O28 🔾				
○ A16	O A10	OE#	A12 🔵	A4 🔾	A1 🔾				
○ A11	○ A9	O A17	A20 🔾	A5 🔾	A2 🔾				
○ A0	A15	○ WE1#	A13 (A6 🔾	A3 🔾				
○ A18	◯ Vcc	○ I/O7	A8 (WE3#	1/023				
○ I/Oo	OS1#	○ I/O6	I/O16 (CS3#	1/022				
○ I/O1	O A19	○ I/O5	I/O17 (GND 🔘	1/021				
○ I/O2	○ I/O3	○ I/O4	I/O18	I/O19 🔵	I/O20 🔵				
11	22	33	44	55	66				

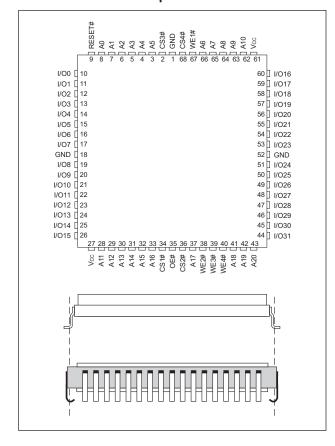
Pin Description

I/O0-31	Data Inputs/Outputs
A0-20	Address Inputs
WE1-4#	Write Enables
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground

Block Diagram

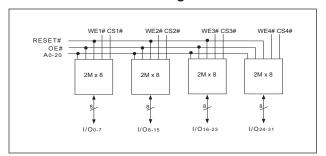
RESET# internally tied to Vcc in the HIP package for this pin configuration. See Alternate Pin Configuration with RESET# tied to pin 12 for system control of reset (FIGURE 10, page 11).

Microsemi Corporation reserves the right to change products or specifications without notice


Downloaded from Arrow.com.

^{*} This product is subject to change without notice.

FIGURE 2 - PIN CONFIGURATION FOR WF2M32-XG2UX5


Top View

Pin Description

1/00-31	Data Inputs/Outputs
A0-20	Address Inputs
WE1-4#	Write Enables
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
RESET#	Reset

Block Diagram

The WEDC 68 lead G2U CQFP fills the same fit and function as the JEDEC 68 lead CQFJ or 68 PLCC. But the G2U has the TCE and lead inspection advantage of the CQFP form.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Voltage on Any Pin Relative to Vss	VT	-2.0 to +7.0	V
Power Dissipation	Рт	8	W
Storage Temperature	Tstg	-65 to +125	°C
Short Circuit Output Current	los	100	mA
Endurance – Write/Erase Cycles (Extended Temp)		100,000 min	cycles
Data Retention		20	years

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	ViH	2.0	-	Vcc + 0.5	V
Input Low Voltage	VIL	-0.5	-	+0.8	V
Operating Temperature (Mil.)	TA	-55	-	+125	°C
Operating Temperature (Ind.)	TA	-40	-	+85	°C

CAPACITANCE

 $T_A = +25$ °C, f = 1.0MHz

Parameter	Symbol	Max	Unit
OE# capacitance	COE	50	pF
WE1-4# capacitance HIP (PGA)	CWE	20	pF
HIP (Alternate pinout)	CWE	50	pF
CQFP G4T	CWE	50	pF
CQFP G2U	CWE	20	pF
G2U (Alternate pinout)	CWE	50	pF
CS1-4# capacitance	CCS	20	pF
Data I/O capacitance	CI/O	20	pF
Address input capacitance	CAD	50	pF

This parameter is guaranteed by design but not tested.

DC CHARACTERISTICS - CMOS COMPATIBLE

 V_{CC} = 5.0V, V_{SS} = 0V, -55°C \leq $T_A \leq$ +125°C

Parameter	Symbol	Conditions	Min	Max	Unit
Input Leakage Current	ILI	V _{CC} = 5.5, V _{IN} = GND to V _{CC}		10	μA
Output Leakage Current	I _{LOx32}	V _{CC} = 5.5, V _{IN} = GND to V _{CC}		10	μA
Vcc Active Current for Read (1)	Icc1	CS# = VIL, OE# = VIH, f = 5MHz		160	mA
Vcc Active Current for Program or Erase (2)	Icc2	CS# = VIL, OE# = VIH		240	mA
Vcc Standby Current	Іссз	Vcc = 5.5, CS# = V _{IH} , f = 5MHz, RESET# = Vcc ± 0.3V		8.0	mA
Output Low Voltage	Vol	IoL = 12.0 mA, Vcc = 4.5		0.45	V
Output High Voltage	Vон	I _{OH} = -2.5 mA, V _{CC} = 4.5	0.85xVcc		V
Low Vcc Lock-Out Voltage	V _{LKO}		3.2	4.2	V

