GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

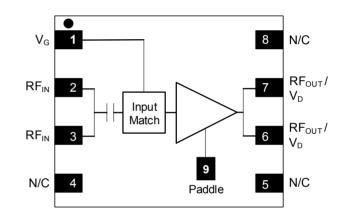
Features

- GaN on Si HEMT D-Mode Amplifier
- Suitable for linear and saturated applications
- Broadband operation from 20 1000 MHz
- 50 Ω Input Matched, Output Unmatched
- 28 V Operation
- 14 dB Gain @ 900 MHz
- 65% Drain Efficiency @ 900 MHz
- 100% RF Tested
- Lead-Free 6 x 5 mm 8-lead PDFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant

Description

The NPA1006 is a wideband GaN amplifier optimized for 20 - 1000 MHz operation. This amplifier has been designed for saturated and linear operation with output levels to 12.5 W (41 dBm) assembled in a lead-free 6 x 5 mm 8-lead PDFN plastic package.

The NPA1006 is ideally suited for general purpose narrowband to broadband applications in test and measurement, defense communications, land mobile radio and wireless infrastructure.


Ordering Information¹

Part Number	Package
NPA1006	Bulk Quantity
NPA1006-TR0500	500 piece reel
NPA1006-SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Designations

Pin #	Pin Name	Function
1	V _G	Gate Voltage
2, 3	RF_{IN}	RF Input
4, 5	N/C ²	No Connection
6, 7	RF _{OUT} / V _D	RF Output / Drain Voltage
8	N/C ²	No Connection
9	Paddle ³	Ground

2. All no connection pins may be left floating or grounded.

3. The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

1

Rev. V3

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

Rev. V3

MACOM

RF Electrical Specifications:

T_{c} = 25°C , V_{DS} = 28 V, I_{DQ} = 88 mA, 100 - 1000 MHz Broadband Characterization Circuit

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 900 MHz	G _{SS}	-	15.0	-	dB
Gain	CW, P _{OUT} = 41 dBm, 900 MHz	G _P	12.5	14.0	-	dB
Saturated Output Power	CW, 900 MHz	P _{SAT}	-	42.9	-	dBm
Drain Efficiency	CW, P _{OUT} = 41 dBm, 900 MHz	η _D	61	65	-	%
Power Added Efficiency	CW, P _{OUT} = 41 dBm, 900 MHz	PAE	57.5	62.4	-	%
Drain Efficiency	CW, 900 MHz	η _{DSAT}	-	70	-	%
Drain Voltage (V _{DS})	Drain Voltage	V _{DS}	-	28	-	V
Ruggedness	All phase angles	Ψ	VSWR = 15:1, No Device Damage			

DC Electrical Specifications: T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{DLK}	-	6	-	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	3	-	mA
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 6 mA	V _T	-2.5	-1.5	-0.5	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 88 mA	V_{GSQ}	-2.1	-1.2	-0.3	V
On Resistance	V_{DS} = 2 V, I _D = 45 mA	R _{on}	-	0.8	-	Ω
Saturated Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D(SAT)}	-	3.5	-	А

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

Rev. V3

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum		
Drain Source Voltage, V_{DS}	100 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	12 mA		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		
ESD Min Human Body Model (HBM)	+500 V		

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

4. MACOM does not recommend sustained operation near these survivability limits.

5. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10⁶ hours.

Thermal Characteristics⁶

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J = 200°C	Θ_{JC}	4.6	°C/W

 Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

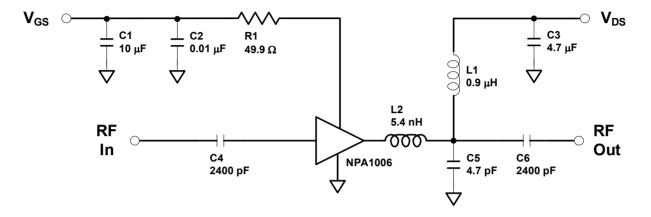
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V3

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

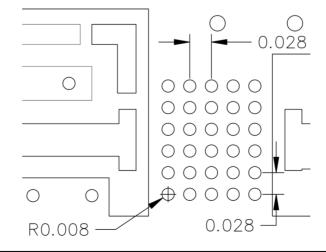
Characterization Circuit and Recommended Tuning Solution

100 - 1000 MHz Broadband

Description

Parts measured on the characterization board (20-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.


