

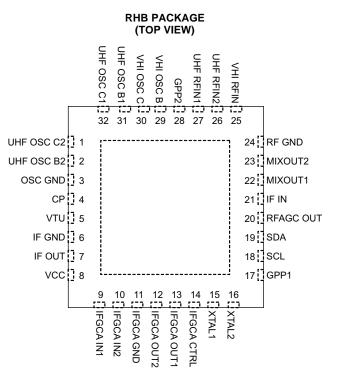
DIGITAL TV TUNER IC

Check for Samples: SN761646

FEATURES

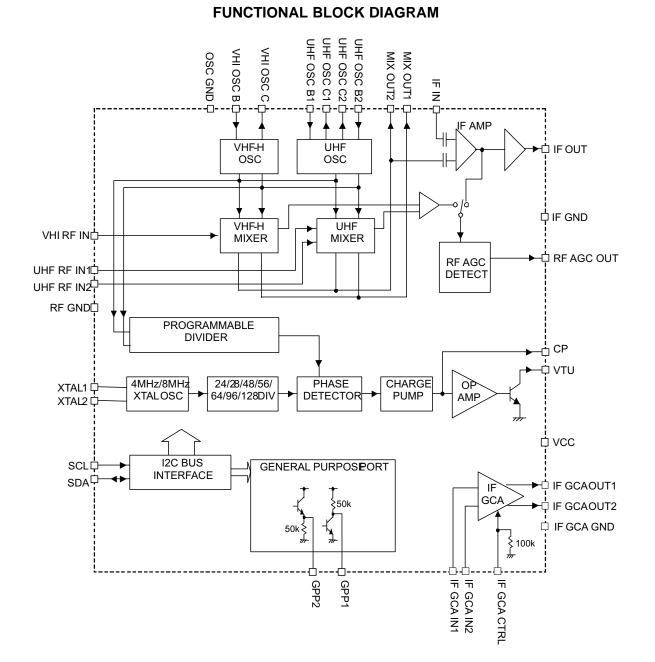
- Integrated Mixer/Oscillator/PLL and IF GCA
- VHF-H, UHF 2-Band Local Oscillator
- I²C Bus Protocol (Fixed Address)
- 30-V Tuning Voltage Output
- Two General Purpose Ports
- Selectable Wide/Narrow Band RF AGC
 Detector
- Crystal Oscillator 4 MHz/8 MHz/16 MHz
 Support
- Programmable Reference Divider Ratio (24/28/48/56/64/96/128)
- IF GCA Enable/Disable Control
- Standby Mode
- 5-V Power Supply
- 32-Pin Quad Flatpack No Lead (QFN) Package

APPLICATIONS


- Digital TVs
- Digital CATVs
- Set-Top Boxes

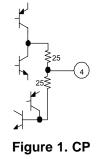
DESCRIPTION

The SN761646 is a low-phase-noise synthesized tuner IC designed for digital TV tuning systems. The circuit consists of a PLL synthesizer, two-band local oscillator and mixer, RF AGC detector circuit and IF gain controlled amplifier, and is available in a small outline package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLES251-NOVEMBER 2009


SN761646

SLES251-NOVEMBER 2009

TERMINAL FUNCTIONS

Table 1.

TERMINAL		DESCRIPTION	CONTRACTO
NAME NO.		DESCRIPTION	SCHEMATIC
CP	4	Charge-pump output	Figure 1
GPP1	17	General purpose port output 1 (open collector type)	Figure 2
GPP2	28	General purpose port output 2 (emitter follower type)	Figure 3
IFGCA CTRL	14	IF GCA control voltage input	Figure 4
IFGCA GND	11	IF GCA ground	
IFGCA IN1	9	IF GCA input	Figure 5
IFGCA IN2	10	IF GCA input	Figure 5
IFGCA OUT1	13	IF GCA output	Figure 6
IFGCA OUT2	12	IF GCA output	Figure 6
IF GND	6	IF ground	
IF IN	21	IF amplifier input	Figure 7
IF OUT	7	IF amplifier output	Figure 8
MIXOUT1	22	Mixer output 1	Figure 9
MIXOUT2	23	Mixer output 2	Figure 9
OSC GND	3	Oscillator ground	
RF AGC OUT	20	RF AGC output	Figure 10
RF GND	24	Mixer ground	
SCL	18	Serial clock input	Figure 11
SDA	19	Serial data input/output	Figure 12
UHF OSC B1	31	UHF oscillator base 1	Figure 13
UHF OSC B2	2	UHF oscillator base 2	Figure 13
UHF OSC C1	32	UHF oscillator collector 1	Figure 13
UHF OSC C2	1	UHF oscillator collector 2	Figure 13
UHF RF IN1	27	UHF RF input 1	Figure 14
UHF RF IN2	26	UHF RF input 2	Figure 14
V _{CC}	8	Supply voltage	
VHI OSC B	29	VHF-H oscillator base	Figure 15
VHI OSC C	30	VHF-H oscillator collector	Figure 15
VHI RF IN	25	VHF-H RF input	Figure 16
VTU	5	Tuning voltage amplifier output	Figure 17
XTAL1	15	Crystal oscillator	Figure 18
XTAL2	16	Crystal oscillator	Figure 18

