Dual 1:4 Fanout Buffer with 1.05V Single-Ended Inputs and Outputs

DATASHEET

General Description

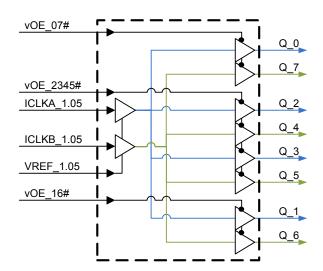
The 9SBV0802 provides two banks of four 1.05V LVCMOS outputs. Each bank has its own input. There are three OE pins. Two OE pins control two outputs each and one OE pin controls four outputs. One 9SBV0802 allows one PCH to easily support four CPU's with point to point routing of the PM signals. Two 9SBV0802's allow one PCH to easily support up to eight CPU's with point-to-point routing of the PM signals.

Recommended Application

Fanout buffer for PM-SYNC and PM_SYNC CLK in Intel Servers

Output Features

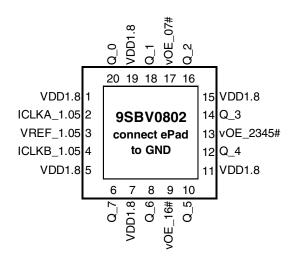
• 8 - 1-48MHz 1.05V LVCMOS outputs


Key Specifications

- Additive cycle-to-cycle jitter <8ps
- Output-to-output skew within a bank <50ps
- Output-to-output skew between banks <100ps

Features/Benefits

- 1.8V Power supply, 15mW typical power consumption; eliminate thermal concerns
- OE pins; support 1, 2, 3 or 4 socket systems
- 1.05V LVCMOS inputs with VREF pin; input thresholds matched to chipset power supply
- Space saving 20-pin 4x4mm VFQFPN; minimal board space


Block Diagram

1

Pin Configuration

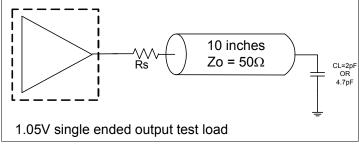
20-pin VFQFPN, 4x4 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor v prefix indicates internal 120KOhm pull down resistor

Output Control Table

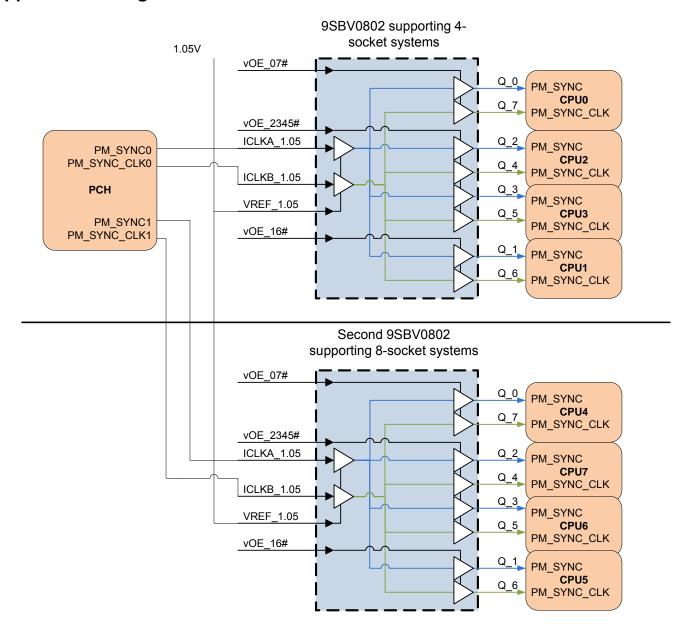
ICLKA_1.05 ICLKB_1.05	OE_07	OE_16	OE_2345	Q_7	Q_6	Q_5	Q_4	Q_3	Q_2	Q_1	Q_0
X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Running	1	1	1	0	0	0	0	0	0	0	0
Running	1	1	0	0	0	Run	Run	Run	Run	0	0
Running	1	0	1	0	Run	0	0	0	0	Run	0
Running	1	0	0	0	Run	Run	Run	Run	Run	Run	0
Running	0	1	1	Run	0	0	0	0	0	0	Run
Running	0	1	0	Run	0	Run	Run	Run	Run	0	Run
Running	0	0	1	Run	Run	0	0	0	0	Run	Run
Running	0	0	0	Run							

Power Connections


Decemination	Pin Number				
Description	VDD	GND			
Input Circuits	1,5	21			
1.05V reference	3	21			
Outputs	7,11,	21			
Outputs	15,19	21			