Bias Sequencing Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

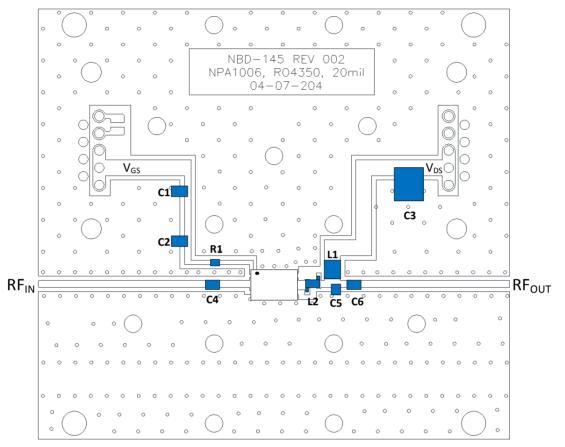
- 1. Turn the RF power off.
- 2. Decrease $\,V_{GS}\,$ down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

Recommended Via Pattern (All dimensions shown as inches)

4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>



Rev. V3

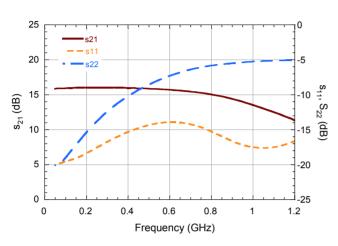
GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

Characterization Circuit and Recommended Tuning Solution

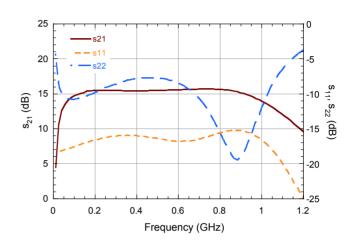
100 - 1000 MHz Broadband

Parts List

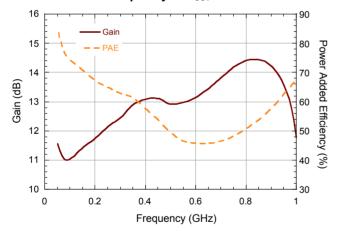
Reference	Value	Tolerance	Manufacturer	Part Number		
C1	10 µF	20%	TDK	C2012X5R1C106M085AC		
C2	0.01 µF	10%	AVX	06031C103JAT2A		
C3	4.7 µF	10%	TDK	C5750X7R2A475K230KA		
C4, C6	2400 pF	-	Dielectric Labs, Inc.	C08BL242X-5UN-X0		
C5	4.7 pF	0.1 pF	Murata	GQM2195C2E4R7BB12		
R1	49.9 Ω	1%	Panasonic	ERJ-6ENF49R9V		
L1	0.9 µH	10%	Coilcraft	1008AF-901XJLC		
L2	5.4 nH	5%	Coilcraft	0906-5_LB		
PCB		Rogers RO4350, e _r =3.5, 0.020"				
Heat Sink		Copper Heat Sink 3.0" x 2.75"				

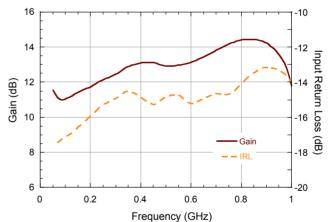

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz


Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted)

Typical Performance

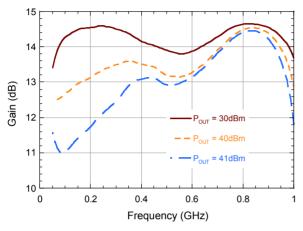

Deembedded device S-Parameters with R_G = 470 Ω


Broadband Circuit S-Parameters

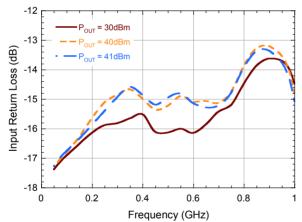
Performance vs. Frequency at P_{OUT} = 41 dBm

Performance vs. Input Return Loss at POUT = 41 dBm

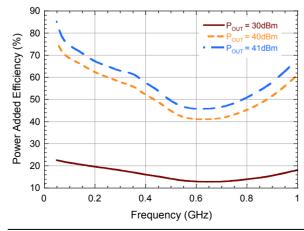
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



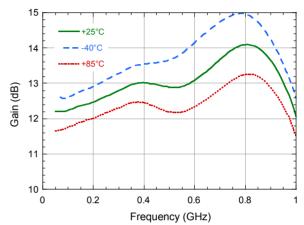
GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz


Typical Performance

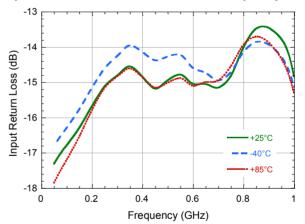
Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted)


