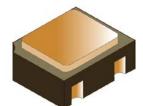

Two Pin Ceramic Switching Diode


Qualified per MIL-PRF-19500/116

Qualified Levels: JAN, JANTX, and JANTXV

DESCRIPTION

This 1N4148UB2 switching/signal diode features ceramic body construction for military grade products per MIL-PRF-19500/116. This small low capacitance diode, with very fast switching speeds, is featured in a surface mount UB2 package and is available in different polarities. Microsemi also offers a variety of other switching/signal diodes.

UB2 Package

Also available in:

UBC package (Ceramic Lid surface mount) 1N4148UBC

UB package (surface mount)
1N4148UB

DO-35 package (axial-leaded) 1N4148-1

DO-213AA package (MELF surface mount)

1N4148UR-1

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Surface mount equivalent of popular JEDEC registered 1N4148 number.
- Very low capacitance.
- Very fast switching speeds with minimal reverse recovery times.
- Standard and reverse polarities are available.
- JAN, JANTX, and JANTXV qualification is available per MIL-PRF-19500/116.
 (See <u>part nomenclature</u> for all available options.)
- · RoHS compliant by design.

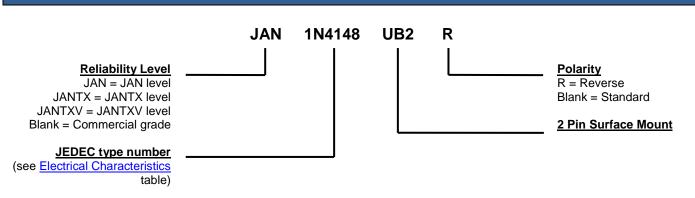
APPLICATIONS / BENEFITS

- High frequency data lines.
- Low-profile ceramic surface mount package (see package illustration).
- RS-232 & RS-422 interface networks.
- Ethernet 10 Base T.
- LAN.
- Computers.

MAXIMUM RATINGS @ 25 °C

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J & T _{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient (1)	$R_{\Theta JA}$	325	°C/W
Thermal Resistance Junction-to-Solder Pad (1)	R _{OJSP}	120	°C/W
Maximum Breakdown Voltage	$V_{(BR)}$	100	V
Working Peak Reverse Voltage	V _{RWM}	75	V
Average Rectified Current @ T _A = 75 °C (2)	lo	200	mA
Non-Repetitive Sinusoidal Surge Current (tp = 8.3 ms)	I _{FSM}	2	A (pk)

NOTES: 1. See Figure 2 for thermal impedance curves.


2. See Figure 1 for derating.

MECHANICAL and PACKAGING

- CASE: Ceramic.
- TERMINALS: Gold plating over nickel underplate.
- MARKING: Part number, date code, manufacturer's ID.
- TAPE & REEL option: Standard per EIA-418D. Consult factory for quantities.
- WEIGHT: < 0.04 Grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS						
Symbol	Definition					
I_R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.					
Io	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.					
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).					
V _R	Reverse Voltage: The reverse voltage dc value, no alternating component.					
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.					

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

FORWARD VOLTAGE V _{F1} @ I _F =10mA	FORWARD VOLTAGE V _{F2} @ I _F =100mA	REVERSE RECOVERY TIME t _{rr} (Note 1)	FORWARD RECOVERY TIME t _{fr} (Note 2)	REVERSE CURRENT I _{R1} @ 20 V	REVERSE CURRENT I _{R2} @ 75 V	REVERSE CURRENT I _{R3} @ 20 V T _A =150°C	REVERSE CURRENT I _{R4} @ 75 V T _A =150°C	CAPACI- TANCE C (Note 3)	CAPACI- TANCE C (Note 4)
V	V	ns	ns	nA	μА	μΑ	μА	pF	pF

NOTE 1: $I_F = I_R = 10 \text{ mA}, R_L = 100 \text{ Ohms } \pm 5 \%.$

NOTE 2: $I_F = 50 \text{ mA}.$

NOTE 3: $V_R = 0 \text{ V}, f = 1 \text{ MHz}, V_{SIG} = 50 \text{ mV} \text{ (pk to pk)}.$

NOTE 4: $V_R = 1.5V$, f = 1 MHz, $V_{SIG} = 50$ mV (pk to pk).

