MMA041AA Datasheet

DC–26 GHz GaAs MMIC Distributed Low-Noise Amplifier

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at <u>www.microsemi.com</u>.

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 2.0

Revision 2.0 is the second publication of this document.

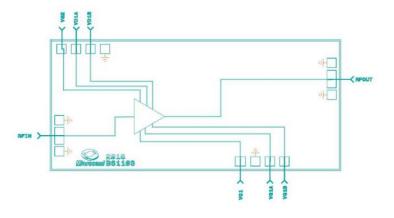
Contents

Rev	Revision History				
	1.1	Revision 2.0	3		
2	Prod	uct Overview	7		
	2.1	Applications			
	2.2	Key Features	7		
3	3 Electrical Specifications				
	3.1	Absolute Maximum Ratings	3		
	3.2	Typical Electrical Performance)		
	3.3	Typical Performance Curves)		
4	Pack	age Specification	5		
	4.1	Package Outline Drawing	5		
	4.2	Die Packaging Information	5		
	4.3	Bond Pad Information	5		
	4.4	Assembly Diagram	7		
5	Handling Recommendations				
6	Orde	ring Information)		

List of Figures

Figure 1	Functional Block Diagram7
Figure 2	Gain vs. Temperature (V _{DD} = 7v, I _{DD} = 150mA)10
Figure 3 (Gain vs V _{DD} (I _{DD} = 150mA, T = 25C)10
Figure 4 S ₁	11 vs Temperature (V_{DD} = 7v, I_D = 150mA)11
Figure 5 S ₂	22 vs Temperature (V _{DD} = 7v, I _D = 150mA)11
Figure 6 N	oise Figure vs. Temperature (V _{DD} = 7v, I _{DD} = 150mA)12
Figure 7 N	loise Figure vs Drain Voltage (IDD = 150mA, T = 25C)12
Figure 8 P	1dB vs Temperature (V _{DD} = 7v, I _{DD} = 150mA)13
Figure 9 P3	3dB vs Temperature (V _{DD} = 7v, I _{DD} = 150mA)13
Figure 10	OIP3 vs. Temperature (V _{DD} = 7v, T = 25C)14
Figure 11	OIP3 vs. Current (V _{DD} = 7v, T = 25C)14
Figure 12	Assembly Diagram17

List of Tables


Table 1 Absolute Maximum Ratings	8
Table 2 Specified Electrical Performance	
Table 3 Packaging Information	15
Table 4 Pad Description	16
Table 5 Bias Sequence	17
Table 6 Ordering Information	19

2 Product Overview

MMA041AA is a gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) pseudomorphic high-electron mobility transistor (pHEMT) distributed amplifier die that operates between DC and 26 GHz. It is ideal for test instrumentation and communications infrastructure applications. The amplifier provides a flat gain of 18 dB, 3.2 dB noise figure, and 22 dBm of output power at 1 dBm gain compression. Output IP3 is typically 36 dBm. The MMA041AA amplifier features RF I/Os that are internally matched to 50 Ω , which allows for easy integration into multichip modules (MCMs). It is also available in packaged form as the MMA041PP5.

The following image shows the primary functional blocks of the MMA041AA device.

Figure 1 Functional Block Diagram

2.1 Applications

The MMA041AA device is designed for the following applications:

- Test and measurement instrumentation
- Electronic warfare (EW), electronic countermeasures (ECM), and electronic countercountermeasures (ECCM)
- Military and space
- Telecom infrastructure
- Wideband microwave radios
- Microwave and millimeter-wave communication systems

2.2 Key Features

The following are key features of the MMA041AA device:

- Frequency range: DC to 26 GHz
- High gain: 18 dB
- High output IP3: 36 dBm
- Low noise figure: 3.2dB
- Supply voltage: 7 V at 150 mA
- 50 Ω matched I/O
- Compact die size: 3 mm × 1.30 mm × 0.1 mm

3 Electrical Specifications

3.1 Absolute Maximum Ratings

The following table shows the absolute maximum ratings at 25 °C unless otherwise specified.

