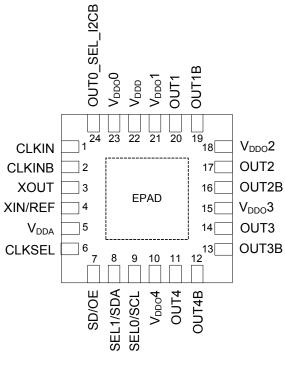
5P49V5901

DATASHEET

Description

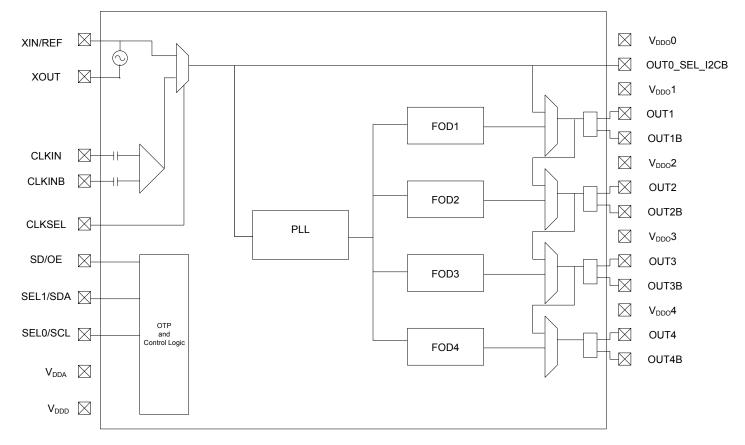

The 5P49V5901 is a programmable clock generator intended for high performance consumer, networking, industrial, computing, and data-communications applications. Configurations may be stored in on-chip One-Time Programmable (OTP) memory or changed using I^2C interface. This is IDTs fifth generation of programmable clock technology (VersaClock[®] 5).

The frequencies are generated from a single reference clock. The reference clock can come from one of the two redundant clock inputs. A glitchless manual switchover function allows one of the redundant clocks to be selected during normal operation.

Two select pins allow up to 4 different configurations to be programmed and accessible using processor GPIOs or bootstrapping. The different selections may be used for different operating modes (full function, partial function, partial power-down), regional standards (US, Japan, Europe) or system production margin testing.

The device may be configured to use one of two I²C addresses to allow multiple devices to be used in a system.

Pin Assignment



24-pin VFQFPN

Features

- · Generates up to four independent output frequencies
- High performance, low phase noise PLL, <0.7 ps RMS typical phase jitter on outputs:
 - PCIe Gen1, 2, 3 compliant clock capability
 - USB 3.0 compliant clock capability
 - 1 GbE and 10 GbE
- Four fractional output dividers (FODs)
- Independent Spread Spectrum capability on each output pair
- Four banks of internal non-volatile in-system programmable or factory programmable OTP memory
- I²C serial programming interface
- One reference LVCMOS output clock
- Four universal output pairs:
 - Each configurable as one differential output pair or two LVCMOS outputs
- I/O Standards:
 - Single-ended I/Os: 1.8V to 3.3V LVCMOS
 - Differential I/Os LVPECL, LVDS and HCSL
- Input frequency ranges:
 - LVCMOS Reference Clock Input (XIN/REF) 1MHz to 200MHz
 - LVDS, LVPECL, HCSL Differential Clock Input (CLKIN, CLKINB) – 1MHz to 350MHz
 - Crystal frequency range: 8MHz to 40MHz
- Output frequency ranges:
 - LVCMOS Clock Outputs 1MHz to 200MHz
 - LVDS, LVPECL, HCSL Differential Clock Outputs 1MHz to 350MHz
- Individually selectable output voltage (1.8V, 2.5V, 3.3V) for each output pair
- · Redundant clock inputs with manual switchover
- Programmable loop bandwidth
- Programmable output to output skew
- Programmable slew rate control
- Programmable crystal load capacitance
- Individual output enable/disable
- Power-down mode
- 1.8V, 2.5V or 3.3V core V_{DDD} , V_{DDA}
- Available in 24-pin VFQFPN 4mm x 4mm package
- -40° to +85°C industrial temperature operation

Functional Block Diagram

Applications

- Ethernet switch/router
- PCI Express 1.0/2.0/3.0
- Broadcast video/audio timing
- Multi-function printer
- Processor and FPGA clocking
- Any-frequency clock conversion
- MSAN/DSLAM/PON
- Fiber Channel, SAN
- Telecom line cards
- 1 GbE and 10 GbE