NOTES:

- 1. The Icc current listed includes both the DC operating current and the frequency dependent component (@ 5MHz). The frequency component typically is less than 2mA/MHz, with OE# at V_{IH}.
- 2. Icc active while Embedded Algorithm (program or erase) is in progress.
- 3. DC test conditions $V_{IL} = 0.3V$, $V_{IH} = V_{CC} 0.3V$

AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS - WE# CONTROLLED

 $V_{CC} = 5.0V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Syn	Symbol		Min -90 Max		Min -120 Max		-150 Min Max	
Write Cycle Time	tavav	twc	90		120		150		ns
Chip Select Setup Time	telwl	tcs	0		0		0		ns
Write Enable Pulse Width	twlwh	twp	45		50		50		ns
Address Setup Time	tavwl	tas	0		0		0		ns
Data Setup Time	tovwн	tos	45		50		50		ns
Data Hold Time	twhox	tон	0		0		0		ns
Address Hold Time	twlax	tан	45		50		50		ns
Write Enable Pulse Width High	twhwL	twpн	20		20		20		ns
Duration of Byte Programming Operation (1)	twnwh1			300		300		300	μs
Sector Erase (2)	twhwh2			15		15		15	sec
Read Recovery Time before Write	tghwl		0		0		0		μs
Vcc Setup Time	tvcs		50		50		50		μs
Chip Programming Time				44		44		44	sec
Chip Erase Time (3)				256		256		256	sec
Output Enable Hold Time (4)		tоен	10		10		10		ns
RESET# Pulse Width (5)		t _{RP}	500		500		500		ns

NOTES:

- 1. Typical value for twhwh1 is 7μs.
- 2. Typical value for twhwh2 is 1sec.
- 3. Typical value for Chip Erase Time is 32sec.
- 4. For Toggle and Data Polling.
- 5. RESET# internally tied to V_{CC} for the default pin configuration in the HIP package.

AC CHARACTERISTICS – READ-ONLY OPERATIONS

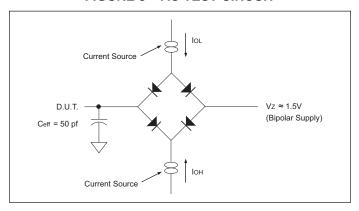
 $V_{CC} = 5.0V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Syn	nbol	Min -(00 Max	-1 Min	20 Max	-1 Min	50 Max	Unit
Read Cycle Time	tavav	trc	90		120		150		ns
Address Access Time	tavqv	tacc		90		120		150	ns
Chip Select Access Time	tELQV	tce		90		120		150	ns
Output Enable to Output Valid	tglqv	toe		40		50		55	ns
Chip Select High to Output High Z (1)	t _{EHQZ}	tof		20		30		35	ns
Output Enable High to Output High Z (1)	tghqz	tof		20		30		35	ns
Output Hold from Addresses, CS# or OE# Change, whichever is First	taxqx	tон	0		0		0		ns
RST Low to Read Mode (1,2)		t _{Ready}		20		20		20	μs

NOTES:

- 1. Guaranteed by design, not tested.
- 2. RESET# internally tied to V_{CC} for the default pin configuration in the HIP package.