Table 1 Absolute Maximum Ratings

Parameter	Rating
Storage temperature	–65 to 150 °C
Operating temperature	–55 to 85 °C
Drain bias voltage, (V _D)	8 V
First gate bias voltage, (V _{G1})	–2 to 0.5 V
Second gate bias voltage, (V _{G2})	V _D +/- 20%
VD current (IDD)	300 mA
RF input power	19 dBm
DC power dissipation (T = 85 °C)	2.4 W
Channel temperature	150 °C
Thermal impedance	18 °C/W

3.2 Typical Electrical Performance

The following table lists the specified electrical performance of the MMA041AA device at 25 °C, where VDD is 7 V, IDD is 150 mA, and VGG is -0.4 V.

Parameter	Frequency Range	Min	Тур	Max	Units
Operational frequency range		DC		26	GHz
Gain	DC-6 GHz	18	20		dB
	6 GHz-12 GHz	18	18.5		dB
	12 GHz-20 GHz	17	18		dB
Gain flatness	4 GHz-12 GHz		± 0.5		dB
	12 GHz-20 GHz		± 0.25		dB
Noise figure	DC-6 GHz		2.7		dB
	6 GHz-12 GHz		2		dB
	12 GHz-20 GHz		2.5		dB
Input return loss	DC-6 GHz		17		dB
	6 GHz-12 GHz		20		dB
	12 GHz-20 GHz		20		dB
Output return loss	DC-6 GHz		12		dB
	6 GHz-12 GHz		16		dB
	12 GHz-20 GHz		16		dB
P1dB	DC-6 GHz	22	22.5		dBm
	6 GHz-12 GHz	21	22		dBm
	12 GHz-20 GHz	18	20		dBm
Psat	DC-6 GHz		24		dBm
	6 GHz-12 GHz		24		dBm
	12 GHz-20 GHz		22		dBm
OIP3	DC-6 GHz		35		dBm
	6 GHz-12 GHz		34		dBm
	12 GHz-20 GHz		36		dBm
VDD (drain voltage supply)			7		V
IDD (drain current)			150		mA
V _{GG} (gate voltage supply)		-1.0	-0.4	0	V

Table 2 Specified Electrical Performance

3.3 Typical Performance Curves

The following graphs show the typical performance curves of the MMA041AA device at 25 $^{\circ}$ C, unless otherwise indicated.

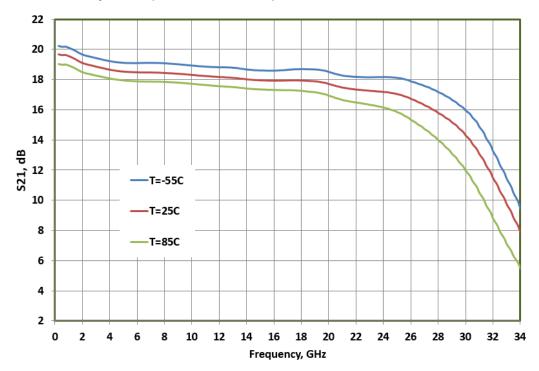


Figure 2 Gain vs. Temperature ($V_{DD} = 7v$, $I_{DD} = 150mA$)

Figure 3 Gain vs V_{DD} (I_{DD} = 150mA, T = 25C)

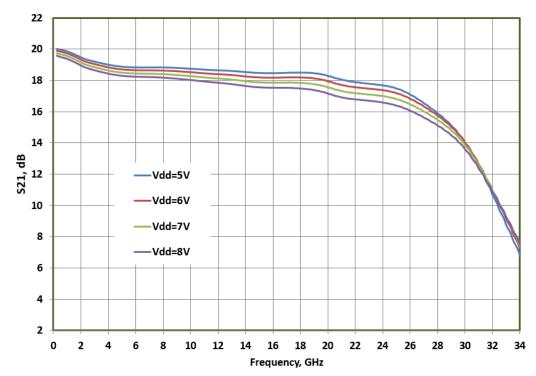


Figure 4 S₁₁ vs Temperature (V_{DD} = 7v, I_D = 150mA)

