

125V, 300W, 45MHz

RF POWER MOSFET N-CHANNEL ENHANCEMENT MODE

The ARF300 is a N-CHANNEL RF power transistor in a high efficiency flangeless package. It is designed for high voltage operation in narrow band ISM and MRI power amplifiers at frequencies up to 45MHz. The transistor is well matched to the ARF301 P-CHANNEL RF power transistor making the pair well suited for bridge configurations

• Specified 125 Volt, 27 MHz Characteristics:

Output Power = 300 Watts. Gain = 15dB (Class E)

RoHS Compliant

Efficiency = 80%

- High Performance
- High Voltage Breakdown and Large SOA for Superior Ruggedness
- · Low Thermal Resistance.
- Capacitance matched with ARF301 P-Channel

Maximum Ratings All Ratings: T_c=25°C unless otherwise specified

Symbol	Parameter	Ratings	Unit	
V _{DSS}	Drain-Source Voltage	500	V	
$V_{\scriptscriptstyle DGO}$	Drain-Gate Voltage	500	V	
I _D	Continuous Drain Current @ T _c = 25°C	24	Α	
V _{GS}	Gate-Source Voltage	±30	V	
P _D	Total Power Dissipation @ T _c = 25°C	1000	W	
T_{J},T_{STG}	Operating and Storage Junction Temperature Range	-55 to 175	°C	
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300	°C	

Static Electrical Characteristics

Symbol	Parameter		Тур	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V$, $I_D = 250 \mu A$)	500			V
$V_{DS(ON)}$	On State Drain Voltage ¹ (I _{D(ON)} = 12A, V _{GS} = 10V)		3	4	ľ
	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			25	
DSS	Zero Gate Voltage Drain Current (V _{DS} = 50V _{DSS} , V _{GS} = 0, T _C = 125°C)			250	μA
I _{GSS}	Gate-Source Leakage Current (V _{DS} = ±30V, V _{DS} = 0V)			±100	nA
9 _{fs}	Forward Transconductance (V _{DS} = 15V, I _D = 12A)	5	8		mhos
$V_{\rm GS(TH)}$	Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 10mA)	2.5	4	5	Volts

Thermal Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
$R_{\theta JC}$	Junction to Case			0.15	°C/\\/
$R_{\theta JHS}$	Junction to Sink (High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)			0.27 °C/W	

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

Microsemi Website - http://www.microsemi.com

Dynamic Characteristics

ARF300	A	R	F3	0	0
--------	---	---	----	---	---

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ISS}	Input Capacitance	V _{GS} = 0V		1890	2100	
C _{oss}	Output Capacitance	V _{DS} = 50V		350	390	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		75	90	

Functional Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
G_{PS}	Common Source Amplifier Power Gain f = 27MHz		15	17		dB
η	Drain Efficiency $I_{dq} = 0mA V_{DD} = 125V$		80	85		%
Ψ	Electrical Ruggedness VSWR 10:1	P _{OUT} = 300W	No Damage			

^{1.} Pulse Test: Pulse width < 380 μ S, Duty Cycle < 2%.

 ${\bf Microsemi\ reserves\ the\ right\ to\ change,\ without\ notice,\ the\ specifications\ and\ information\ contained\ herein.}$

Dynamic Characteristics

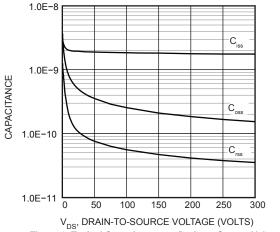
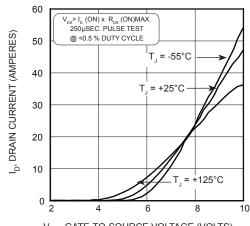



Figure 1, Typical Capacitance vs. Drain-to-Source Voltage

 ${\sf V}_{\sf GS},$ GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2, Typical Transfer Characteristics

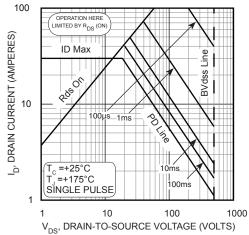
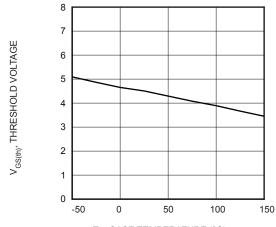
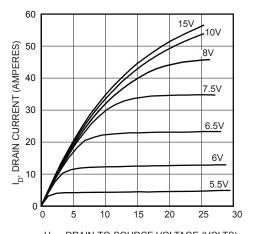




Figure 3, Typical Maximum Safe Operating Area

 $\label{eq:TC} {\rm T_{C},\,CASE\,TEMPERATURE\,(^{\circ}C)}$ Figure 4, Typical Threshold Voltage vs Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Figure 5, Typical Output Characteristics

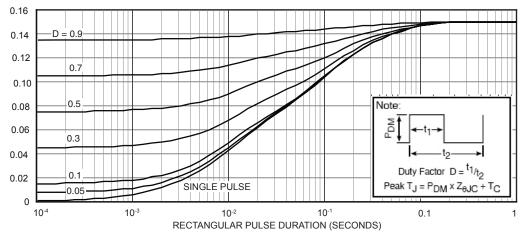


FIGURE 6a, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION

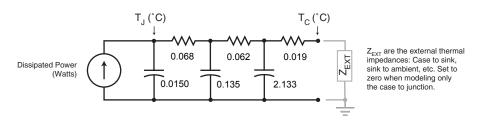
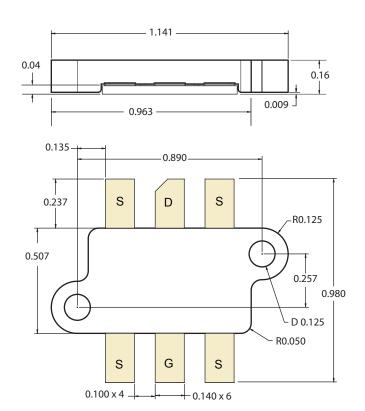


Figure 6b, TRANSIENT THERMAL IMPEDANCE MODEL

Table 1 - Typical Class AB Large Signal Input - Output Impedance

Freq. (MHz)	$Z_{in}(\Omega)$	$Z_{OL}(\Omega)$
2.0	18 - j 10.5	21 - j 1.4
13.56	2.66 - j 4.6	17.5 - j 7.8
27.12	1.79 - j 1.6	11.7 - j 10.4
40.68	1.68 - j 0.14	7.7 - j 10


 $[\]mathbf{Z}_{\scriptscriptstyle{\mathsf{IN}}}$ - Gate shunted with 25 Ω

Z_{oL} - Conjugate of optimum load for 300 Watts output at V_{dd}=125V

Class CE 27.12 MHz amplifier

T11 Package Outline

Use 4-40 (M3) screws for mounting. Torque = 4-6 in-lb (0.45- 0.7 Nm).

ATTENTION: This is a high power device. Special considerations must be followed in mounting to ensure proper operation of these devices. Incorrect mounting can cause internal temperatures to exceed the maximum allowable operating junction temperature.

Refer to Microsemi Application Note #1810 before starting system design. http://www.microsemi.com/support/ micnotes/1810.pdf