GRAPHS

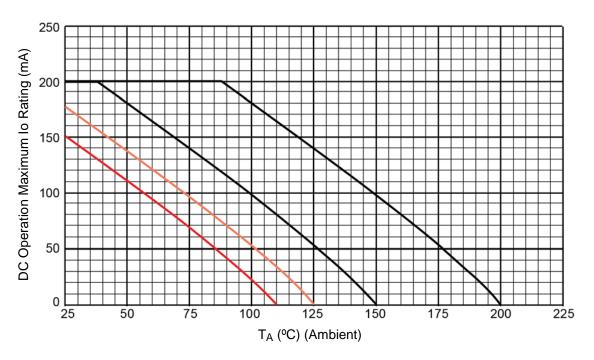


FIGURE 1 - Temperature - Current Derating

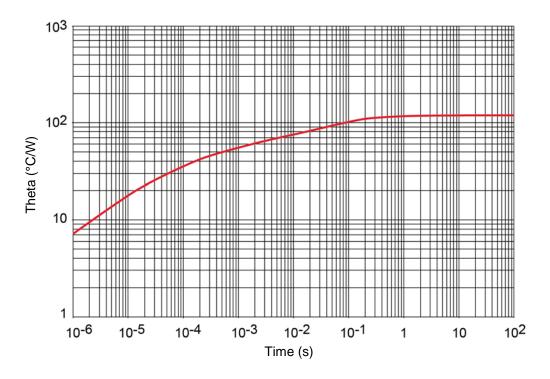
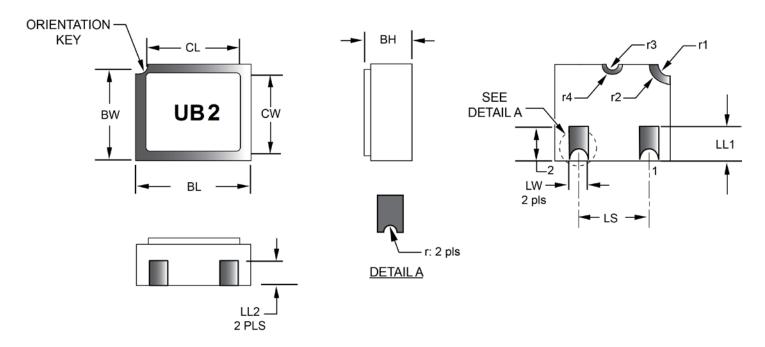
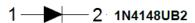



FIGURE 2 - Thermal Impedance


PACKAGE DIMENSIONS

	Dimensions					Symbol	Dimensions				
Symbol inch		millimeters		Note	inch		millimeters		Note		
	Min	Max	Min	Max			Min	Max	Min	Max	
BH	.046	.056	1.17	1.42		LS	.071	.079	1.80	2.01	
BL	.115	.128	2.92	3.25		LW	.016	.024	0.41	0.61	
BW	.085	.108	2.16	2.74		r	.008 TYP		0.20 TYP		
CL		.128		3.25		r1	.012 TYP		0.31	TYP	
CW		.108		2.74		r2	.022 TYP		.056 TYP		
LL1	.022	.038	0.56	0.96		r3	.008 TYP		0.20	TYP	
LL2	.017	.035	0.43	0.89		r4	.012 TYP 0.31 TYP				

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Ceramic package only.
- 3. Hatched areas on package denote metallized areas. Pad 4 = Shielding connected to the lid.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

1 2 1N4148UB2R