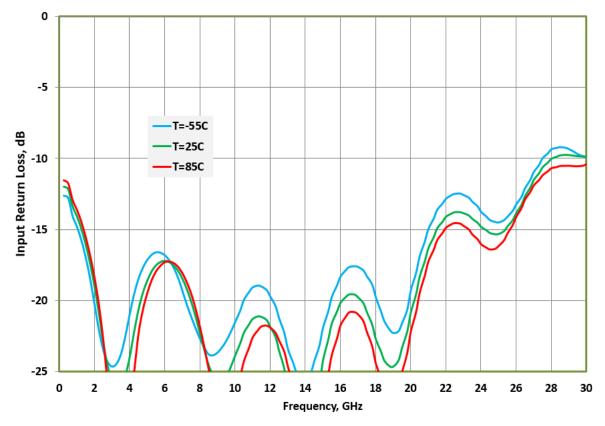
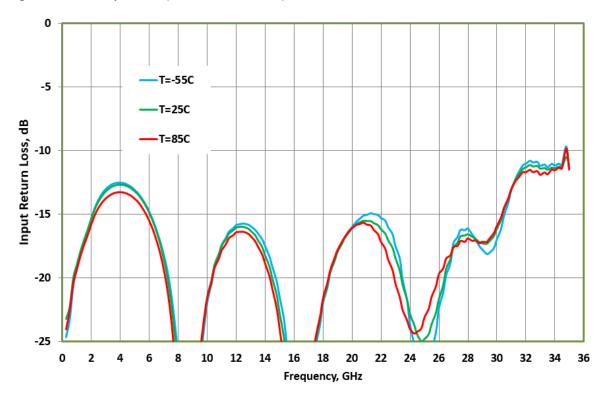



Figure 5 S₂₂ vs Temperature (V_{DD} = 7v, I_D = 150mA)

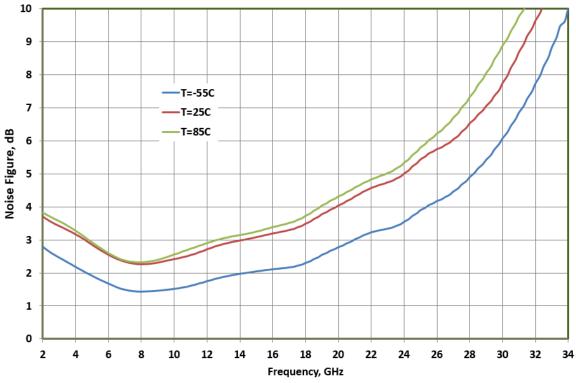
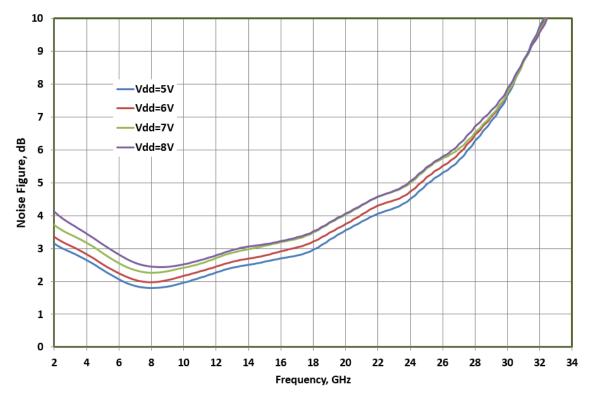
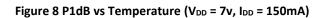




Figure 6 Noise Figure vs. Temperature (V_{DD} = 7v, I_{DD} = 150mA)