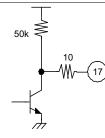
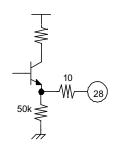
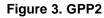
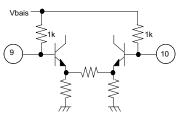





Figure 2. GPP1

Figure 5. . IF GCA IN1 and IF GCA IN2

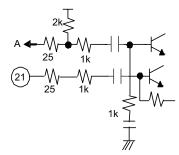


Figure 7. IF IN

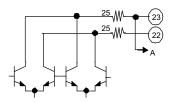


Figure 9. MIXOUT1 and MIXOUT2

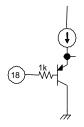
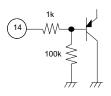



Figure 11. SCL

www.ti.com

Figure 4. IF GCA CTRL

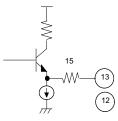


Figure 6. IF GCA OUT1 and IF GCA OUT2

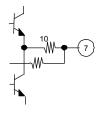


Figure 8. IF OUT

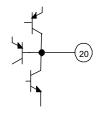
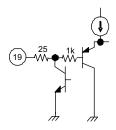
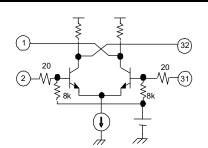
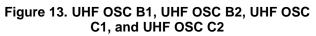


Figure 10. RF AGC OUT






Figure 12. SDA

SN761646

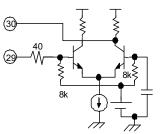


Figure 15. VHI OSC B and VHI OSC C

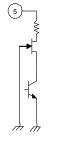
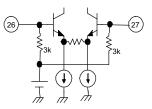
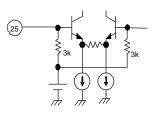




Figure 17. VTU

Figure 14. UHF RF IN1 and UHF RF IN2

Figure 16. VHI RF IN

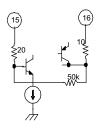


Figure 18. XTAL1 and XTAL2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾ ⁽²⁾

over recommended operating free-air temperature range (unless otherwise noted)

			VALUE	UNIT
V _{CC}	Supply voltage range ⁽³⁾	V _{CC}	-0.4 to 6.5	V
V _{GND}	Input voltage range 1 ⁽³⁾	RF GND, OSC GND	-0.4 to 0.4	V
V _{VTU}	Input voltage range 2 ⁽³⁾	VTU	-0.4 to 35	V
V _{IN}	Input voltage range 3 ⁽³⁾	Other pins	-0.4 to 6.5	V
T _A	Operating free-air temperature range		-20 to 85	°C
θ_{JA}	Package thermal impedance ⁽⁴⁾		32.4	°C/W
T _{stg}	Storage temperature range	-65 to 150	°C	
TJ	Maximum junction temperature		150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Overshoot or undershoot of input voltage beyond absolute maximum rating may induce failure. Latch up performance exceeds

+/-100mA per JESD78, except for GPP1 (pin 17).

(3) Voltage values are with respect to the IF GND of the circuit.

(4) The package thermal impedance is calculated in accordance with JESD 51-5 (High-K).

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	V _{CC}	4.5	5	5.5	V
$V_{\rm VTU}$	Tuning supply voltage	VTU		30	33	V
I _{GPP1}	Output current of general purpose port 1	GPP1			-5	mA
I _{GPP2}	Output current of general purpose port 2	GPP2			10	mA
T _A	Operating free-air temperature		-20		85	°C

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

IF IN, MIXOUT1, and MIXOUT2 (pins 21–23) withstand 1.5 kV; all other pins withstand 2 kV, according to the Human-Body Model (1.5 k Ω , 100 pF).