Gain vs. Frequency

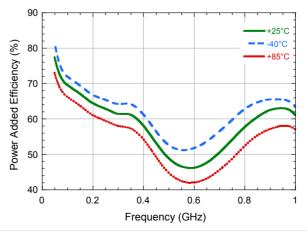
Input Return Loss vs. Frequency



Power Added Efficiency vs. Frequency



7


Gain vs. Frequency at P_{IN} = 27 dBm

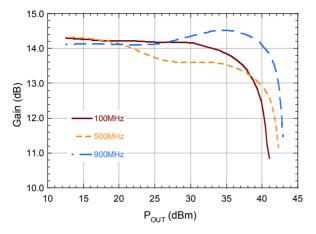
Input Return Loss at P_{IN} = 27 dBm vs. Frequency

Power Added Efficiency at P_{IN} = 27 dBm vs. Frequency

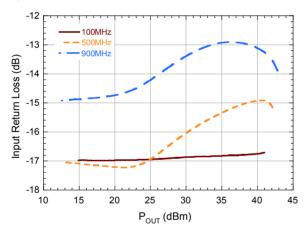
масом

Rev. V3

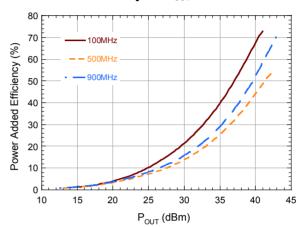
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

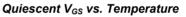

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

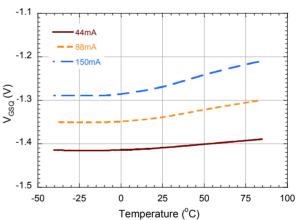
Rev. V3


Typical Performance

Measured in the Broadband 100 - 1000 MHz Characterization Circuit: CW, V_{DS} = 28 V, I_{DQ} = 88 mA (unless otherwise noted)

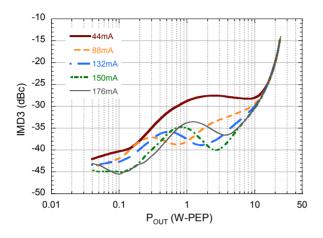

Gain vs. POUT



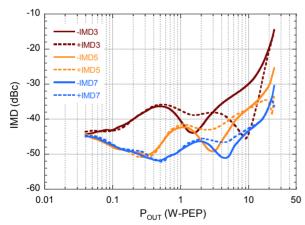

Input Return Loss vs. Pout

Power Added Efficiency vs. Pour

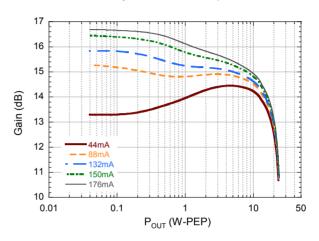
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

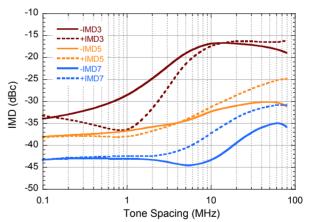

Rev. V3

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz


Typical 2-Tone Performance

Measured in the Broadband 100 - 1000 MHz Characterization Circuit: 1 MHz Tone Spacing, $V_{DS} = 28 \text{ V}$, $I_{DQ} = 88 \text{ mA}$ (unless otherwise noted)

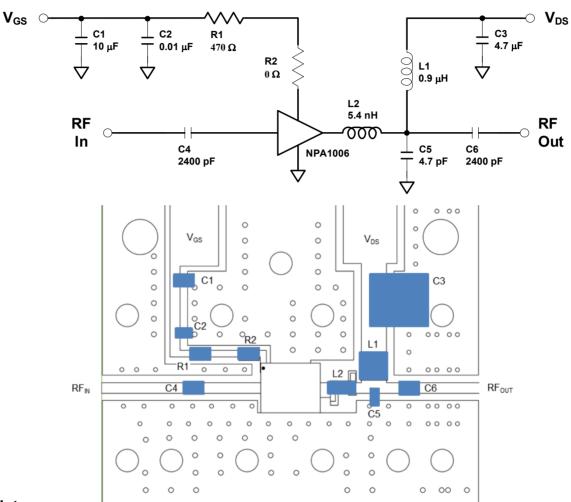

2-Tone IMD vs. Output Power vs. I_{DQ}


2-Tone IMD vs. Output Power (1 MHz Tone Spacing, I_{DQ} = 132 mA, F = 450 MHz)