AC CHARACTERISTICS - WRITE/ERASE/PROGRAM OPERATIONS,CS# CONTROLLED


 $V_{CC} = 5.0V$, $V_{SS} = 0V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$

Parameter	Syn	Symbol		Min -90 Max		Min -120 Max		Min -150 Max	
Write Cycle Time	tavav	twc	90		120		150		ns
Write Enable Setup Time	twlel	tws	0		0		0		ns
Chip Select Pulse Width	teleh	tcp	45		50		50		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	toven	tos	45		50		50		ns
Data Hold Time	tehdx	tон	0		0		0		ns
Address Hold Time	telax	tан	45		50		50		ns
Chip Select Pulse Width High	tehel	tсрн	20		20		20		ns
Duration of Byte Programming Operation (1)	twnwh1			300		300		300	μs
Sector Erase Time (2)	twhwh2			15		15		15	sec
Read Recovery Time	tghel		0		0		0		μs
Chip Programming Time				44		44		44	sec
Chip Erase Time (3)				256		256		256	sec
Output Enable Hold Time (4)		toeh	10		10		10		ns

NOTES:

- 1. Typical value for tWHWH1 is 7µs.
- 2. Typical value for tWHWH2 is 1sec.
- 3. Typical value for Chip Erase Time is 32sec.
- 4. For Toggle and Data Polling.

FIGURE 3 - AC TEST CIRCUIT

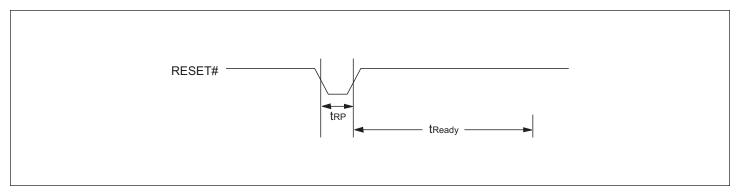
AC TEST CONDITIONS

Parameter	Тур	Unit
Input Pulse Levels	V _{IL} = 0, V _{IH} = 3.0	V
Input Rise and Fall	5	ns
Input and Output Reference Level	1.5	V
Output Timing Reference Level	1.5	V

NOTES:

Vz is programmable from -2V to +7V.

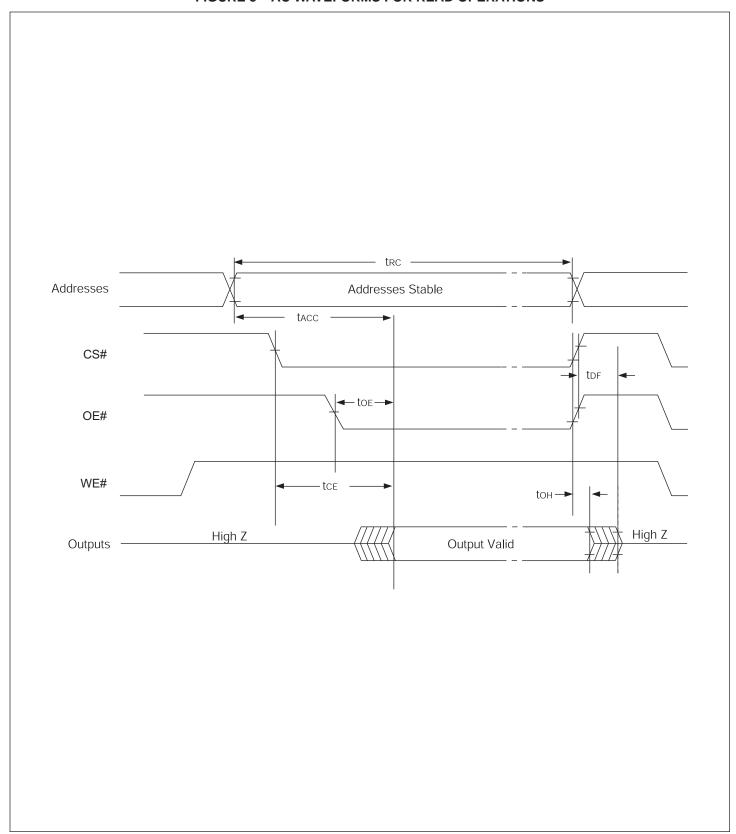
IoL & IoH programmable from 0 to 16mA.


Tester Impedance Z0 = 75 ý.

VZ is typically the midpoint of V_{OH} and V_{OL}.

 $\ensuremath{\text{IoL}}$ & $\ensuremath{\text{IoH}}$ are adjusted to simulate a typical resistive load circuit.

ATE tester includes jig capacitance.