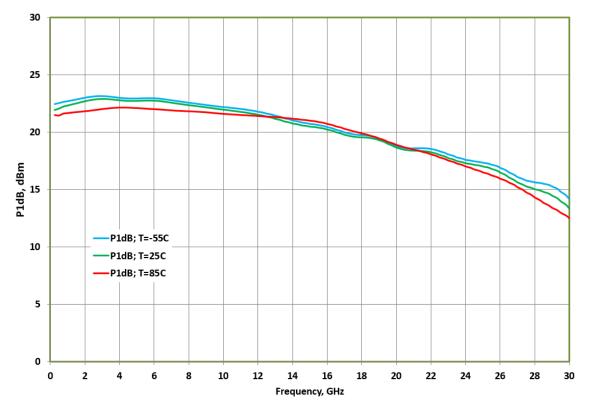
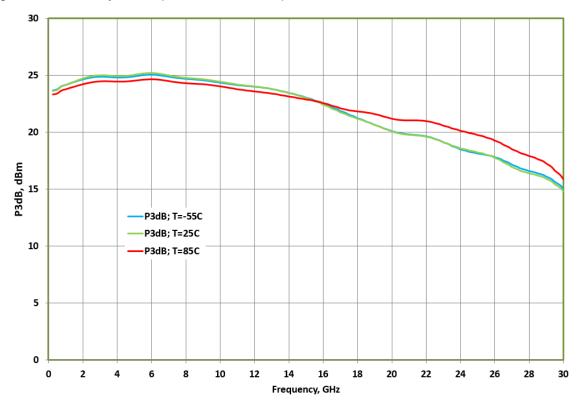



Figure 9 P3dB vs Temperature (V_{DD} = 7v, I_{DD} = 150mA)

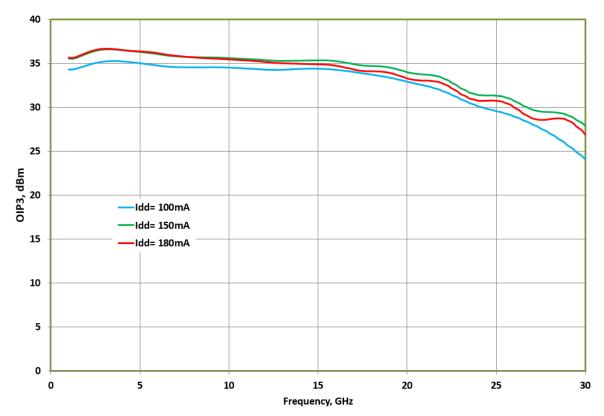
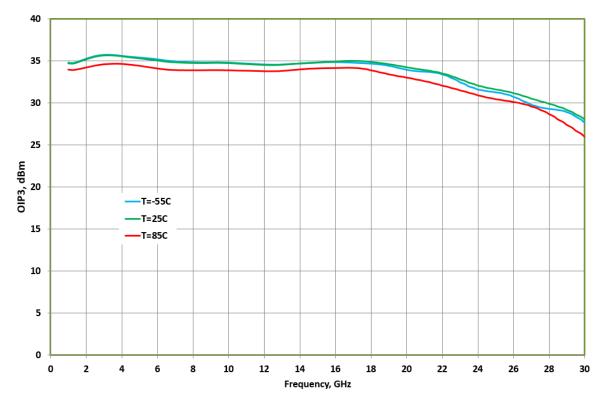
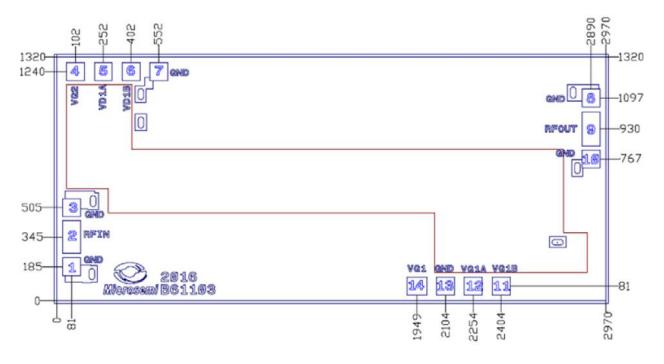