Table 1: Pin Descriptions

Number	Name		Туре	Description
1	CLKIN	Input	Internal Pull-down	Differential clock input. Weak 100kohms internal pull-down.
2	CLKINB	Input	Internal Pull-down	Complementary differential clock input. Weak 100kohms internal pull-down.
3	XOUT	Input		Crystal Oscillator interface output.
4	XIN/REF	Input		Crystal Oscillator interface input, or single-ended LVCMOS clock input. Ensure that the input voltage is 1.2V max.Refer to the section "Overdriving the XIN/REF Interface".
5	V _{DDA}	Power		Analog functions power supply pin.Connect to 1.8V to 3.3V. V_{DDA} and V_{DDD} should have the same voltage applied.
6	CLKSEL	Input	Internal Pull-down	Input clock select. Selects the active input reference source in manual switchover mode. 0 = XIN/REF, XOUT (default) 1 = CLKIN, CLKINB CLKSEL Polarity can be changed by I2C programming as shown in Table 4.
7	SD/OE	Input	Internal Pull-down	Enables/disables the outputs (OE) or powers down the chip (SD). The SH bit controls the configuration of the SD/OE pin. The SH bit needs to be high for SD/OE pin to be configured as SD. The SP bit (0x02) controls the polarity of the signal to be either active HIGH or LOW only when pin is configured as OE (Default is active LOW.) Weak internal pull down resistor. When configured as SD, device is shut down, differential outputs are driven high/low, and the single-ended LVCMOS outputs are driven low. When configured as OE, and outputs are disabled, the outputs can be selected to be tri-stated or driven high/low, depending on the programming bits as shown in the SD/OE Pin Function Truth table.
8	SEL1/SDA	Input	Internal Pull-down	Configuration select pin, or I ² C SDA input as selected by OUT0_SEL_I2CB. Weak internal pull down resistor.
9	SEL0/SCL	Input	Internal Pull-down	Configuration select pin, or I ² C SCL input as selected by OUT0_SEL_I2CB. Weak internal pull down resistor.
10	V _{DDO} 4	Power		Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT4/OUT4B.
11	OUT4	Output		Output Clock 4. Please refer to the Output Drivers section for more details.
12	OUT4B	Output		Complementary Output Clock 4. Please refer to the Output Drivers section for more details.
13	OUT3B	Output		Complementary Output Clock 3. Please refer to the Output Drivers section for more details.
14	OUT3	Output		Output Clock 3. Please refer to the Output Drivers section for more details.
15	V _{DDO} 3	Power		Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT3/OUT3B.
16	OUT2B	Output		Complementary Output Clock 2. Please refer to the Output Drivers section for more details.
17	OUT2	Output		Output Clock 2. Please refer to the Output Drivers section for more details.
18	V _{DDO} 2	Power		Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT2/OUT2B.
19	OUT1B	Output		Complementary Output Clock 1. Please refer to the Output Drivers section for more details.
20	OUT1	Output		Output Clock 1. Please refer to the Output Drivers section for more details.
21	V _{DDO} 1	Power		Output power supply. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT1/OUT1B.

Number	Name		Туре	Description
22	V _{DDD}	Power		Digital functions power supply pin. Connect to 1.8 to 3.3V. V_{DDA} and V_{DDD} should have the same voltage applied.
23	V _{DDO} 0	Power		Power supply pin for OUT0_SEL_I2CB. Connect to 1.8 to 3.3V. Sets output voltage levels for OUT0.
24	OUT0_SEL_I2CB	Input/ Output	Internal Pull-down	Latched input/LVCMOS Output. At power up, the voltage at the pin OUT0_SEL_I2CB is latched by the part and used to select the state of pins 8 and 9. If a weak pull up (10kohms) is placed on OUT0_SEL_I2CB, pins 8 and 9 will be configured as hardware select pins, SEL1 and SEL0. If a weak pull down (10Kohms) is placed on OUT0_SEL_I2CB or it is left floating, pins 8 and 9 will act as the SDA and SCL pins of an I ² C interface. After power up, the pin acts as a LVCMOS reference output.
ePAD	GND	GND		Connect to ground pad.

PLL Features and Descriptions

Spread Spectrum

To help reduce electromagnetic interference (EMI), the 5P49V5901 supports spread spectrum modulation. The output clock frequencies can be modulated to spread energy across a broader range of frequencies, lowering system EMI. The 5P49V5901 implements spread spectrum using the Fractional-N output divide, to achieve controllable modulation rate and spreading magnitude. The Spread spectrum can be applied to any output clock, any clock frequency, and any spread amount from $\pm 0.25\%$ to $\pm 2.5\%$ center spread and -0.5% to -5% down spread.

Table 2: Loop Filter

PLL loop bandwidth range depends on the input reference frequency (Fref) and can be set between the loop bandwidth range as shown in the table below.

Input Reference Frequency–Fref (MHz)	Loop Bandwidth Min (kHz)	Loop Bandwidth Max (kHz)
1	40	126
350	300	1000

Table 3: Configuration Table

This table shows the SEL1, SEL0 settings to select the configuration stored in OTP. Four configurations can be stored in OTP. These can be factory programmed or user programmed.

OUT0_SEL_I2CB @ POR	SEL1	SEL0	l ² C Access	REG0:7	Config
1	0	0	No	0	0
1	0	1	No	0	1
1	1	0	No	0	2
1	1	1	No	0	3
0	Х	Х	Yes	1	I2C defaults
0	Х	Х	Yes	0	0

At power up time, the SEL0 and SEL1 pins must be tied to either the VDDD/VDDA power supply so that they ramp with that supply or are tied low (this is the same as floating the pins). This will cause the register configuration to be loaded that is selected according to Table 3 above. Providing that OUT0_SEL_I2CB was 1 at POR and OTP register 0:7=0, after the first 10mS of operation the levels of the SELx pins can be changed, either to low or to the same level as VDDD/VDDA. The SELx pins must be driven with a digital signal of < 300nS Rise/Fall time and only a single pin can be changed at a time. After a pin level change, the device must not be interrupted for at least 1ms so that the new values have time to load and take effect. If OUT0_SEL_I2CB was 0 at POR, alternate configurations can only be loaded via the I2C interface.

Table 4: Input Clock Select

Input clock select. Selects the active input reference source in manual switchover mode.

0 = XIN/REF, XOUT (default)

1 = CLKIN, CLKINB

CLKSEL Polarity can be changed by I²C programming as shown in the table below.

PRIMSRC	CLKSEL	Source
0	0	XIN/REF
0	1	CLKIN, CLKINB
1	0	CLKIN, CLKINB
1	1	XIN/REF

PRIMSRC is bit 1 of Register 0x13.

Reference Clock Input Pins and Selection

The 5P49V5901 supports up to two clock inputs. One input supports a crystal between XIN and XOUT. XIN can also be driven from a single ended reference clock. XIN can accept small amplitude signals like from TCXO or one channel of a differential clock.