FIGURE 4 - RESET TIMING DIAGRAM

Microsemi Corporation reserves the right to change products or specifications without notice.

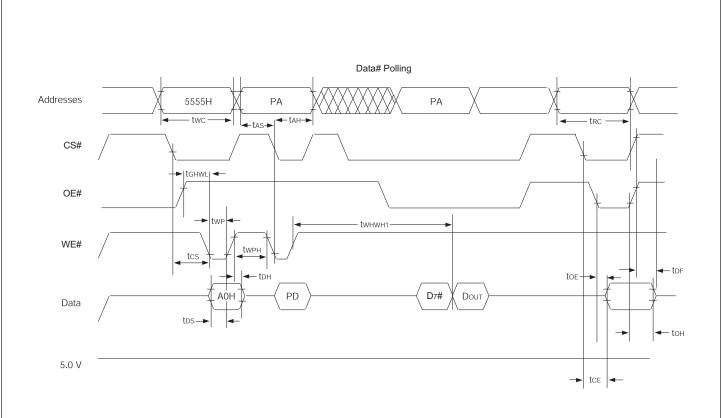
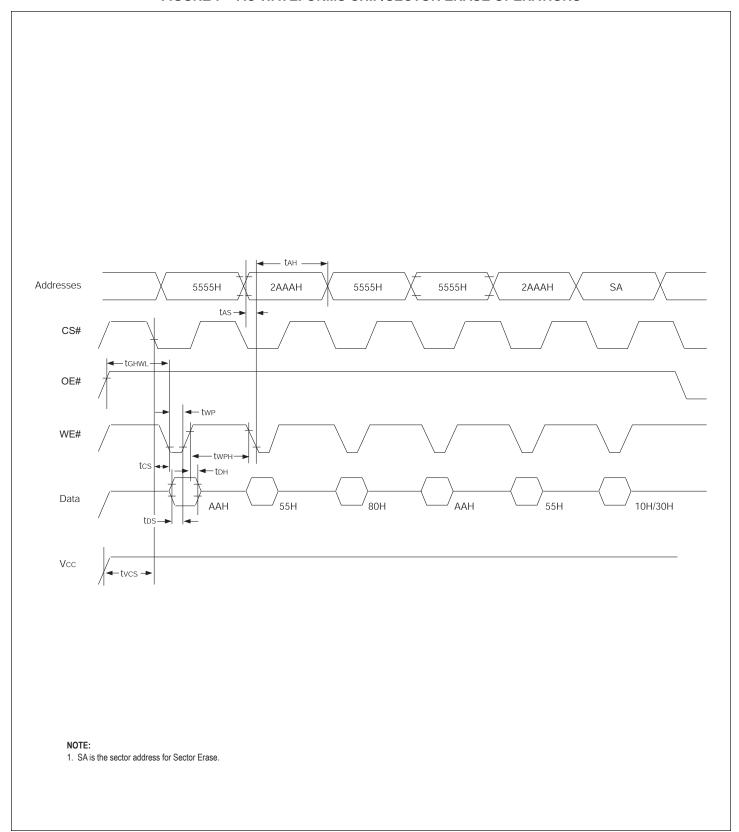