Figure 10 OIP3 vs. Temperature (V_{DD} = 7v, T = 25C)



4 Chip Outline Drawing, Die Packaging, Bond Pad, and Assembly Information

4.1 Chip Outline Drawing

The following illustration shows the chip outline of the MMA041AA device. Dimensions are in μ m and are relative to the zero datum locations shown in the drawing. The minimum bond pad size is 100 μ m × 100 μ m. Both the bond pad surface and the backside metal are 3 μ m gold. The die thickness is 100 μ m. The backside is the DC/RF ground. The airbridge keepout region is in crosshatch, and the unlabeled pads should not be bonded.

Figure 15 Chip Outline

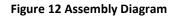
4.2 Die Packaging Information

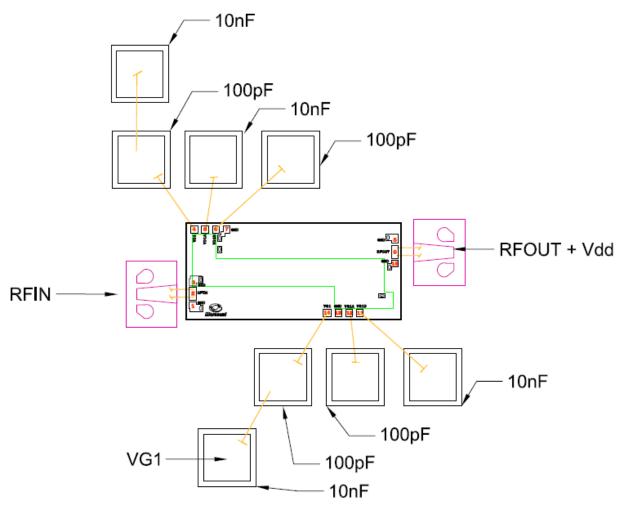
The following table shows the chip outline of the MMA041AA device. For additional packaging information, contact your Microsemi sales representative.

Table 3 Packaging Information

Standard Format	Option Format	
Waffle Pack	Gel Pack	
50-100 pieces per pack	50 pieces per pack	

4.3 Bond Pad Information


The following table describes the pads of the MMA041AA device.


Table 4 Pad Description

Pad Number	Pin Name	Description
2	RFIN	This pad is DC-coupled and matched to 50 Ω .
9	RFOUT + VDD	This pad is matched to 50 Ω and is used to bias VDD.
14	VG1	Gate control for amplifier. Adjust to achieve IDD = 150 mA.
5, 6	VD1A, VD1B	Low-frequency termination. Connect bypass capacitors per application circuit below. (no bias necessary)
4, 12, 11	VG2, VG1A, VG1B	Low-frequency termination. Connect bypass capacitors per application circuit below. (no bias necessary)
1, 3, 7, 8, 10, 13	GND	Die bottom must be connected to RF/DC ground.
Backside paddle	RF/DC GND	RF/DC ground.

4.4 Assembly Diagram

The following illustration shows the application circuit of the MMA041AA device.

Table 5 Bias Sequence

Bias Sequence		
1)	Set the gate voltage VG1 to -1V	
2)	Set drain voltage VDD to 7V	
3)	Adjust the gate voltage until the drain current is 150mA	

5 Handling Recommendations

Gallium arsenide integrated circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. It is recommended to follow all procedures and guidelines outlined in the Microsemi application note <u>AN01 GaAs MMIC Handling and Die Attach Recommendations</u>.

6 Ordering Information

The following table shows the ordering information for the MMA041AA device.

Table 6 Ordering Information

Part Number	Package	
MMA041AA	Die	