The second clock input (CLKIN, CLKINB) is a fully differential input that only accepts a reference clock. The differential input accepts differential clocks from all the differential logic types and can also be driven from a single ended clock on one of the input pins.

The CLKSEL pin selects the input clock between either XTAL/REF or (CLKIN, CLKINB).

Either clock input can be set as the primary clock. The primary clock designation is to establish which is the main reference clock to the PLL. The non-primary clock is designated as the secondary clock in case the primary clock goes absent and a backup is needed. See the previous page for more details about primary versus secondary clock operation.

The two external reference clocks can be manually selected using the CLKSEL pin. The SM bits must be set to "0x" for manual switchover which is detailed in Manual Switchover Mode section.

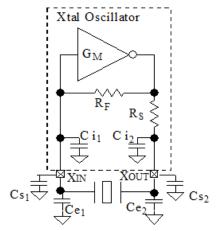
Crystal Input (XIN/REF)

The crystal used should be a fundamental mode quartz crystal; overtone crystals should not be used.

A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load capacitance matches the crystal load capacitance, the oscillation frequency will be accurate. When the oscillator load capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal and vice versa so for an accurate oscillation frequency you need to make sure to match the oscillator load capacitance with the crystal load capacitance.

To set the oscillator load capacitance there are two tuning capacitors in the IC, one at XIN and one at XOUT. They can be adjusted independently but commonly the same value is used for both capacitors. The value of each capacitor is composed of a fixed capacitance amount plus a variable capacitance amount set with the XTAL[5:0] register. Adjustment of the crystal tuning capacitors allows for maximum flexibility to accommodate crystals from various manufacturers. The range of tuning capacitor values available are in accordance with the following table.

XTAL[5:0] Tuning Capacitor Characteristics


Parameter	Bits	Step (pF)	Min (pF)	Max (pF)
XTAL	6	0.5	9	25

The capacitance at each crystal pin inside the chip starts at 9pF with setting 000000b and can be increased up to 25pF with setting 11111b. The step per bit is 0.5pF.

You can write the following equation for this capacitance:

 $Ci = 9pF + 0.5pF \times XTAL[5:0]$

The PCB where the IC and the crystal will be assembled adds some stray capacitance to each crystal pin and more capacitance can be added to each crystal pin with additional external capacitors.

You can write the following equations for the total capacitance at each crystal pin:

$$C_{XIN} = Ci_1 + Cs_1 + Ce_1$$
$$C_{XOUT} = Ci_2 + Cs_2 + Ce_2$$

 Ci_1 and Ci_2 are the internal, tunable capacitors. Cs_1 and Cs_2 are stray capacitances at each crystal pin and typical values are between 1pF and 3pF.

Ce₁ and Ce₂ are additional external capacitors that can be added to increase the crystal load capacitance beyond the tuning range of the internal capacitors. However, increasing the load capacitance reduces the oscillator gain so please consult the factory when adding Ce₁ and/or Ce₂ to avoid crystal startup issues. Ce₁ and Ce₂ can also be used to adjust for unpredictable stray capacitance in the PCB.

The final load capacitance of the crystal:

 $CL = C_{XIN} \times C_{XOUT} / (C_{XIN} + C_{XOUT})$

For most cases it is recommended to set the value for capacitors the same at each crystal pin:

 $C_{XIN} = C_{XOUT} = Cx \rightarrow CL = Cx / 2$

The complete formula when the capacitance at both crystal pins is the same:

CL = (9pF + 0.5pF × XTAL[5:0] + Cs + Ce) / 2

Example 1: The crystal load capacitance is specified as 8pF and the stray capacitance at each crystal pin is Cs=1.5pF. Assuming equal capacitance value at XIN and XOUT, the equation is as follows:

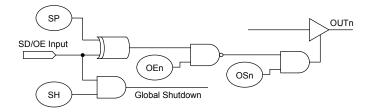
 $8pF = (9pF + 0.5pF \times XTAL[5:0] + 1.5pF) / 2 \rightarrow$ 0.5pF × XTAL[5:0] = 5.5pF \rightarrow XTAL[5:0] = 11 (decimal)

Example 2: The crystal load capacitance is specified as 12pF and the stray capacitance Cs is unknown. Footprints for external capacitors Ce are added and a worst case Cs of 5pF is used. For now we use Cs + Ce = 5pF and the right value for Ce can be determined later to make 5pF together with Cs.

12pF = (9pF + 0.5pF × XTAL[5:0] + 5pF) / 2 \rightarrow XTAL[5:0] = 20 (decimal)

Manual Switchover Mode

When SM[1:0] is "0x", the redundant inputs are in manual switchover mode. In this mode, CLKSEL pin is used to switch between the primary and secondary clock sources. The primary and secondary clock source setting is determined by the PRIMSRC bit. During the switchover, no glitches will occur at the output of the device, although there may be frequency and phase drift, depending on the exact phase and frequency relationship between the primary and secondary clocks. The 5P49V5901 can also store its configuration in an internal OTP. The contents of the device's internal programming registers can be saved to the OTP by setting burn_start (W114[3]) to high and can be loaded back to the internal programming registers by setting usr_rd_start(W114[0]) to high.


To initiate a save or restore using I^2C , only two bytes are transferred. The Device Address is issued with the read/write bit set to "0", followed by the appropriate command code. The save or restore instruction executes after the STOP condition is issued by the Master, during which time the 5P49V5901 will not generate Acknowledge bits. The 5P49V5901 will acknowledge the instructions after it has completed execution of them. During that time, the I^2C bus should be interpreted as busy by all other users of the bus.