Pin Descriptions

Pin#	Pin Name	Туре	Pin Description
1	VDD1.8	PWR	Power supply, nominal 1.8V
2	ICLKA_1.05	IN	1.05V LVCMOS single-ended input clock. Voltage reference is set by the VREF_1.05 pin.
3	VREF_1.05	IN	Voltage reference for 1.05V single-ended inputs. Connect the VDDIO 1.05V power rail from chipset to this pin.
4	ICLKB_1.05	IN	1.05V LVCMOS single-ended input clock. Voltage reference is set by the VREF_1.05 pin.
5	VDD1.8	PWR	Power supply, nominal 1.8V
6	Q_7	OUT	LVCMOS single-ended output
7	VDD1.8	PWR	Power supply, nominal 1.8V
8	Q_6	OUT	LVCMOS single-ended output
			Active low input for enabling outputs 1 and 6. This pin has an internal
9	vOE_16#	IN	120Kohm pull down.
			0 = enable outputs, 1 = disable outputs
10	Q_5	OUT	LVCMOS single-ended output
11	VDD1.8	PWR	Power supply, nominal 1.8V
12	Q_4	OUT	LVCMOS single-ended output
13	vOE_2345#	IN	Active low input for enabling outputs 2 thorugh 5. This pin has an internal 120Kohm pull down. 0 = enable outputs, 1 = disable outputs
14	Q_3	OUT	LVCMOS single-ended output
15	VDD1.8	PWR	Power supply, nominal 1.8V
16	Q_2	OUT	LVCMOS single-ended output
17	vOE_07#	IN	Active low input for enabling outputs 0 and 7. This pin has an internal 120Kohm pull down. 0 = enable outputs, 1 = disable outputs
18	Q_1	OUT	LVCMOS single-ended output
19	VDD1.8	PWR	Power supply, nominal 1.8V
20	Q_0	OUT	LVCMOS single-ended output
21	EPAD	GND	Connect to Ground.


Test Loads

Rs = 33Ω for Zo= 50Ω

Applications Diagram

Electrical Characteristics-Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2.5	V	1,2
Input Voltage	V_{IN}		-0.5		V _{DD} +0.5	V	1,3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.6	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA = T_{AMB} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

AIVID, Calplety Contaged		tilon conditions, see rest Loads for Loading Conditio					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDD1.8	Supply voltage for core and analog	1.7	1.8	1.9	V	
Reference Supply Voltage	VDDREF_1.05	Reference for 1.05V inputs	0.8	1.05	1.1	V	
Ambient Operating Temperature	T _{AMB}	Industrial range	-40	25	85	°C	
Input High Voltage	V_{IH}	Control Inputs	0.75 V _{DD}	1.6	$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	Control Inputs	-0.3	0.2	0.25 V _{DD}	V	
Input Current	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5	0.0	5	uA	
	I _{INP}	Single-ended inputs $V_{IN} = 0 \text{ V}$; Inputs with internal pull-up resistors $V_{IN} = \text{VDD}$; Inputs with internal pull-down resistors	-200	0.0	200	uA	
Input Frequency	F _{in}		1	24	48	MHz	
Pin Inductance	L _{pin}				7	nH	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	рF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1
	Соит	Output pin capacitance			6	рF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1	ms	1,2
Input SS Modulation Frequency non-PCIe	f _{MODIN}	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	1
OE Latency	t _{LATOE#}	Output start after OE assertion Output stop after OE deassertion	1		3	clocks	1
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2

 $^{^1\}mbox{Guaranteed}$ by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.5V.

²Control input must be monotonic from 20% to 80% of input swing.

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	ICLKx_1.05	800	1.0	VREF_1.0 5 + 200mV	m\/	1
Input Low Voltage	V_{IL}	ICLKx_1.05	-200	0	200	mV	1
Input Slew Rate	dv/dt	Single-ended measurment	0.5	-	5	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	0	5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	50	55	%	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Q x 1.05V Single-ended Outputs

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

7	•	•					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, CL=2pF	0.8	1.5	2.5	V/ns	1,2
	uv/ut	Scope averaging on, CL=4.7pF	0.5	1	1.5	V/ns	1,2
Voltage High	V _{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope		1000	1100	mV	
Voltage Low	V_{LOW}	averaging on)	-150	0	150	1111	

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDVref1.05}	VREF_1.05V pin		0.07	0.5	mA	
Operating Supply Current	I _{DD1.8}	VDD, All outputs active @24MHz, CL=2pF		8.2	12	mA	
Powerdown Current	I _{DDAPD}	VREF_1.05V pin		0.07	0.5	mA	1
	I _{DDPD}	VDD, All outputs disabled.		3.3	5	mA	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Output Duty Cycle, Jitter, and Skew Characteristics

 $TA = T_{AMB}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	t _{DCD}	@24MHz	-2	-0.8%	0	%	1,2
Skew, Input to Output	t _{I2O}	V _T = 50%	2000	2474	3000	ps	1
Skew, Output to Output	t _{o2oA}	Within banks Q[3:0] or Q[7:4], $V_T = 50\%$		10	50	ps	1
Skew, Matching	t _{o2oB}	Between banks Q[3:0] and Q[7:4], $V_T = 50\%$		47	100	ps	1
Jitter, Cycle to cycle	t _{icyc-cyc}	<i>Additive</i> Jitter, V _T = 50%		3.5	8	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from 20% to 80% of swing