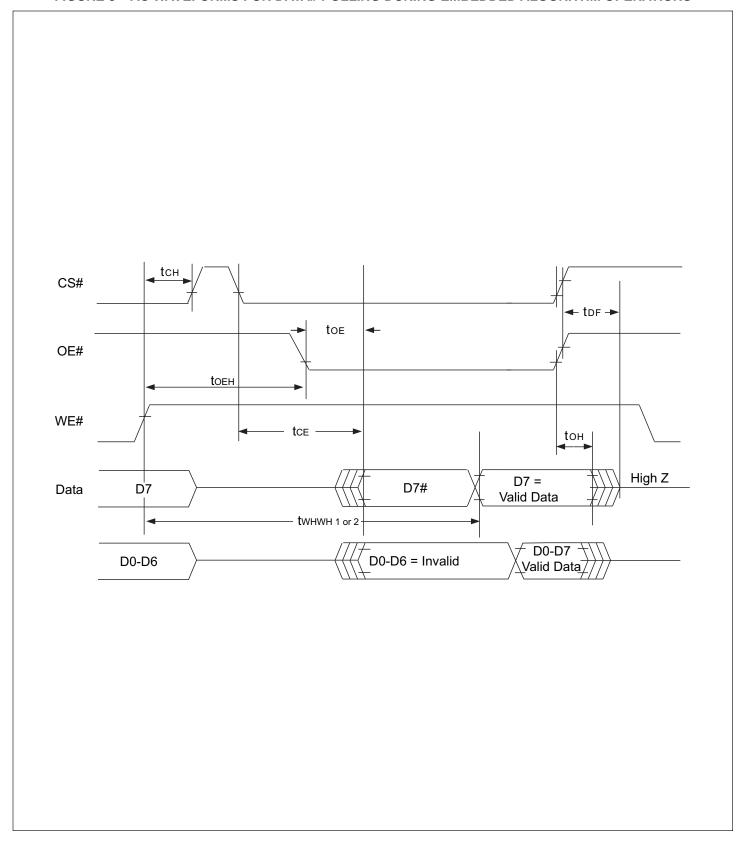
FIGURE 5 - AC WAVEFORMS FOR READ OPERATIONS

FIGURE 6 - WRITE/ERASE/PROGRAM OPERATION, WE# CONTROLLED



NOTES:

- $1. \quad \text{PA is the address of the memory location to be programmed}. \\$
- 2. PD is the data to be programmed at byte address.
- 3. D7# is the output of the complement of the data written to each chip.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.


FIGURE 7 – AC WAVEFORMS CHIP/SECTOR ERASE OPERATIONS

Microsemi Corporation reserves the right to change products or specifications without notice.

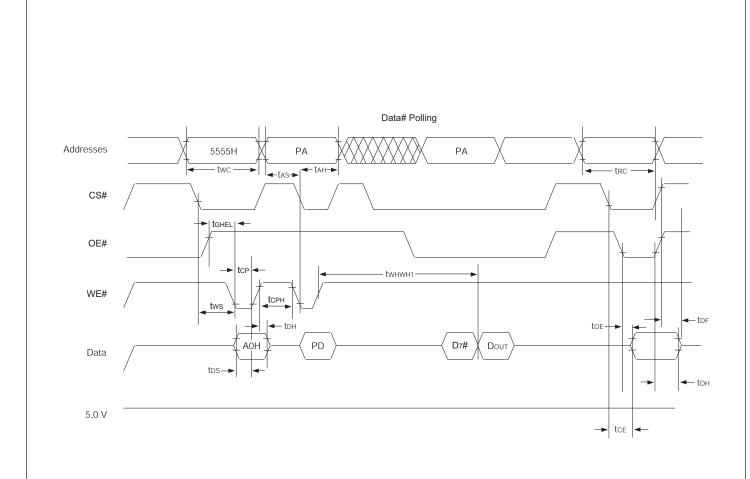


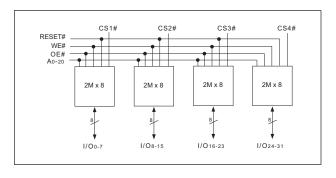
FIGURE 8 – AC WAVEFORMS FOR DATA# POLLING DURING EMBEDDED ALGORITHM OPERATIONS

FIGURE 9 – ALTERNATE CS# CONTROLLED PROGRAMMING OPERATION TIMINGS

Notes:

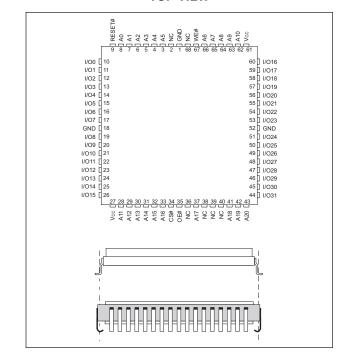
- PA represents the address of the memory location to be programmed.
- 2. PD represents the data to be programmed at byte address.
- 3. D7# is the output of the complement of the data written to each chip.
- 4. Dout is the output of the data written to the device.
- 5. Figure indicates the last two bus cycles of a four bus cycle sequence.