On power-up of the 5P49V5901, an automatic restore is performed to load the OTP contents into the internal programming registers. The 5P49V5901 will be ready to accept a programming instruction once it acknowledges its 7-bit I²C address.

Availability of Primary and Secondary I²C addresses to allow programming for multiple devices in a system. The I²C slave address can be changed from the default 0xD4 to 0xD0 by programming the I2C_ADDR bit D0. *VersaClock 5 Programming Guide* provides detailed I²C programming guidelines and register map.

SD/OE Pin Function

The polarity of the SD/OE signal pin can be programmed to be either active HIGH or LOW with the SP bit (W16[1]). When SP is "0" (default), the pin becomes active LOW and when SP is "1", the pin becomes active HIGH. The SD/OE pin can be configured as either to shutdown the PLL or to enable/disable the outputs. The SH bit controls the configuration of the SD/OE pin The SH bit needs to be high for SD/OE pin to be configured as SD.

When configured as SD, device is shut down, differential outputs are driven High/low, and the single-ended LVCMOS outputs are driven low. When configured as OE, and outputs are disabled, the outputs are driven high/low.

Table 5: SD/OE Pin Function Truth Table

SH bit	SP bit	OSn bit	OEn bit	SD/OE	OUTn
0	0	0	х	х	Tri-state ²
0	0	1	0	х	Output active
0	0	1	1	0	Output active
0	0	1	1	1	Output driven High Low
0	1	0	х	х	Tri-state ²
0	1	1	0	х	Output active
0	1	1	1	0	Output driven High Low
0	1	1	1	1	Output active
1	0	0	х	0	Tri-state ²
1	0	1	0	0	Output active
1	0	1	1	0	Output active
1	1	0	х	0	Tri-state ²
1	1	1	0	0	Output active
1	1	1	1	0	Output driven High Low
1	х	х	х	1	Output driven High Low ¹

Note 1 : Global Shutdown Note 2 : Tri-state regardless of OEn bits

Output Divides

Each output divide block has a synchronizing POR pulse to provide startup alignment between outputs divides. This allows alignment of outputs for low skew performance. This low skew would also be realized between outputs that are both integer divides from the VCO frequency. This phase alignment works when using configuration with SEL1, SEL0. For I²C programming, I²C reset is required.

An output divide bypass mode (divide by 1) will also be provided, to allow multiple buffered reference outputs.

Each of the four output divides are comprised of a 12 bit integer counter, and a 24 bit fractional counter. The output divide can operate in integer divide only mode for improved performance, or utilize the fractional counters to generate a clock frequency accurate to 50 ppb.

Each of the output divides also have structures capable of independently generating spread spectrum modulation on the frequency output.

The Output Divide also has the capability to apply a spread modulation to the output frequency. Independent of output frequency, a triangle wave modulation between 30 and 63kHz may be generated.

For all outputs, there is a bypass mode, to allow the output to behave as a buffered copy of the input.

Output Skew

For outputs that share a common output divide value, there will be the ability to skew outputs by quadrature values to minimize interaction on the PCB. The skew on each output can be adjusted from 0 to 360 degrees. Skew is adjusted in units equal to 1/32 of the VCO period. So, for 100 MHz output and a 2800 MHz VCO, you can select how many 11.161pS units you want added to your skew (resulting in units of 0.402 degrees). For example, 0, 0.402, 0.804, 1.206, 1.408, and so on. The granularity of the skew adjustment is always dependent on the VCO period and the output period.

Output Drivers

The OUT1 to OUT4 clock outputs are provided with register-controlled output drivers. By selecting the output drive type in the appropriate register, any of these outputs can support LVCMOS, LVPECL, HCSL or LVDS logic levels

The operating voltage ranges of each output is determined by its independent output power pin (V_{DDO}) and thus each can have different output voltage levels. Output voltage levels of 2.5V or 3.3V are supported for differential HCSL, LVPECL operation, and 1.8V, 2.5V, or 3.3V are supported for LVCMOS and differential LVDS operation.

Each output may be enabled or disabled by register bits. When disabled an output will be in a logic 0 state as determined by the programming bit table shown on page 6.

LVCMOS Operation

When a given output is configured to provide LVCMOS levels, then both the OUTx and OUTxB outputs will toggle at the selected output frequency. All the previously described configuration and control apply equally to both outputs. Frequency, phase alignment, voltage levels and enable / disable status apply to both the OUTx and OUTxB pins. The OUTx and OUTxB outputs can be selected to be phase-aligned with each other or inverted relative to one another by register programming bits. Selection of phase-alignment may have negative effects on the phase noise performance of any part of the device due to increased simultaneous switching noise within the device.

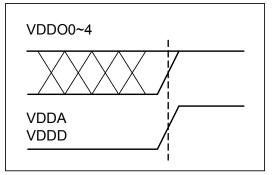
Device Hardware Configuration

The 5P49V5901 supports an internal One-Time Programmable (OTP) memory that can be pre-programmed at the factory with up to 4 complete device configuration.

These configurations can be over-written using the serial interface once reset is complete. Any configuration written via the programming interface needs to be re-written after any power cycle or reset. Please contact IDT if a specific factory-programmed configuration is desired.

Device Start-up & Reset Behavior

The 5P49V5901 has an internal power-up reset (POR) circuit. The POR circuit will remain active for a maximum of 10ms after device power-up.


Upon internal POR circuit expiring, the device will exit reset and begin self-configuration.

The device will load internal registers according to Table 3.

Once the full configuration has been loaded, the device will respond to accesses on the serial port and will attempt to lock the PLL to the selected source and begin operation.