SLES251-NOVEMBER 2009

SN761646

ELECTRICAL CHARACTERISTICS

Total Device and Serial Interface

 V_{CC} = 4.5 V to 5.5 V, T_{A} = –20°C to 85°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC} 1	Supply current 1	$BS[2:1] = 10$, $I_{GPP1,2} = 0$ mA, IFGCA disabled		80		mA
I _{CC} 2	Supply current 2	BS[2:1] = 10, I _{GPP1,2} = 0 mA, IFGCA enabled		110		mA
I _{CC-STBY}	Standby supply current	BS[2:1] = 11		8	14	mA
V _{IH}	High-level input voltage (SCL, SDA)		2.3			V
V _{IL}	Low-level input voltage (SCL, SDA)				1.05	V
I _{IH}	High-level input current (SCL, SDA)				10	μA
I _{IL}	Low-level input current (SCL, SDA)		-10			μA
V _{POR}	Power-on-reset supply voltage (threshold of supply voltage between reset and operation mode)		2.1	2.8	3.5	V
I ² C Interfa	ce	·				
V _{OL}	Low-level output voltage (SDA)	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 3 \text{ mA}$			0.4	V
I _{SDAH}	High-level output leakage current (SDA)	V _{SDA} = 5.5 V			10	μA
f _{SCL}	Clock frequency (SCL)			100	400	kHz
t _{HD-DAT}	Data hold time	See Figure 19	0		0.9	μs
t _{BUF}	Bus free time		1.3			μs
t _{HD-STA}	Start hold time		0.6			μs
t _{LOW}	SCL-low hold time		1.3			μs
t _{HIGH}	SCL-high hold time		0.6			μs
t _{SU-STA}	Start setup time		0.6			μs
t _{SU-DAT}	Data setup time		0.1			μs
t _r	Rise time (SCL, SDA)				0.3	μs
t _f	Fall time (SCL, SDA)				0.3	μs
t _{SU-STO}	Stop setup time		0.6			μs

SLES251-NOVEMBER 2009

PLL and General Purpose Port

 V_{CC} = 4.5 V to 5.5 V, T_{A} = –20°C to 85°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
N	Divider ratio	15-bit frequency word	512		32767		
f _{XTAL}	Crystal oscillator frequency	See Figure 21		4	16	MHz	
Z _{XTAL}	Crystal oscillator input impedance	8 MHz, V _{CC} = 5 V, T _A = 25°C		1.5		kΩ	
V _{VTUL}	Tuning amplifier low-level output voltage	$R_{L} = 22 \text{ k}\Omega, \text{ VTU} = 30 \text{ V}$	0.2	0.45	0.6	V	
I _{VTUOFF}	Tuning amplifier leakage current	Tuning amplifier = off, VTU = 30 V			10	μA	
I _{CP11}		CP[2:0] = 011	450	600	750		
I _{CP10}		CP[2:0] = 010	250	350	450		
I _{CP01}	Charge-pump current	CP[2:0] = 001	100	140	200	μA	
I _{CP00}		CP[2:0] = 000	35	70	95		
I _{CP100}		CP[2:0] = 100, Mode = 1	650	900	1200		
V _{CP}	Charge-pump output voltage	PLL locked		1.95		V	
ICPOFF	Charge-pump leakage current	V _{CP} = 2 V, T _A = 25°C	-15		15	nA	
I _{GPP1}	General purpose port 1 (GPP1) output current				-5	mA	
V _{GPP1ON}	General purpose port 1 (GPP1) output ON voltage	$I_{GPP1} = -2 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$			0.6	V	
I _{GPP2}	General purpose port 2 (GPP2) output current				10	mA	
V _{GPP21}	General purpose port 2 (GPP2) output	I _{GPP2} = 10 mA	2.9			V	
V _{GPP22}	voltage	$I_{GPP2} = 10 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	3.4	3.6		v	
I _{GPP2OFF}	General purpose port 2 (GPP2) OFF leakage current	V _{GPP2} = 0 V			8	μA	

RF AGC

 $V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$, measured in Figure 20 reference measurement circuit at 50- Ω system, IF = 44 MHz, IF filter characteristics: $f_{peak} = 44 \text{ MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{OAGC0}		ATC = 0		300		nA
I _{OAGC1}	RF AGC output source current	ATC = 1		9		μA
I _{OAGCSINK}	RF AGC peak sink current	ATC = 0		100		μA
V _{OAGCH}	RFAGCOUT output high voltage (max level)	ATC = 1	3.5	4.0	4.5	V
VOAGCL	RFAGCOUT output low voltage (min level)	ATC = 1		0.3		V
V _{AGCSP00}		ATP[2:0] = 000, ATC=0, AISL=0		114		
V _{AGCSP01}		ATP[2:0] = 001, ATC=0, AISL=0		112		
V _{AGCSP02}		ATP[2:0] = 010, ATC=0, AISL=0		110		
V _{AGCSP03}	Start-point IF output level	ATP[2:0] = 011, ATC=0, AISL=0		108		dBµV
V _{AGCSP04}		ATP[2:0] = 100, ATC=0, AISL=0		106		
V _{AGCSP05}		ATP[2:0] = 101, ATC=0, AISL=0		104		
V _{AGCSP06}		ATP[2:0] = 110, ATC=0, AISL=0		102		

Mixer, Oscillator, IF Amplifier (DIF OUT)

