Wideband Distributed Amplifier 100 kHz - 50 GHz

MAAM-011238

Rev. V5

Features

- Gain: 14 dB @ 6 V, 30 GHz
 P1dB: 17 dBm @ 6 V, 30 GHz
- P3dB: 18.5 dBm @ 6 V, 30 GHz
- Integrated Power Detector
- · Gain control with only positive bias voltages
- 50 Ω Input and Output Match
- Bias Voltage: VDD = 4 6 V
- Bias Current: IDSQ = 125 150 mA
- 5 mm SMT Package
- RoHS* Compliant

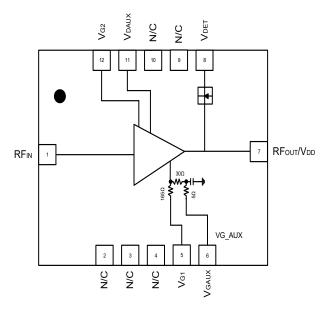
Applications

• Instrumentation and Communication Systems

Description

MAAM-011238 is an easy-to-use, wideband amplifier that operates from 100 kHz to 50 GHz. The amplifier provides 14 dB gain, 5 dB noise figure and 18.5 dBm of P3dB output power @ 30 GHz. It is matched to 50 Ω with typical return loss of 12 dB. The amplifier requires only positive bias voltages and would typically be operated at 6 V and 135 mA.

MAAM-011238 is suitable for a wide range of applications in instrumentation and communication systems.


This part is also available as a bare die. Refer to datasheet MAAM-011238-DIE.

Ordering Information¹

Part Number	Package
MAAM-011238-TR0100	100 part reel
MAAM-011238-TR0500	500 part reel
MAAM-011238-SB1	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pad Configuration^{2,3}

Pin #	Pin Name	Description
1	RFIN	RF Input / Gate Voltage
5	V_{G1}	Gate Voltage 1
6	V_{GAUX}	Auxiliary Gate Voltage
7	RFout/Vpd	RF Output / Drain Voltage
8	VDET	Detector Voltage
11	V_{DAUX}	Auxiliary Drain Voltage
12	V_{G2}	Gate Voltage 2
2, 3, 4, 9, 10	N/C	No Connection

- MACOM recommends connecting all no connection (N/C) pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Wideband Distributed Amplifier 100 kHz - 50 GHz

MAAM-011238

Rev. V5

Electrical Specifications^{4,5,6}: $T_A = 25$ °C, $V_{DD} = 6$ V, $I_{DSQ} = 135$ mA, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	0.01 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dB	13.0 12.5 11.0 11.0 10.0	16.0 15.0 14.0 13.0 12.5 12.5	_
Noise Figure	2 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dB	_	5.0 4.0 5.0 7.0 6.5 9.0	_
Input Return Loss	0.01 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dB	_	20.0 12.0 10.0 11.0 10.5	_
Output Return Loss	0.01 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dB	_	19.5 20.0 13.0 9.5 10.0 11.0	_
P _{OUT} @ P _{IN} = 11 dBm	0.1 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dBm	20.0 19.5 18.0 17.0 17.0	21.5 21.0 19.5 19.0 18.7 18.3	_
P1dB	0.1 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dBm	_	18.0 17.0 16.0 15.5 15.0	_
P3dB	0.1 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 50 GHz	dBm	_	20.5 20.0 18.5 18.0 17.0	_
Output IP3	0.01 - 10 GHz 10 - 20 GHz 20 - 30 GHz 30 - 40 GHz 40 - 43.5 GHz 43.5 - 50 GHz	dBm	_	28.0 29.0 27.0 25.0 24.0 20.5	_
Drain Current	Quiescent bias	mA	_	135	_

^{4.} Set IDSQ according to bias procedures in page 3.

^{5.} Graphs in datasheet use test conditions shown unless otherwise stated.

^{6.} All data measured with package assembled as per the Assembly Guideline.

Rev. V5

Operating Conditions

One of the recommended biasing conditions is V_{DD} = 6 V, I_{DSQ} = 135 mA. (controlled with V_{G1}). I_{DSQ} is set by adjusting V_{G1} after correctly setting V_{DD} . (Refer to turn on sequence.)

Device biasing is achieved with the use of an external DC block on the input and a bias tee. The required V_{DD} is applied at RFout/VDD through the bias tee and V_{G1} is set to provide the required current bias (I_{DSQ}) This provides wide band performance of 40 MHz - 50 GHz. (depending on the bandwidth of the bias tee)

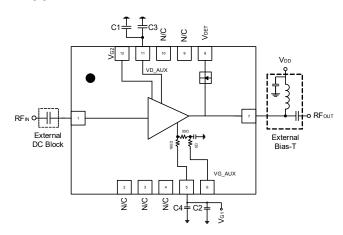
For low frequency extension, the addition of 1 μ F and 0.01 μ F bypass capacitors on both VG1 and VD_{AUX}, will improve the frequency of operation down to 100 kHz. These capacitors should be positioned as close to the device as possible.