Power Up Ramp Sequence

VDDA and VDDD must ramp up together. VDDO0~4 must ramp up before, or concurrently with, VDDA and VDDD. All power supply pins must be connected to a power rail even if the output is unused. All power supplies must ramp in a linear fashion and ramp monotonically.

I²C Mode Operation

The device acts as a slave device on the I²C bus using one of the two I²C addresses (0xD0 or 0xD4) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously.

For full electrical I²C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down resistors have a size of $100k\Omega$ typical.

Curr	ent Read																
S	Dev Addr + R	A	Data 0	А	Data 1	A	000	A	Data n	Abar	Р						
Seq	uential Read																
S	Dev Addr + W	A	Reg start Add	r A	Sr	Dev Ac	ldr + R	A	Data 0	А	Data 1	A	000	А	Data n	Abar	Р
Sequ	uential Write																
S	Dev Addr + W	A	Reg start Add	r A	Dat	:a 0	A	Data 1	A	000	A Data	n	A	>			
	from master from slave to			Sr = A = Aba	start = repeate = acknowl ar= none = stop	edge	ledge										

I²C Slave Read and Write Cycle Sequencing

Table 6: I²C Bus DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIH	Input HIGH Level	For SEL1/SDA pin and SEL0/SCL pir	0.7xVDDD		5.5 ²	V
VIL	Input LOW Level	For SEL1/SDA pin and SEL0/SCL pir	GND-0.3		0.3xVDDD	V
VHYS	Hysteresis of Inputs		0.05xVDDD			V
IIN	Input Leakage Current		-1		30	μA
VOL	Output LOW Voltage	IOL = 3 mA			0.4	V

Table 7: I²C Bus AC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
FSCLK	Serial Clock Frequency (SCL)	10		400	kHz
tBUF	Bus free time between STOP and START	1.3			μs
tSU:START	Setup Time, START	0.6			μs
tHD:START	Hold Time, START	0.6			μs
tSU:DATA	Setup Time, data input (SDA)	0.1			μs
tHD:DATA	Hold Time, data input (SDA) 1	0			μs
tOVD	Output data valid from clock			0.9	μs
CB	Capacitive Load for Each Bus Line			400	pF
tR	Rise Time, data and clock (SDA, SCL)	20 + 0.1xCB		300	ns
tF	Fall Time, data and clock (SDA, SCL)	20 + 0.1xCB		300	ns
tHIGH	HIGH Time, clock (SCL)	0.6			μs
tLOW	LOW Time, clock (SCL)	1.3			μs
tSU:STOP	Setup Time, STOP	0.6			μs

Note 1: A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Note 2: I2C inputs are 5V tolerant.

Table 8: Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 5P49V5901. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, V _{DDA,} V _{DDD,} V _{DDO}	3.465V
Inputs XIN/REF CLKIN, CLKINB Other inputs	0V to 1.2V voltage swing 0V to 1.2V voltage swing single-ended -0.5V to V _{DDD}
Outputs, V _{DDO} (LVCMOS)	-0.5V to V _{DDO} + 0.5V
Outputs, I _O (SDA)	10mA
Package Thermal Impedance, θ_{JA}	42°C/W (0 mps)
Package Thermal Impedance, θ_{JC}	41.8°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C
ESD Human Body Model	2000V
Junction Temperature	125°C

Table 9: Recommended Operation Conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{DDOX}	Power supply voltage for supporting 1.8V outputs	1.71	1.8	1.89	V
V _{DDOX}	Power supply voltage for supporting 2.5V outputs	2.375	2.5	2.625	V
V _{DDOX}	Power supply voltage for supporting 3.3V outputs	3.135	3.3	3.465	V
V _{DDD}	Power supply voltage for core logic functions	1.71		3.465	V
V _{DDA}	Analog power supply voltage. Use filtered analog power supply.	1.71		3.465	V
T _A	Operating temperature, ambient	-40		+85	°C
C _{LOAD_OUT}	Maximum load capacitance (3.3V LVCMOS only)			15	pF
F _{IN}	External reference crystal	8		40	MHz
	External reference clock CLKIN, CLKINB	5		350	
t _{PU}	Power up time for all V _{DD} s to reach minimum specified voltage (power ramps must be monotonic)	0.05		5	ms

Note: $V_{DDO}1$, $V_{DDO}2$, $V_{DDO}3$, and $V_{DDO}4$ must be powered on either before or simultaneously with V_{DDD} , V_{DDA} and $V_{DDO}0$.

Table 10:Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down Resistance ($T_A = +25$ °C)

Symbol	Parameter	Min	Тур	Max	Unit
	Input Capacitance (CLKIN, CLKINB, CLKSEL, SD/OE,				
CIN	SEL1/SDA, SEL0/SCL)		3	7	pF
	CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL, CLKIN, CLKINB,				
Pull-down Resistor	OUT0_SEL_I2CB	100		300	kΩ
ROUT	LVCMOS Output Driver Impedance (VDDO = 1.8V, 2.5V, 3.3V)		17		Ω
XIN/REF	Programmable capacitance at XIN/REF	9		25	pF
XOUT	Programmable capacitance at XOUT	9		25	pF

Table 11:Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		F	Fundamental		
Frequency		8	25	40	MHz
Equivalent Series Resistance (ESR)			10	100	Ω
Shunt Capacitance				7	pF
Load Capacitance (CL) @ <=25 MHz		6	8	12	pF
Load Capacitance (CL) >25M to 40M		6		8	pF
Maximum Crystal Drive Level				100	μW

Note: Typical crystal used is FOX 603-25-150. For different reference crystal options please go to www.foxonline.com.