 V_{CC} = 5 V, T_A = 25°C, measured in Figure 20 reference measurement circuit at 50- Ω system, IF = 44 MHz, IF filter characteristics: f_{peak} = 44 MHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP	UNIT	
G _{C4D}		$f_{in} = 177 \text{ MHz}^{(1)}$	29		
G _{C6D}	Conversion gain (mixer-IF amplifier), VHF-HIGH	$f_{in} = 467 \text{ MHz}^{(1)}$	29	dB	
G _{C7D}		$f_{in} = 473 \text{ MHz}^{(1)}$	29	dB	
G _{C9D}	Conversion gain (mixer-IF amplifier), UHF	$f_{in} = 864 \text{ MHz}^{(1)}$	29	uБ	
NF_{4D}	Noise figure, VHF-HIGH	f _{in} = 177 MHz	9	dB	
NF _{6D}		f _{in} = 467 MHz	10	uБ	
NF _{7D}	Noise figure, UHF	f _{in} = 473 MHz	10	dB	
NF_{9D}		f _{in} = 864 MHz	12	uВ	
$\rm CM_{4D}$	Input voltage causing 1% cross-modulation distortion,	$f_{in} = 177 \text{ MHz}^{(2)}$	79	dPul/	
CM _{6D}	VHF-HIGH	$f_{in} = 467 \text{ MHz}^{(2)}$	79	dBµV	
CM _{7D}	Input voltage causing 1% cross-modulation distortion, UHF	$f_{in} = 473 \text{ MHz}^{(2)}$	77	dBµV	
CM _{9D}	Input voltage causing 1% cross-modulation distortion, one	$f_{in} = 864 \text{ MHz}^{(2)}$	77	ивμν	
V_{IFO4D}	IF output voltage, VHF-HIGH	f _{in} = 177 MHz	117	dBµV	
V _{IFO6D}	ir ouput voltage, vrii -riigin	f _{in} = 467 MHz	117	ubμv	
V _{IFO7D}	IF output voltage, UHF	f _{in} = 473 MHz	117	dBµV	
V _{IFO9D}	ir ouput voltage, orir	f _{in} = 864 MHz	117	ивμν	
Φ_{PLVL4D}	Phase noise, VHF-HIGH	f _{in} = 177 MHz ⁽³⁾	-85	dBc/Hz	
Φ_{PLVL6D}		$f_{in} = 467 \text{ MHz}^{(4)}$	-77		
Φ_{PLVL7D}	Phase noise, UHF	$f_{in} = 473 \text{ MHz}^{(3)}$	-80	dBc/Hz	
Φ_{PLVL9D}	רומש ווטושב, טו ור	$f_{in} = 864 \text{ MHz}^{(4)}$	-77	UDC/HZ	

 $\begin{array}{ll} \text{(1)} & \text{IF} = 44 \; \text{MHz}, \; \text{RF input level} = 70 \; \text{dB}\mu\text{V} \\ \text{(2)} & f_{\text{undes}} = f_{\text{des}} \pm 6 \; \text{MHz}, \; \text{Pin} = 70 \; \text{dB}\mu\text{V}, \; \text{AM 1 kHz}, \; 30\%, \; \text{DES/CM} = \text{S/I} = 46 \; \text{dB} \\ \text{(3)} & \text{Offset} = 1 \; \text{kHz}, \; \text{CP current} = 350 \; \mu\text{A}, \; \text{reference divider} = 128, \; \text{crystal} = 8 \; \text{MHz} \\ \text{(4)} & \text{Offset} = 1 \; \text{kHz}, \; \text{CP current} = 900 \; \mu\text{A}, \; \text{reference divider} = 128, \; \text{crystal} = 8 \; \text{MHz} \\ \end{array}$

SLES251-NOVEMBER 2009

IF Gain Controlled Amplifier

 V_{CC} = 5 V, T_A = 25°C, measured in Figure 20 reference measurement circuit at 50- Ω system, IF = 45.75 MHz, IF filter characteristics: f_{peak} = 44 MHz (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{IFGCA}	Input current (IF GCA CTRL)	V _{IFGCA} = 3 V		30	60	μA
VIFGCAMAX	Maximum gain control voltage	Gain Maximum	3		V _{CC}	V
VIFGCAMIN	Minimum gain control voltage	Gain Minimum	0		0.2	V
GIFGCAMAX	Maximum gain	V _{IFGCA} = 3 V		65		dB
GIFGCAMIN	Minimum gain	V _{IFGCA} = 0 V		-1		dB
GCR _{IFGCA}	Gain control range	V _{IFGCA} = 0 V to 3 V		66		dB
VIFGCAOUT	Output voltage	Single-ended output, V _{IFGCA} = 3 V		2.1		Vp-p
NFIFGCA	Noise figure	VIFGCA=3V		11		dB
IM3 _{IFGCA}	Third order intermodulation distortion	$ f_{IFGCAIN1} = 43 \text{ MHz}, \\ f_{IFGCAIIN2} = 44 \text{ MHz}, \\ V_{IFGCAOUT} = -2 \text{ dBm}, \\ V_{IFGCA} = 3 \text{ V} $		-50		dBc
IIP3 _{IFGCA}	Input intercept point	V _{IFGCA} = 0 V		11		dBm
R _{IFGCAIN}	Input resistance (IF GCA IN1, IF GCA IN2)			1		kΩ
R _{IFGCAOUT}	Output resistance (IF GCA OUT1, IF GCA OUT2)			25		Ω