2-Tone Gain vs. Output Power vs. IDQ

2-Tone IMD vs. Tone Spacing $(P_{OUT} = 41 \text{ dBm-PEP}, I_{DQ} = 132 \text{ mA}, F = 450 \text{ MHz})$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Rev. V3

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

Sample Board and Recommended Tuning Solution

20 - 1000 MHz Broadband Circuit (NPA1006-SMB)

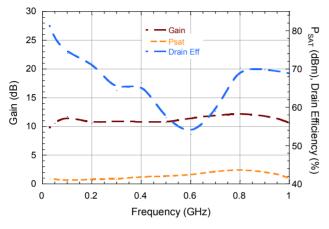
Parts List

Reference	Value	Tolerance	Manufacturer	Part Number	
C1	10 µF	20%	TDK	C2012X5R1C106M085AC	
C2	0.01 µF	10%	AVX	06031C103JAT2A	
C3	4.7 µF	10%	TDK	C5750X7R2A475K230KA	
C4, C6	2400 pF	-	Dielectric Labs, Inc.	C08BL242X-5UN-X0	
C5	4.7 pF	0.1 pF	Murata	GQM2195C2E4R7BB12	
R1	470 Ω	1%	Panasonic	ERJ-3EKF4700V	
R2	0 Ω	-	Panasonic	ERJ-6GEY0R00V	
L1	0.9 µH	10%	Coilcraft	1008AF-901XJLC	
L2	5.4 nH	5%	Coilcraft	0906-5_LB	
PCB	Rogers RO4350, e _r =3.5, 0.020"				
Al Heat Sink	Aluminum Heat sink				

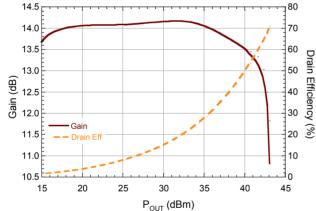
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

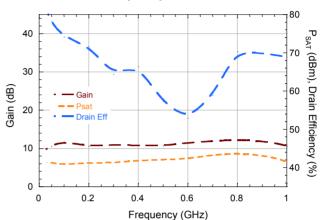
13.5

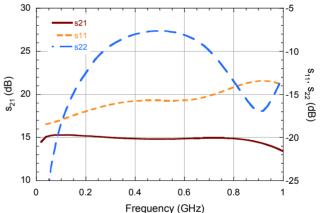

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

11


Typical Performance Measured in the Broadband 20 - 1000 MHz Sample Board:

CW, V_{DS} = 28 V, I_{DO} = 88 mA (unless otherwise noted)

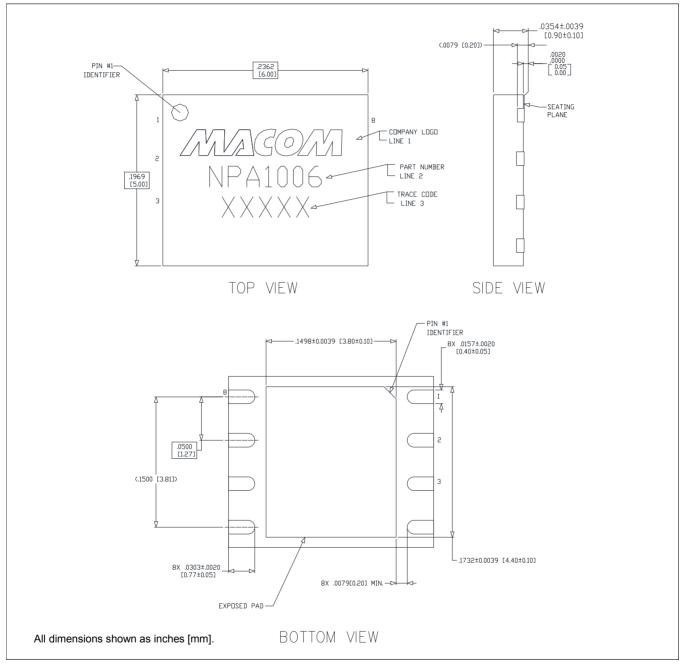

Performance vs. Frequency at POUT = PSAT



Performance vs. Output Power (f = 900 MHz)

Performance vs. Frequency at POUT = 41 dBm

Small Signal S-Parameters vs. Frequency


Rev. V3

GaN General Purpose Amplifier, 28 V, 12.5 W 20 - 1000 MHz

Rev. V3

Lead-Free 6 x 5 mm 8-Lead PDFN[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Ni/Pd/Au

¹²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V3

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.