Table 12:DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Iddcore ³	Core Supply Current	100 MHz on all outputs, 25 MHz				
laacore	Cole Supply Cullent	REFCLK		30	34	mA
		LVPECL, 350 MHz, 3.3V VDDOx		42	47	mA
		LVPECL, 350 MHz, 2.5V VDDOx		37	42	mA
		LVDS, 350 MHz, 3.3V VDDOx		18	21	mA
		LVDS, 350 MHz, 2.5V VDDOx		17	20	mA
		LVDS, 350 MHz, 1.8V VDDOx		16	19	mA
		HCSL, 250 MHz, 3.3V VDDOx, 2 pF load		29	33	mA
lddox	Output Buffer Supply Current	HCSL, 250 MHz, 2.5V VDDOx, 2 pF load		28	33	mA
		LVCMOS, 50 MHz, 3.3V, VDDOx ^{1,2}		16	18	mA
		LVCMOS, 50 MHz, 2.5V, VDDOx ^{1,2}		14	16	mA
		LVCMOS, 50 MHz, 1.8V, VDDOx ^{1,2}		12	14	mA
		LVCMOS, 200 MHz, 3.3V VDDOx ¹		36	42	mA
		LVCMOS, 200 MHz, 2.5V VDDOx ^{1,2}		27	32	mA
		LVCMOS, 200 MHz, 1.8V VDDOx ^{1,2}		16	19	mA
lddpd	Power Down Current	SD asserted, I2C Programming		10	14	mA

1. Single CMOS driver active.

2. Measured into a 5" 50 Ohm trace with 2 pF load.

3. Iddcore = IddA+ IddD, no loads.

Table 13:Electrical Characteristics – Differential Clock Input Parameters ^{1,2} (Supply
Voltage V_{DDA}, V_{DDD}, V_{DDO}0 = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VIH	Input High Voltage - CLKIN, CLKINE	Single-ended input	0.55		1.7	V
VIL	Input Low Voltage - CLKIN, CLKINB	Single-ended input	GND - 0.3		0.4	V
VSWING	Input Amplitude - CLKIN, CLKINB	Peak to Peak value, single-ended	200		1200	mV
dv/dt	Input Slew Rate - CLKIN, CLKINB	Measured differentially	0.4		8	V/ns
IIL	Input Leakage Low Current	VIN = GND	-5		5	μA
IIH	Input Leakage High Current	VIN = 1.7V			20	μA
dTIN	Input Duty Cycle	Measurement from differential waveform	45		55	%

1. Guaranteed by design and characterization, not 100% tested in production.

2. Slew rate measured through ±75mV window centered around differential zero.

Table 14:DC Electrical Characteristics for 3.3V LVCMOS (V_{DDO} = 3.3V±5%, TA = -40°C to +85°C)¹

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VOH	Output HIGH Voltage	IOH = -15mA	2.4		VDDO	V
VOL	Output LOW Voltage	IOL = 15mA			0.4	V
IOZDD	Output Leakage Current (OUT1~4)	Tri-state outputs, VDDO = 3.465V			5	μA
IOZDD	Output Leakage Current (OUT0)	Tri-state outputs, VDDO = 3.465V			30	μA
VIH	Input HIGH Voltage	Single-ended inputs - CLKSEL, SD/OE	0.7xVDDD		VDDD + 0.3	V
VIL	Input LOW Voltage	Single-ended inputs - CLKSEL, SD/OE	GND - 0.3		0.3xVDDD	V
VIH	Input HIGH Voltage	Single-ended input OUT0_SEL_I2CB	2		VDDO0 + 0.3	V
VIL	Input LOW Voltage	Single-ended input OUT0_SEL_I2CB	GND - 0.3		0.4	V
VIH	Input HIGH Voltage	Single-ended input - XIN/REF	0.8		1.2	V
VIL	Input LOW Voltage	Single-ended input - XIN/REF	GND - 0.3		0.4	V
TR/TF	Input Rise/Fall Time	CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL			300	nS

1. See "Recommended Operating Conditions" table.

Table 15:DC Electrical Characteristics for 2.5V LVCMOS (V_{DDO} = 2.5V±5%, TA = -40°C to +85°C)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VOH	Output HIGH Voltage	IOH = -12mA	0.7xVDDO			V
VOL	Output LOW Voltage	IOL = 12mA			0.4	V
IOZDD	Output Leakage Current (OUT1~4)	Tri-state outputs, VDDO = 2.625V			5	μA
IOZDD	Output Leakage Current (OUT0)	Tri-state outputs, VDDO = 2.625V			30	μA
VIH	Input HIGH Voltage	Single-ended inputs - CLKSEL, SD/OE	0.7xVDDD		VDDD + 0.3	V
VIL	Input LOW Voltage	Single-ended inputs - CLKSEL, SD/OE	GND - 0.3		0.3xVDDD	V
VIH	Input HIGH Voltage	Single-ended input OUT0_SEL_I2CB	1.7		VDDO0 + 0.3	V
VIL	Input LOW Voltage	Single-ended input OUT0_SEL_I2CB	GND - 0.3		0.4	V
VIH	Input HIGH Voltage	Single-ended input - XIN/REF	0.8		1.2	V
VIL	Input LOW Voltage	Single-ended input - XIN/REF	GND - 0.3		0.4	V
TR/TF	Input Rise/Fall Time	CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL			300	nS