FUNCTIONAL DESCRIPTION

I²C Bus Mode

I^2C Write Mode (R/W = 0)

		•		nio Bulu	onnat				
	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	0	0	$R/\overline{W} = 0$	A ⁽¹⁾
Divider byte 1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	A ⁽¹⁾
Divider byte 2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	A ⁽¹⁾
Control byte 1 (CB1)	1	0	ATP2	ATP1	ATP0	RS2	RS1	RS0	A ⁽¹⁾
Band switch byte (BB)	CP1	CP0	AISL	0	GPP2	GPP1	BS2	BS1	A ⁽¹⁾
Control byte 2 (CB2)	1	1	ATC	MODE	T3/DISGCA	T2	T1/CP2	Т0	A ⁽¹⁾

Table 2. Write Data Format

(1) A : acknowledge

Table 3. Write Data Symbol Description

SYMBOL	DESCRIPTION	DEFAULT
ADB	Address byte (Write mode)	
	ADB[7:0]=11000000	
N[14:0]	Programmable counter set bits	N14 = N13 = N12 = = N0 = 0
	$N = N14 \times 2^{14} + N13 \times 2^{13} + + N1 \times 2 + N0$	
ATP[2:0]	RF AGC start-point control bits (see Table 4)	ATP[2:0] = 000
RS[2:0]	Reference divider ratio-selection bits (see Table 5)	RS[2:0] = 000
CP[1:0]	Charge-pump current-set bit (see Table 6)	CP[1:0] = 00
AISL	RF AGC detector input selection bit	AISL = 0
	AISL = 0: IF amplifier AISL = 1: Mixer output	
GPP[2:1]	General purpose port output control bit	GPP[2:1]=00
	GPPn = 0: Output transistor = OFF GPPn = 1: Output transistor = ON	
BS[4:1]	Band selection bits	BS[2:1]=00
	BS2 BS1	
	01Not allowed10VHF-HI00UHF11Standby mode/stop MOP function	
ATC	RF AGC current-set bit	ATC = 0
	ATC = 0: Current = 300 nA ATC = 1: Current = 9 μ A	
Mode T3/DISGCA	Mode = 0: IF GCA enabled T3/DISGCA, T2, T1/CP2, T0 are test bits (see Table 7)	MODE = 0 T[3:0] = 0000
T2 T1/CP2 T0	Mode = 1: T3/DISGCA =0 : IF GCA enabled T3/DISGCA =1 : IF GCA disabled T1/CP2 : Icp control bit, See Table 6	

SLES251-NOVEMBER 2009

ATP1	ATP0	IFOUT LEVEL (dBµV)				
0	0	114				
0	1	112				
1	0	110				
1	1	108				
0	0	106				
0	1	104				
1	0	102				
1	1	Disabled (Hi-Z)				
	1	1				

Table 4. RF AGC Start Point

Table 5. Reference Divider Ratio

RS2	RS1	RS0	REFERENCE DIVIDER RATIO
0	0	0	24
0	0	1	28
0	1	0	48
0	1	1	56
1	0	0	64
1	0	1	96
1	1	0	128
1	1	1	Reserved

Table 6. Charge-Pump Current

MODE	CP2	CP1	CP0	CHARGE PUMP CURRENT (µA)
Х	0	0	0	70
Х	0	0	1	140
Х	0	1	0	350
Х	0	1	1	600
1	1	0	0	900

Table 7. Test Bits ⁽¹⁾

MODE	T3/DISGCA	T2	T1/CP2	ТО	DEVICE OPERATION
0	0	0	0	Х	Normal operation
1	Х	Х	Х	Х	Normal operation
0	Х	1	Х	Х	Test mode
0	1	Х	Х	Х	Test mode

(1) RFAGC is not available in test mode.

