

S2GHA thru S2MHA

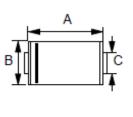
SURFACE MOUNT GLASS PASSIVATED RECTIFIER

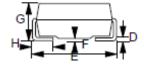
REVERSE VOLTAGE – 400 to 1000 Volts FORWARD CURRENT – 2.0 Ampere

FEATURES

- · Glass passivated chip
- For surface mounted applications
- Low reverse leakage current
- · Low forward voltage drop
- · High current capability

MECHANICAL DATA


· Case: Molded plastic


· Polarity: Indicated by cathode band

• Terminals: Solder plated copper

• Weight: 0.002 ounce, 0.064 grams

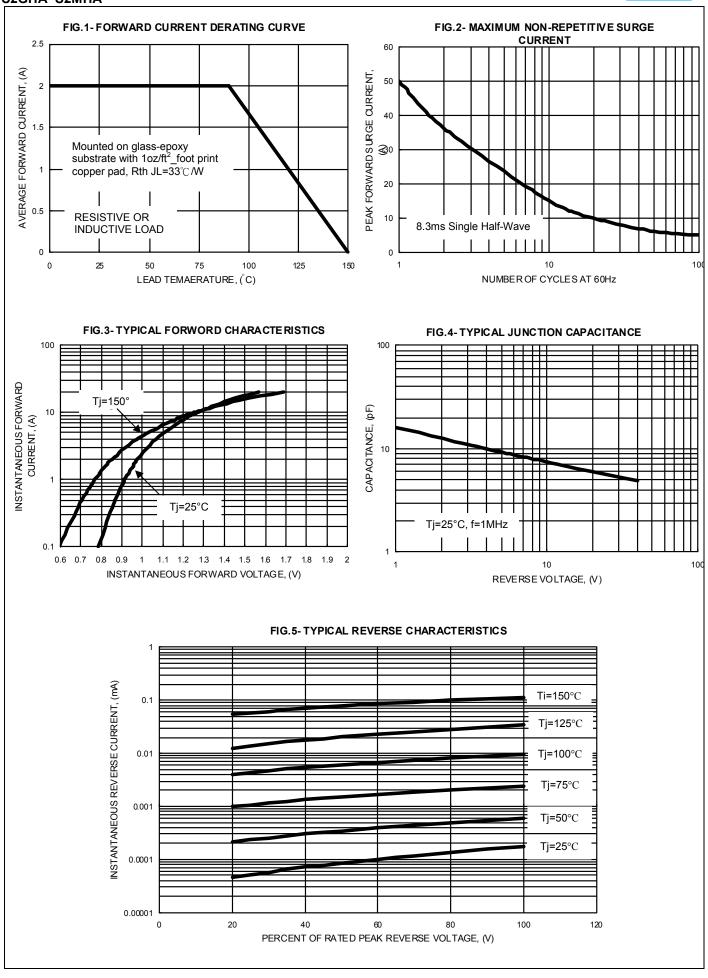
SMA

SMA						
DIM.	MIN.	MAX.				
Α	4.06	4.57				
В	2.29	2.92				
С	1.27	1.63				
D	0.15	0.31				
E	4.83	5.59				
F	0.05	0.20				
G	2.01	2.40				
Н	0.76	1.52				
All dimension in millimeter						

All dimension in millimeter

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


PARAMETER			SYMBOL	S2GHA	S2JHA	S2	KHA	S2MHA	UNIT
Device marking code			Note	S2GHA S2JHA S2KHA S2I				S2MHA	
Maximum Repetitive Peak Reverse Voltage			V _{RRM}	400 600 800 1000					V
Maximum RMS Voltage			V _{RMS}	280 420 560 700				700	V
Maximum DC Blocking Voltage			V _{DC}	400 600 800 1000					V
Average Rectified Output Current @T _L =90°C		I _(AV)	2.0					А	
Peak Forward Surge Current 8.3ms single half sine-wave			I _{FSM}	50					Α
Operating junction temperature range			TJ	-55 to +150					°C
Storage temperature range		T _{STG}	-55 to +150					°C	
PARAMETER	TEST (CONDITIONS	SYMBOL	Max.					UNIT
Forward Voltage (1)	IF=2.0A	Tj=25°C	V _F	1.15					V
Leakage Current (1)	VR=V _{DC}	Tj=25°C Tj=125°C	I _R	5 125					
THERMAL CHARACTERISTIC		SYMBOL	Typical					UNIT	
Typical junction capacitance (2)		CJ	10					pF	
Typical thermal resistance _ Junction to Case (3)			R⊕ _{JC}	21					°C/W
Typical thermal resistance _ Junction to Ambient (3)			R⊖JA	58					°C/W
Typical thermal resistance _ Junction to Lead (3)		R⊖JL	33					°C/W	
Note:			•				REV. 0	, Apr-2010, KS	DA05

Note:
(1) 300us Pulse width, 2% Duty cycle.

(2) Measured at 1.0MHz and applied reverse voltage of 4.0V DC.

(3) Thermal Resistance test performed in accordance with JESD-51. Unit mounted on 0.75t glass-epoxy substrate with 10mmx10mm copper pad. R_{0,JL} is measured at the lead of cathode band, R_{0,JL} is measured at the top centre of body.

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.