FIGURE 10 – ALTERNATE PIN CONFIGURATION FOR WF2M32I-XHX5


TOP VIEW

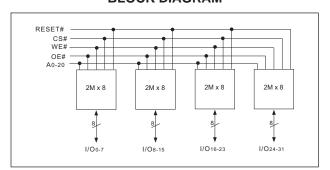
1	12	23	34	45	56
○I/O8	○RESET#	# OI/O15	1/024	Vcc 🔾	I/O31 🔵
○I/O9	OCS2#	○I/O14	1/025	CS4#	I/O30 🔵
○I/O10	GND	○ I/ 0 13	I/O26	NC 🔾	I/O29 🔵
○A14	OI/O11	OI/012	A7 🔾	1/027 🔾	I/O28 🔾
○A16	○A10	OE#	A12 🔾	A4 🔾	A1 🔾
○A11	○A9	A 17	NC 🔾	A5 🔾	A2 🔾
◯A0	A15	○WE#	A13 🔾	A6 🔾	A3 🔾
○A18	Vcc	I/07	A8 (A20 🔵	I/O23 🔵
○ 1/00	OCS1#	○ I/ 0 6	I/O16	CS3#	I/O22 (
○I/O1	○A19	○ I/O5	1/017 🔵	GND 🔘	I/O21 (
○I/O2	○ I/O3	○ I/O4	1/018	I/O19 🔵	I/O20 🔵
11	22	33	44	55	66

PIN DESCRIPTION


I/O ₀₋₃₁	Data Inputs/Outputs
A0-20	Address Inputs
WE#	Write Enable
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
RESET#	Reset

BLOCK DIAGRAM

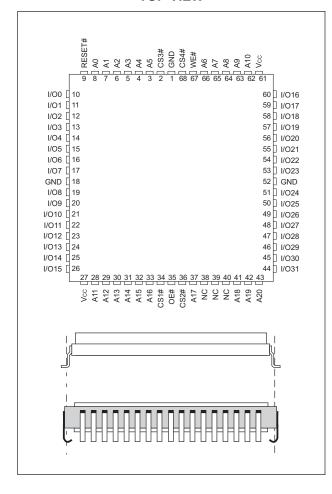
FIGURE 11 - ALTERNATE PIN CONFIGURATION FOR WF2M32U-XG2UX5


TOP VIEW

PIN DESCRIPTION

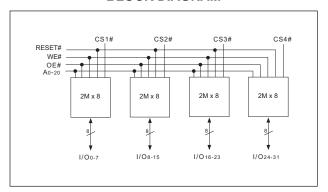
I/O ₀₋₃₁	Data Inputs/Outputs
A0-20	Address Inputs
WE#	Write Enable
CS#	Chip Select
OE#	Output Enable
Vcc	Power Supply
GND	Ground
RESET#	Reset

BLOCK DIAGRAM


The WEDC 68 lead G2U CQFP fills the same fit and function as the JEDEC 68 lead CQFJ or 68 PLCC. But the G2U has the TCE and lead inspection advantage of the CQFP form.

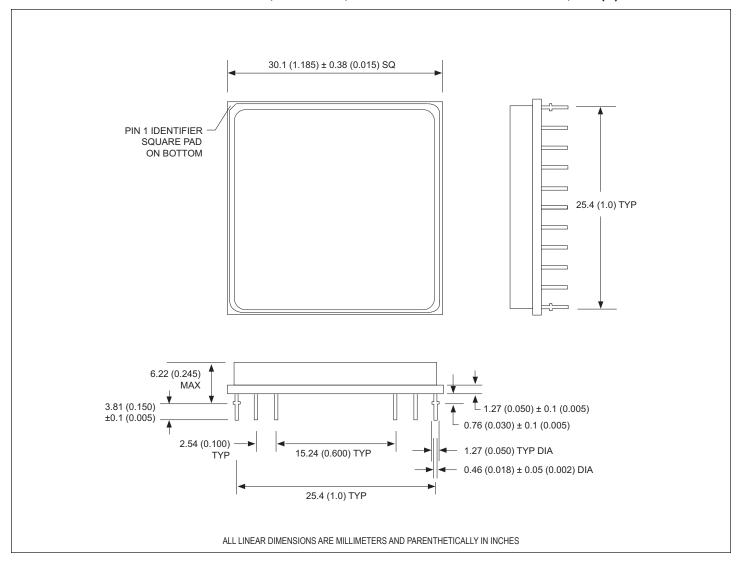
Microsemi Corporation reserves the right to change products or specifications without notice.