I^2C Read Mode (R/ \overline{W} = 1)

Table 8. Read Data Format

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	0	0	R/ W = 1	A ⁽¹⁾
Status byte (SB)	POR	FL	1	1	1	1	1	1	_

(1) A : acknowledge

SN761646

SLES251-NOVEMBER 2009

www.ti.com

Table 9. Read Data Symbol Description

SYMBOL	DESCRIPTION	DEFAULT
ADB	Address byte (Read mode)	
	ADB[7:0] = 11000001	
POR	Power-on-reset flag	POR = 1
	POR set: power on POR reset: end-of-data transmission procedure	
FL ⁽¹⁾	In-lock flag	
	PLL locked (FL = 1), unlocked (FL = 0)	

(1) Lock detector works by using phase error pulse at the phase detector. Lock flag (FL) is set or reset according to this pulse width disciminator. Hence unstableness of PLL may cause the lock detect circuit to malfunction. In order to stable PLL, it is required to evaluate application circuit in various condition of loop-gain (loo-p filter, CP current), and to verify with whole conditions of actual application

Copyright © 2009, Texas Instruments Incorporated

SN761646

SLES251-NOVEMBER 2009

www.ti.com

Example I²C Data Write Sequences

Telegram examples:

Start - ADB - DB1 - DB2 - CB1 - BB - CB2 - Stop Start - ADB - DB1 - DB2 - Stop Start - ADB - CB1 - BB - CB2 - Stop Start - ADB - CB1 - BB - Stop

Start - ADB - CB2 - Stop

Abbreviations:

ADB: Address byte BB: Bandswitch byte CB1: Control byte 1 CB2: Control byte 2 DB1: Divider byte 1 DB2: Divider byte 2 Start: Start condition Stop: Stop condition

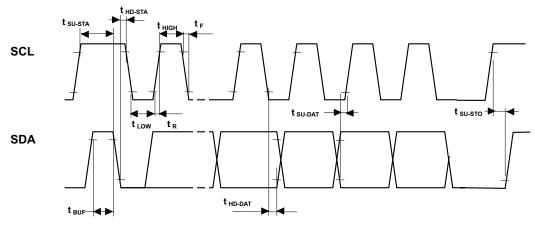
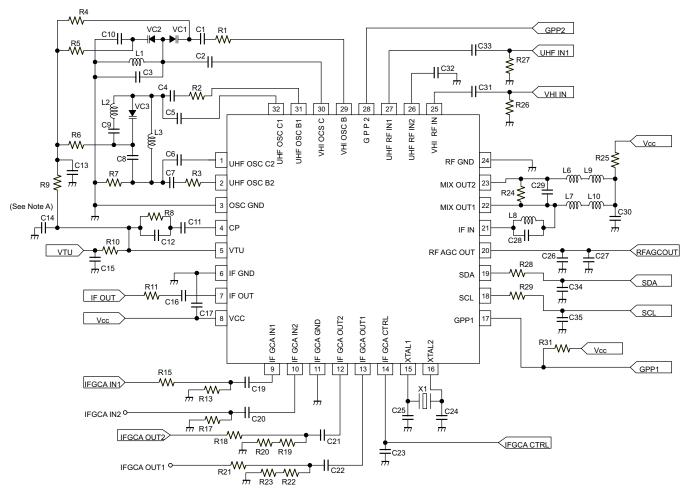



Figure 19. I²C Timing Chart

www.ti.com

APPLICATION INFORMATION

- A. To prevent abnormal oscillation, connect C14, which does not affect a PLL.
- B. This application information is advisory and performance-check is required at actual application circuits. TI assumes no responsibility for the consequences of use of this circuit, such as an infringement of intellectual property rights or other rights, including patents, of third parties.