Table 16:DC Electrical Characteristics for 1.8V LVCMOS (V_{DDO} = 1.8V±5%, TA = -40°C to +85°C)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VOH	Output HIGH Voltage	IOH = -8mA	0.7 xVDDO		VDDO	V
VOL	Output LOW Voltage	IOL = 8mA			0.25 x VDDO	V
IOZDD	Output Leakage Current (OUT1~4)	Tri-state outputs, VDDO = 3.465V			5	μA
IOZDD	Output Leakage Current (OUT0)	Tri-state outputs, VDDO = 3.465V			30	μA
VIH	Input HIGH Voltage	Single-ended inputs - CLKSEL, SD/OE	0.7xVDDD		VDDD + 0.3	V
VIL	Input LOW Voltage	Single-ended inputs - CLKSEL, SD/OE	GND - 0.3		0.3xVDDD	V
VIH	Input HIGH Voltage	Single-ended input OUT0_SEL_I2CB	0.65 * VDDO0		VDDO0 + 0.3	V
VIL	Input LOW Voltage	Single-ended input OUT0_SEL_I2CB	GND - 0.3		0.4	V
VIH	Input HIGH Voltage	Single-ended input - XIN/REF	0.8		1.2	V
VIL	Input LOW Voltage	Single-ended input - XIN/REF	GND - 0.3		0.4	V
Tr/Tf	Input Rise/Fall Time	CLKSEL, SD/OE, SEL1/SDA, SEL0/SCL			300	nS

Table 17:DC Electrical Characteristics for LVDS(V_{DDO} = 3.3V<u>+</u>5% or 2.5V<u>+</u>5%, TA = -40°C to +85°C)

Symbol	Parameter	Min	Тур	Max	Unit
V _{OT} (+)	Differential Output Voltage for the TRUE binary state	247		454	mV
V _{OT} (-)	Differential Output Voltage for the FALSE binary state	-247		-454	mV
$\triangle V_{OT}$	Change in V _{OT} between Complimentary Output States			50	mV
V _{OS}	Output Common Mode Voltage (Offset Voltage)	1.125	1.25	1.375	V
$ riangle v_{OS}$	Change in V_{OS} between Complimentary Output States			50	mV
I _{OS}	Outputs Short Circuit Current, V_{OUT} + or V_{OUT} - = 0V or V_{DDO}		9	24	mA
I _{OSD}	Differential Outputs Short Circuit Current, V_{OUT} + = V_{OUT} -		6	12	mA

Table 18:DC Electrical Characteristics for LVDS (V_{DDO} = 1.8V±5%, TA = -40°C to +85°C)

Symbol	Parameter	Min	Тур	Max	Unit
V _{OT} (+)	Differential Output Voltage for the TRUE binary state	247		454	mV
V _{OT} (-)	Differential Output Voltage for the FALSE binary state	-247		-454	mV
ΔV_{OT}	Change in V _{OT} between Complimentary Output States			50	mV
V _{OS}	Output Common Mode Voltage (Offset Voltage)	0.8	0.875	0.95	V
∆V _{OS}	Change in V _{OS} between Complimentary Output States			50	mV
I _{OS}	Outputs Short Circuit Current, V_{OUT} + or V_{OUT} - = 0V or V_{DDO}		9	24	mA
I _{OSD}	Differential Outputs Short Circuit Current, V_{OUT} + = V_{OUT} -		6	12	mA

Table 19:DC Electrical Characteristics for LVPECL (V_{DDO} = 3.3V±5% or 2.5V±5%, TA = -40°C to +85°C)

Symbol	Parameter	Min	Тур	Max	Unit
V _{OH}	Output Voltage HIGH, terminated through 50 Ω tied to V_DD - 2 V	V _{DDO} - 1.19		V _{DDO} - 0.69	V
V _{OL}	Output Voltage LOW, terminated through 50 Ω tied to V_DD - 2 V	V _{DDO} - 1.94		V _{DDO} - 1.4	V
V _{SWING}	Peak-to-Peak Output Voltage Swing	0.55		0.993	V

Table 20:Electrical Characteristics – DIF 0.7V HCSL Differential Outputs (V_{DDO} = 3.3V±5%, 2.5V±5%, TA = -40°C to +85°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	Notes
dV/dt	Slew Rate	Scope averaging on	1		4	V/ns	1,2,3
∆dV/dt	Slew Rate	Scope averaging on			20	%	1,2,3
VHIGH	Voltage High	Statistical measurement on single-ended signal using oscilloscope math function	660		850	mV	1,6,7
VLOW	Voltage Low	(Scope averaging ON)	-150		150	mV	1,6
VMAX	Maximum Voltage	Measurement on single-ended signal using			1150	mV	1
VMIN	Minimum Voltage	absolute value (Scope averaging off)	-300			mV	1
VSWING	Voltage Swing	Scope averaging off	300			mV	1,2,6
VCROSS	Crossing Voltage Value	Scope averaging off	250		550	mV	1,4,6
∆VCROSS	Crossing Voltage variation	Scope averaging off			140	mV	1,5

1. Guaranteed by design and characterization. Not 100% tested in production

2. Measured from differential waveform.

3. Slew rate is measured through the V_{SWING} voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

4. V_{CROSS} is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

5. The total variation of all V_{CROSS} measurements in any particular system. Note that this is a subset of V_{CROSS} min/max (V_{CROSS} absolute) allowed. The intent is to limit V_{CROSS} induced modulation by setting ΔV_{CROSS} to be smaller than V_{CROSS} absolute.