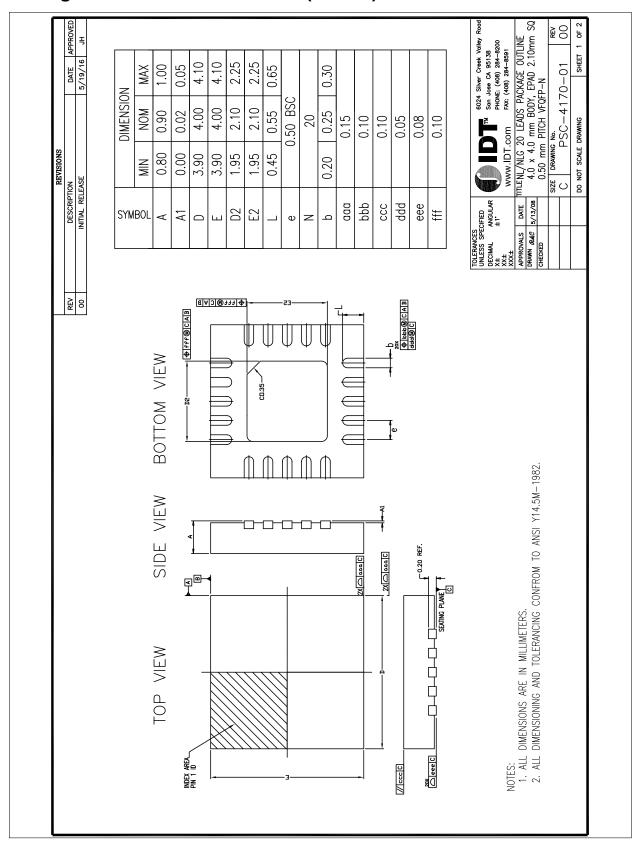
¹ Input clock stopped.

² Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

Marking Diagram

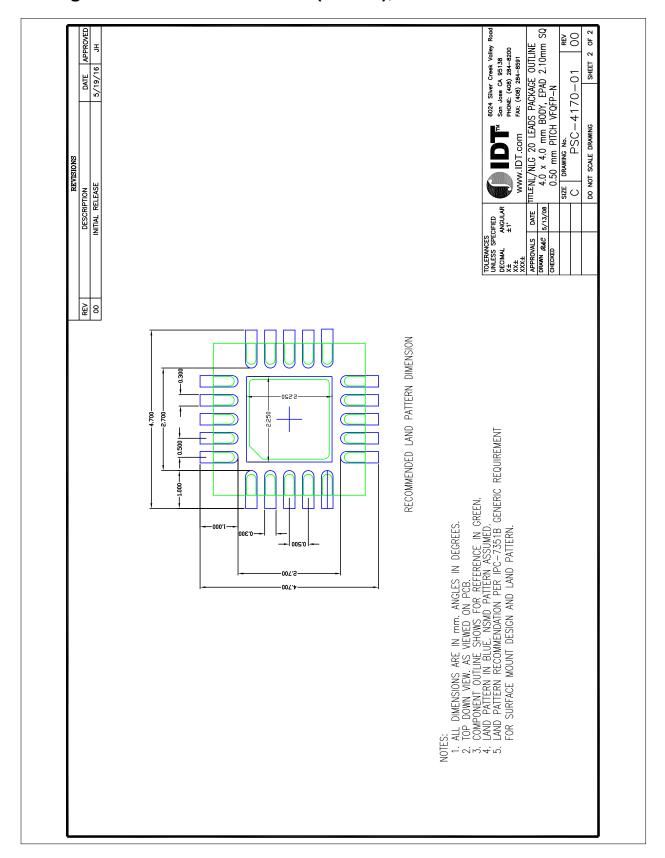
Notes:

- 1. "LOT" denotes the lot number.
- 2. "YYWW" is the last two digits of the year and week that the part was assembled.
- 3. Line 2: truncated part number
- 4. "L" denotes RoHS compliant package.
- 5. "I" denotes industrial temperature grade.


Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	θ_{JC}	Junction to Case		42	°C/W	1
	θ_{Jb}	Junction to Base		2.4	°C/W	1
Thermal Resistance	θ_{JA0}	Junction to Air, still air	NLG20	39	°C/W	1
Theimai nesistance	θ_{JA1}	Junction to Air, 1 m/s air flow	INLGZU	33	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		28	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		27	°C/W	1

¹ePad soldered to board



Package Outline and Dimensions (NLG20)

Package Outline and Dimensions (NLG20), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9SBV0802AKILF	Tubes	20-pin VFQFPN	-40° to +85°C
9SBV0802AKILFT	Tape and Reel	20-pin VFQFPN	-40° to +85°C

[&]quot;LF" to the suffix denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Issue Date	Initiator	Description	Page #
Α	9/22/2015	RDW	 Corrected polarity of OE inputs to be active low instead of active high. Added 2pF test loads in addition to 4.7pF Updated electrical tables with preliminary data. Updated block diagram with proper OE polarity. Moved from Advance to Preliminary 	Various
В	12/15/2015	RDW	 Update front page text. Add Applications Diagram Update Electrical tables with characterization data Added "Output Duty Cycle, Jitter, and Skew Characterisitics" Table Correct pin description for pin 9. Move to final. 	Various
С	12/15/2016	RDW	Updated POD drawings with latest showing 2.1 mm SQ. EPAD (PSC-4170-01)	8, 9

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775

www.IDT.com/go/sales

Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.