Figure 20. Reference Measurement Circuit

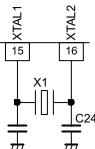
Submit Documentation Feedback

16

SLES251-NOVEMBER 2009

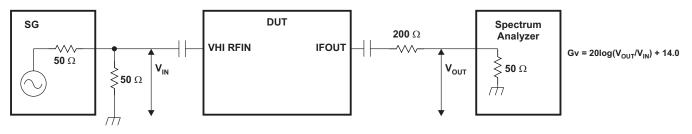
PARTS NAME	VALUE	PARTS NAME	VALUE
C1 (VHI OSC B)	7 pF	L6 (MIXOUT)	680 nH (LK1608R68K-T)
C2 (VHI OSC C)	5 pF	L7 (MIX OUT)	680 nH (LK1608R68K-T)
C3 (VHI OSC)	0.5 pF		Short
C4 (UHF OSCB1)	1.5 pF	L9 (MIX OUT)	Short
C5 (UHF OSCC1)	1 pF		Short
C6 (UHF OSCC2)	1 pF	R1 (VHI OSC B)	4.7 Ω
C7 (UHF OSCB2)	1.5 pF	R2 (UHF OSC B1)	7.5 Ω
C8 (UHF OSC)	10 pF	R3 (UHF OSC B2)	7.5 Ω
C9 (UHF OSC)	100 pF	R4 (VHI OSC)	3.3 kΩ
C10 (VHI OSC)	51 pF	R5 (VHI OSC)	3.3 kΩ
C11 (CP)	0.01 µF/50 V	R6 (UHF OSC)	1kΩ
C12 (CP)	22 pF/50 V	R7 (UHF OSC)	2.2 kΩ
C13 (VTU)	2.2 nF	R8 (CP)	47 kΩ
C14 (VTU)	150 pF	R9 (VTU)	3kΩ
C15 (VTU)	2.2 nF/50 V	R10 (VTU)	22 kΩ
C16 (IF OUT)	2.2 nF	R11 (IF OUT)	200 Ω
C17 (VCC)	0.1 µF	R13 (IFGCA IN1)	50 Ω
C19 (IFGCA IN1)	2.2 nF	R15 (IF GCA IN)	0 Ω
C20 (IFGCA IN2)	2.2 nF	R17 (IFGCA IN2)	0 Ω
C21 (IFGCA OUT2)	2.2 nF	R18 (IFGCA OUT2)	200 Ω
C22 (IFGCA OUT1)	2.2 nF	R19 (IFGCA OUT2)	Open
C23 (IFGCA CTRL)	0.1 µF	R20 (IFGCA OUT2)	Open
C24 (XTAL)	15 pF	R21 (IFGCA OUT1)	Open
C25 (XTAL)	15 pF	R22 (IFGCA OUT1)	200 Ω
C26 (RFAGC OUT)	0.1 µF	R23 (IFGCA OUT1)	50 Ω
C27 (RFAGC OUT)	0.047 µF	R24 (MIXOUT)	Open
C28 (IF IN)	Open	R25 (MIXOUT)	0 Ω
C29 (MIXOUT)	6 pF	R26 (VHI IN)	50 Ω
C30 (MIXOUT)	2.2 nF	R27 (UHF RFIN1)	50 Ω
C31 (VHI RF IN)	2.2 nF	R28 (SDA)	330 Ω
C32 (UHF RFIN2)	2.2 nF	R29 (SCL)	330 Ω
C33 (UHF RFIN1)	2.2 nF	R31 (GPP1)	Open
C34 (SDA)	Open	VC1 (VHI OSC)	MA2S372
C35 (SCL)	Open	VC2 (VHI OSC)	MA2S374
L1 (VHI OSC)	φ2.0 mm, 3T, wire 0.4 mm, L	VC3 (UHF OSC)	MA2S372
L2 (UHF OSC)	φ1.8 mm, 3T, wire 0.4 mm, R	X1	8 MHz crystal
L3 (UHF OSC)	φ1.8 mm, 3T, wire 0.4 mm, R		

(1) If frequency = 44 MHz, local frequency range: VHF-HIGH: 221–511 MHz UHF: 517–908 MHz


www.ti.com

www.ti.com

APPLICATION INFORMATION (CONTINUED)


Reference Crystal Oscillation Circuit

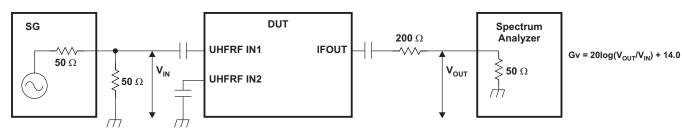

Т		CAPACITORS		
-	FREQUENCY	ТҮРЕ	C24	C25
	4 MHz	HC49SFNB04000H0 (Kyocera)	27 pF	27 pF
204	8 MHz	CX5032GB08000H0 (Kyocera)	15 pF	15 pF
224	16 MHz	CX3225GB16000D0 (Kyocera)	14 pF	14 pF