FIGURE 12 - PIN CONFIGURATION FOR WF2M32I-XG2UX5

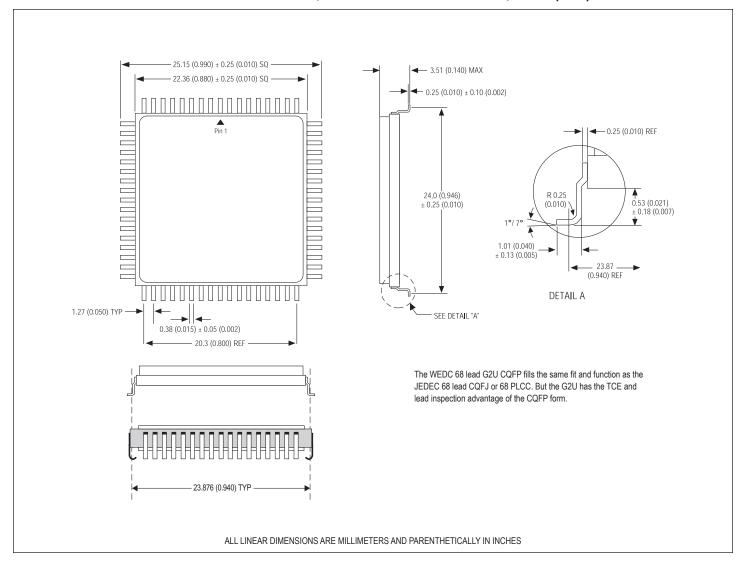

TOP VIEW

PIN DESCRIPTION

I/O ₀₋₃₁	Data Inputs/Outputs
A0-20	Address Inputs
WE#	Write Enable
CS1-4#	Chip Selects
OE#	Output Enable
Vcc	Power Supply
GND	Ground
RESET#	Reset


BLOCK DIAGRAM

The WEDC 68 lead G2U CQFP fills the same fit and function as the JEDEC 68 lead CQFJ or 68 PLCC. But the G2U has the TCE and lead inspection advantage of the CQFP form.



PACKAGE 401 – 66 PIN, PGA TYPE, CERAMIC HEX-IN-LINE PACKAGE, HIP (H)

PACKAGE 510 - 68 LEAD, CERAMIC QUAD FLAT PACK, CQFP (G2U)

ORDERING INFORMATION

MICROSEMI CORPORA			
FLASH —			
ORGANIZATION, 2M X 3	2		
User configurable as 4	M x 16 or 8M x 8		
(Except WF2M32U-XG	2UX which is 32 bit wide only.)		
IMPROVEMENT MARK-			
• For HIP Package			
Blank = 4CS# and 4W	E#		
I = 4CS# and 1WE#			
• For G2U Package			
Blank = 4CS# and 4W	E#		
U = 1CS# and 1WE#			
I = 4CS# and 1WE#			
ACCESS TIME (ns)			
PACKAGE TYPE: ——			
H = Ceramic Hex In	line Package, HIP (Package 401)		
G2U = 22.4mm Ceram	ic Quad Flat Pack, CQFP (Package 510)		
DEVICE GRADE:			╛╽
Q = Compliant	-55°C to +125°C		
M = Military	-55°C to +125°C		
I = Industrial	-40°C to +85°C		
C = Commercial	0°C to +70°C		
VPP PROGRAMMING VO	LTAGE —		
5 = 5 V			
LEAD FINISH:			
Blank = Gold plated lea	ads		

Document Title

2Mx32 5V NOR FLASH MODULE

Revision History

Rev#	History	Release Date	Status
Rev 6	Change (Pg. 15) 6.1 Remove "RESET#" from ordering information	November 2009	Final
Rev 7	Change (Pg. 1-16) 7.1 Change document layout from White Electronic Designs to Microsemi	July 2011	Final
Rev 8	Change (Pg. 1, 16) 8.1 Add "NOR" to headline	August 2011	Final