Dynamic gain control is available when operating in the linear gain region through the application of 0 to 1.6 V to V_{G2}.

Data in this datasheet was measured using bypass capacitors on V_{G1} and VD_{AUX} .

The evaluation board is configured as shown in the Application Schematic with a direct connection to VG1 for lower gate voltage, typically 0.65 V with IG1 of 1 mA.

As an alternate configuration, VG1 can be shifted to >3 V by grounding VG_{AUX}. Note that this will increase IG1 to 21 mA. This is not a typical configuration and is available only for legacy applications that require VG1 > 3 V.


Operating the MAAM-011238 Turn-on

- 1. Apply V_{G1} to 0 V.
- 2. Apply V_{DD} to 6 V.
- 3. Set I_{DSQ} by adjusting V_{G1} more positive. (typically 0.65 V for I_{DSQ} = 135 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease Vg1 to 0 V.
- 3. Decrease V_{DD} to 0 V.

Application Schematic

Component List

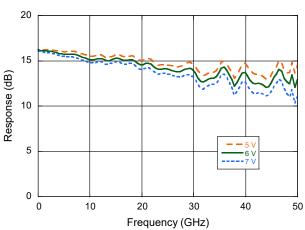
Part	Value	Case Style
C1, C2	1 μF	0603
C3, C4	0.01 μF	0402

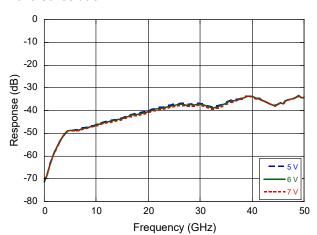
Absolute Maximum Ratings^{7,8}

Parameter	Absolute Maximum
Input Power	16 dBm
Drain Supply Voltage	8 V
Junction Temperature ^{9,10}	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

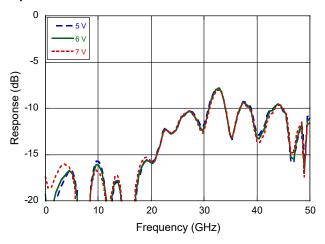
- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- 10.Junction Temperature (T_J) = T_A + Θ_{JC} * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ_{JC}) = 26.3°C/W.

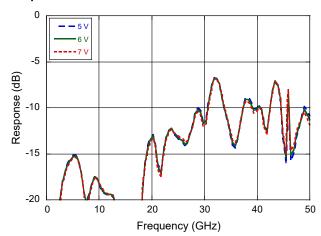
For $T_{\Delta} = +85^{\circ}C$.


 $T_J = 105$ °C at V = 6 V, I = 0.135 A


Rev. V5

Typical Performance Curves: V_{DD} = 6 V, I_{DSQ} = 135 mA, T_A = +25°C

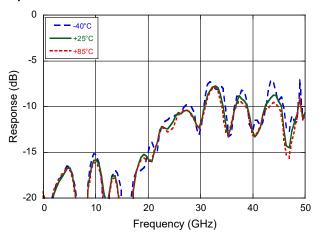



Reverse Isolation

Input Return Loss

Output Return Loss

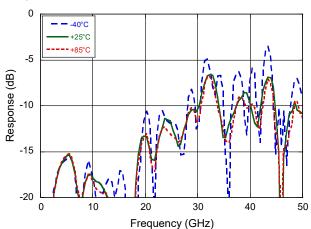
Rev. V5


Typical Performance Curves: $V_{DD} = 6 \text{ V}$, $I_{DSQ} = 135 \text{ mA}$

Gain 20 15 15 5 ---40°C ---25°C 0 0 10 20 30 40 50 Frequency (GHz)

Frequency (GHz)

Input Return Loss

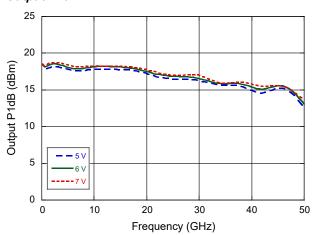


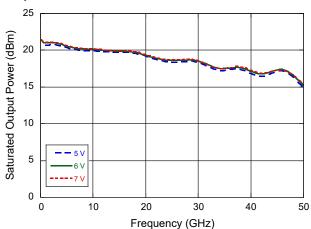
Output Return Loss

10

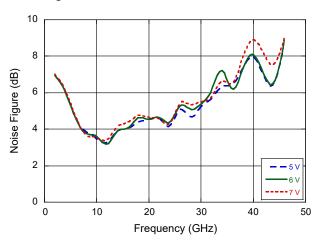
-80

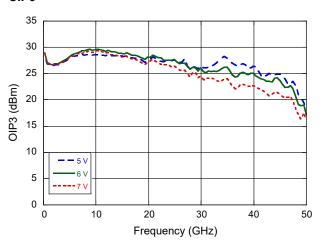
Reverse Isolation




Rev. V5

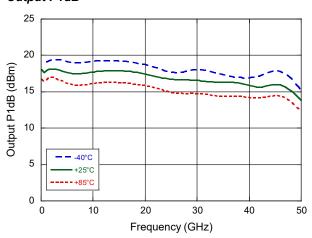
Typical Performance Curves: $V_{DD} = 6 \text{ V}$, $I_{DSQ} = 135 \text{ mA}$, $T_A = +25 ^{\circ}\text{C}$

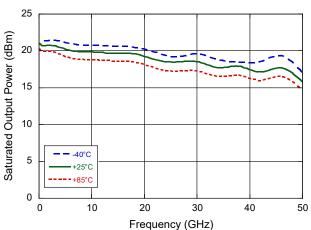

Output P1dB


Output P3dB

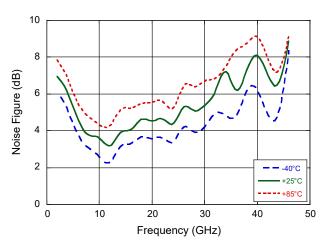
Noise Figure

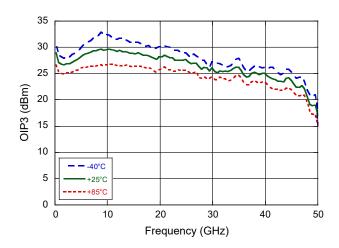
OIP3



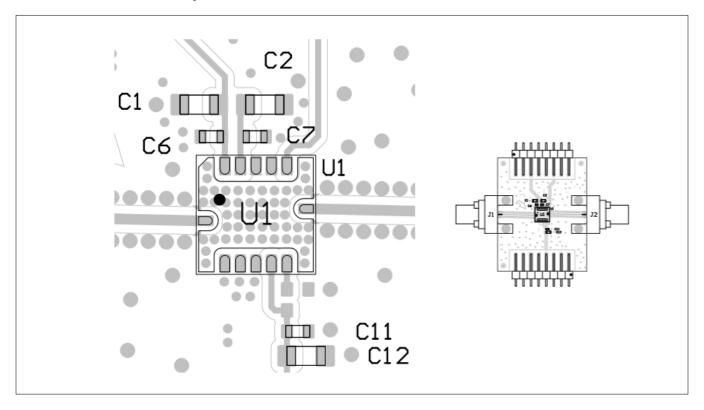

Rev. V5

Typical Performance Curves: V_D = 6 V, I_D = 135 mA


Output P1dB


Output P3dB

Noise Figure


OIP3

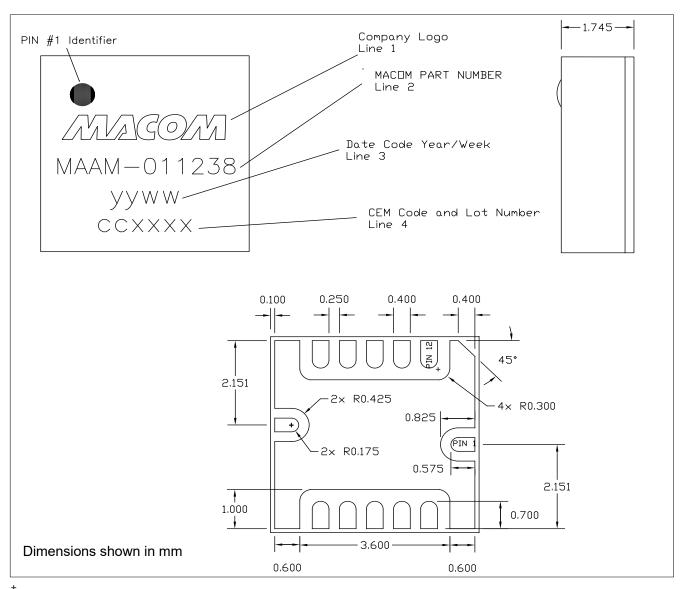
Rev. V5

Recommended PCB Layout

Evaluation Board Parts List

Part	Value	Case Style
C1, C2, C12	1 µF	0603
C6 C7, C11	0.01 µF	0402

Evaluation PCB Specifications^{11,12}


Top Layer: 1 oz Copper Cladding Dielectric Layer: Rogers RO4350B 10 mil Bottom Layer: 1 oz Copper Cladding Finished overall thickness: 12.8 mil

- PCB finish is ENEPIG. The vias (quantity of 50) located under the device are 8 mil in diameter and filled with thermally conductive material, capped over and planarized
- 12. Evaluation board should be mounted on a heat sink.

Rev. V5

Lead-Free 5 mm 12-Lead QFN Package[†]

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is ENEPIG over Copper.

Wideband Distributed Amplifier 100 kHz - 50 GHz

MAAM-011238

Rev. V5

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.