Figure 21. Reference Crystal Oscillation Circuit

Test Circuits

Figure 22. Conversion Gain Measurement Circuit

Figure 23. UHF Conversion Gain Measurement Circuit

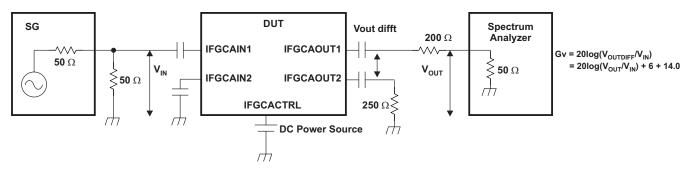


Figure 24. IF GCA Gain Measurement Circuit

www.ti.com

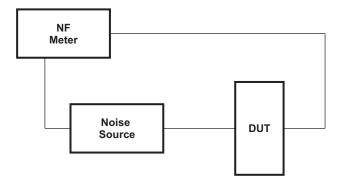
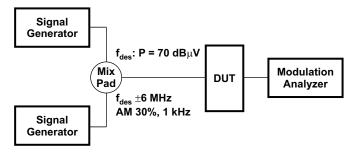
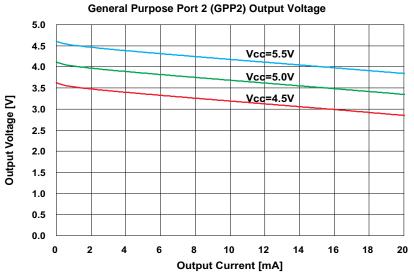
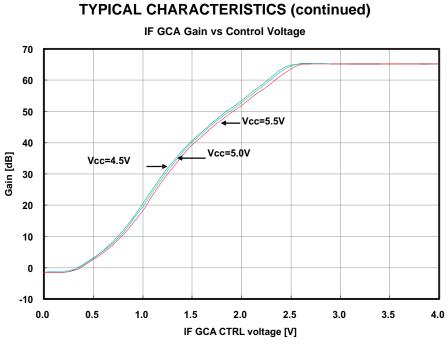
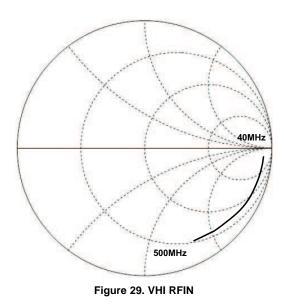
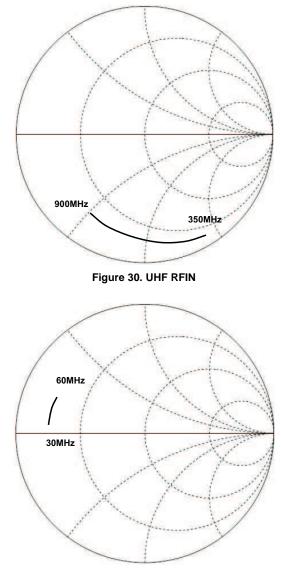




Figure 25. Noise Figure Measurement Circuit

TYPICAL CHARACTERISTICS

SLES251-NOVEMBER 2009


Figure 28. IF GCA Gain vs Control Voltage

S-Parameter

www.ti.com

TYPICAL CHARACTERISTICS (continued)

Figure 31. IFOUT

SLES251-NOVEMBER 2009

TYPICAL CHARACTERISTICS (continued)

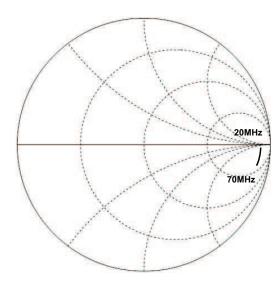


Figure 32. IF GCA IN

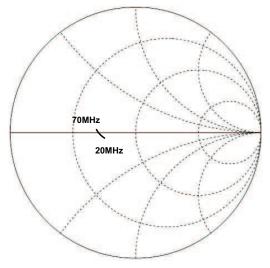


Figure 33. IF GCA OUT

Copyright © 2009, Texas Instruments Incorporated

19-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN761646RHBR	OBSOLETE	E VQFN	RHB	32		TBD	Call TI	Call TI	-20 to 85		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

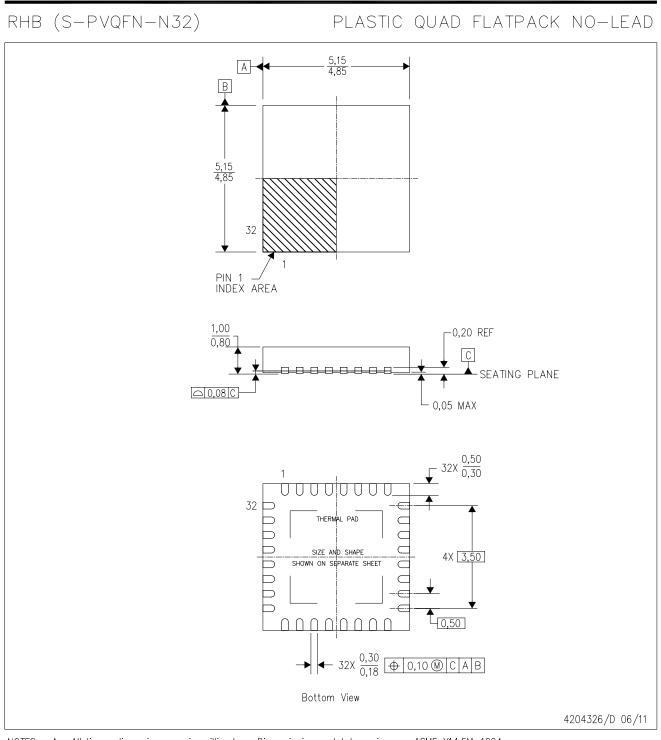
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated