

LOW-VOLTAGE OCTAL BUS SWITCH

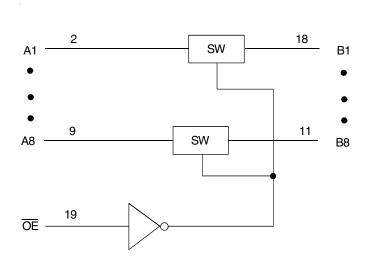
IDT74CBTLV3245

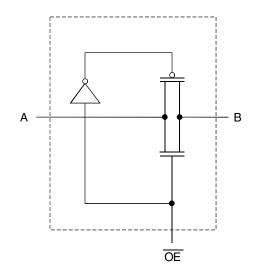
FEATURES:

- Pin-out compatible with standard '245 Logic products
- 5Ω A/B bi-directional switch
- · Isolation under power-off conditions
- · Over-voltage tolerant
- · Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- Available in QSOP and TSSOP packages

DESCRIPTION:

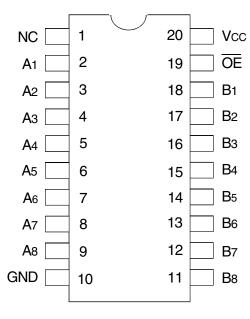
The octal bus switch has standard 245 pinouts. The CBTLV3245 is designed for asynchronous communication between data buses. When Output Enable (\overline{OE}) is low, the 8-bit bus switch is on and port A is connected to Port B. When \overline{OE} is high, the switch is off and a high impedance exists between Port A and Port B.


To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to VCC through a pullup resistor.


APPLICATIONS:

• 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM


SIMPLIFIED SCHEMATIC, EACH SWITCH

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

QSOP / TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
Vcc	SupplyVoltage Range	-0.5 to +4.6	V
Vı	Input Voltage Range	-0.5 to +4.6	V
	Continuous Channel Current	128	mA
lik	Input Clamp Current, VI/O < 0	- 50	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description	
Output Enable (Active LOW)		
Ax	Port A Inputs or Outputs	
B x Port B Inputs or Outputs		

FUNCTION TABLE(1)

Input	
ŌĒ	Operation
L	A Port = B Port
Н	Isolation

NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

OPERATING CHARACTERISTICS, TA = 25°C(1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
ViH	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	_	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	_	0.7	V
		Vcc = 2.7V to 3.6V	_	0.8	
TA	Operating Free-Air Temperature		-40	85	°C

NOTE:

^{1.} All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Conditions: TA = -40°C to +85°C

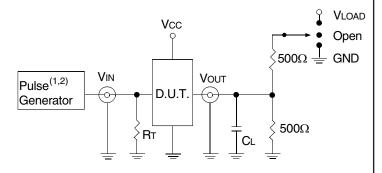
Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data Inputs	Vcc = 3V, Iı = -18mA		_	_	-1.2	V
lı	Control Inputs	Vcc = 3.6V, VI = Vcc or GND		_	_	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0 or 3.6V, switch	n disabled	_	_	5	μΑ
loff		Vcc = 0, Vi or Vo = 0 to 3.6V		_	_	50	μA
Icc		Vcc = 3.6V, lo = 0, Vı = Vcc or G	SND	_	_	10	μA
$\Delta Icc^{(2)}$	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	_	300	μΑ
Сі	Control Inputs	Vi = 3V or 0		_	4	_	pF
CIO(OFF)		Vo = 3V or 0, $\overline{\text{OE}}$ = Vcc		_	6	_	pF
	Vcc = 2.3V	VI = 0	Io = 64mA	_	5	8	
	Typ. at Vcc = 2.5V		Io = 24mA	_	5	8	
Ron ⁽³⁾		VI = 1.7V	Io = 15mA	–	27	40	Ω
		Vı = 0	Io = 64mA	_	5	7	
	Vcc = 3V		Io = 24mA		5	7	
		VI = 2.4V	Io = 15mA	_	10	15	

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. The increase in supply current is attributable to each current that is at the specified voltage level rather than Vcc or GND.
- 3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		$Vcc = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PD ⁽¹⁾	Propagation Delay	_	0.15	_	0.25	ns
	A to B or B to A					
ten	Output Enable Time	1	4.5	1	4.2	ns
	OE to A or B					
tois	Output Disable Time	1	5	1	5	ns
	OE to A or B					


NOTE:

^{1.} The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance driven by an ideal voltage source (zero output impedance).

TEST CIRCUITS AND WAVEFORMS

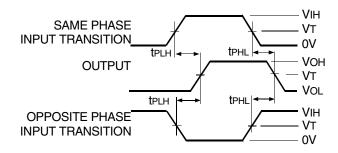
TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
VIH	3	Vcc	V
VT	1.5	Vcc/2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

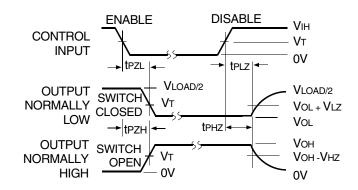
Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

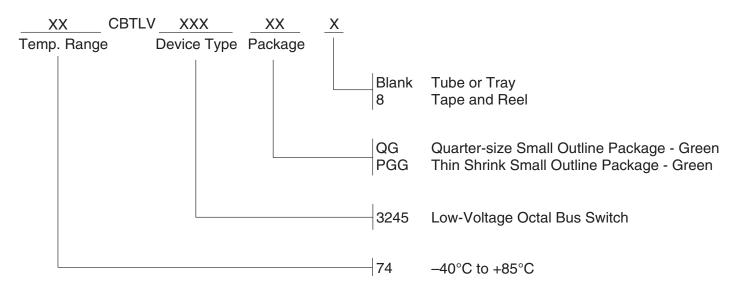

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:


- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2.5ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tpHz/tpzH	GND
t _{PD}	Open



Propagation Delay

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

12/18/2014 Pg. 5 Updated the ordering information by removing non RoHS part and by adding Tape and Reel information.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):