6. Measured from single-ended waveform.

7. Measured with scope averaging off, using statistics function. Variation is difference between min. and max.

Table 21:AC Timing Electrical Characteristics

 $(V_{DDO} = 3.3V+5\% \text{ or } 2.5V+5\% \text{ or } 1.8V \pm 5\%, TA = -40^{\circ}C \text{ to } +85^{\circ}C)$

(Spread Spectrum Generation = OFF)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
		Input frequency limit (XIN)	8		40	MHz
fIN ¹	Input Frequency	Input frequency limit (CLKIN)	1		200	MHz
fOUT	Output Frequency	Single ended clock output limit (LVCMOS) Differential cock output limit (LVPECL/	1		200 350	MHz
fVCO	VCO Frequency	LVDS/HCSL) VCO operating frequency range	2500		2900	MHz
fPFD	PFD Frequency	PFD operating frequency range	1 ¹		150	MHz
fBW	Loop Bandwidth	Input frequency = 25MHz	0.06		0.9	MHz
t2	Input Duty Cycle	Duty Cycle	45	50	55	1011Z
		Measured at VDD/2, all outputs except Reference output OUT0, VDDOX= 2.5V or 3.3V	45	50	55	%
		Measured at VDD/2, all outputs except Reference output OUT0, VDDOX=1.8V	40	50	60	%
	Output Duty Cycle	Measured at VDD/2, Reference output OUT0 (5MHz - 120MHz) with 50% duty cycle input	40	50	60	%
		Measured at VDD/2, Reference output OUT0 (150.1MHz - 200MHz) with 50% duty cycle input	30	50	70	%
	Slew Rate, SLEW[1:0] = 00		1.0	2.2		
	Slew Rate, SLEW[1:0] = 01	Single-ended 3.3V LVCMOS output clock	1.2	2.3		1
	Slew Rate, SLEW[1:0] = 10	rise and fall time, 20% to 80% of VDDO (Output Load = 5 pF) VDDOX=3.3V	1.3	2.4		1
	Slew Rate, SLEW[1:0] = 11		1.7	2.7		1
	Slew Rate, SLEW[1:0] = 00		0.6	1.3		Î
2	Slew Rate, SLEW[1:0] = 01	Single-ended 2.5V LVCMOS output clock	0.7	1.4		
t4 ²	Slew Rate, SLEW[1:0] = 10	rise and fall time, 20% to 80% of VDDO (Output Load = 5 pF) VDDOX=2.5V	0.6	1.4		V/ns
	Slew Rate, SLEW[1:0] = 11		1.0	1.7		1
	Slew Rate, SLEW[1:0] = 00		0.3	0.7		1
	Slew Rate, SLEW[1:0] = 01	Single-ended 1.8V LVCMOS output clock	0.4	0.8		1
	Slew Rate, SLEW[1:0] = 10	rise and fall time, 20% to 80% of VDDO (Output Load = 5 pF) VDDOX=1.8V	0.4	0.9		1
	Slew Rate, SLEW[1:0] = 11		0.7	1.2		1
	Rise Times	LVDS, 20% to 80%		300		
15	Fall Times	LVDS, 80% to 20%		300		-
t5	Rise Times	LVPECL, 20% to 80%		400		ps
	Fall Times	LVPECL, 80% to 20%		400		1

		Cycle-to-Cycle jitter (Peak-to-Peak), multiple output frequencies switching, differential outputs (1.8V to 3.3V nominal output voltage) OUT0=25MHz OUT1=100MHz OUT2=125MHz OUT3=156.25MHz	46		ps
t6	Clock Jitter	Cycle-to-Cycle jitter (Peak-to-Peak), multiple output frequencies switching, LVCMOS outputs (1.8 to 3.3V nominal output voltage) OUT0=25MHz OUT1=100MHz OUT2=125MHz OUT3=156.25MHz	74		ps
10		RMS Phase Jitter (12kHz to 5MHz integration range) reference clock (OUT0), 25 MHz LVCMOS outputs (1.8 to 3.3V nominal output voltage). OUT0=25MHz OUT1=100MHz OUT2=125MHz OUT3=156.25MHz	0.5		ps
		RMS Phase Jitter (12kHz to 20MHz integration range) differential output, VDDO = 3.465V, 25MHz crystal, 156.25MHz output frequency OUT0=25MHz OUT1=100MHz OUT2=125MHz OUT3=156.25MHz	0.75	1.5	ps
t7	Output Skew	Skew between the same frequencies, with outputs using the same driver format and phase delay set to 0 ns.	75		ps
t8 ³	Startup Time	PLL lock time from power-up, measured after all VDD's have raised above 90% of their target value.		10	ms
t9 ⁴	Startup Time	PLL lock time from shutdown mode	3	4	ms

1. Practical lower frequency is determined by loop filter settings.

2. A slew rate of 2.75V/ns or greater should be selected for output frequencies of 100MHz or higher.

3. Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time.

4. Actual PLL lock time depends on the loop configuration.

5. Duty Cycle is only guaranteed at max slew rate settings.

18

Table 22:PCI Express Jitter Specifications ($V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$)

Symbol	Parameter	Conditions	Min	Тур	Max	PCIe Industry Specification	Units	Notes
t _J (PCle Gen1)	Phase Jitter Peak-to-Peak	f = 100MHz, 25MHz Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)		30		86	ps	1,4
t _{REFCLK_HF_RMS} (PCIe Gen2)	Phase Jitter RMS	f = 100MHz, 25MHz Crystal Input High Band: 1.5MHz - Nyquist (clock frequency/2)		2.56		3.10	ps	2,4
t _{REFCLK_LF_RMS} (PCIe Gen2)	Phase Jitter RMS	<i>f</i> = 100MHz, 25MHz Crystal Input Low Band: 10kHz - 1.5MHz		0.27		3.0	ps	2,4
t _{REFCLK_RMS} (PCle Gen3)	Phase Jitter RMS	f = 100MHz, 25MHz Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)		0.8		1.0	ps	3,4

Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

1. Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1.

2. RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for t_{REFCLK_HF_RMS} (High Band) and 3.0ps RMS for t_{REFCLK_LF_RMS} (Low Band).

3. RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI_Express_Base_r3.0 10 Nov, 2010 specification, and is subject to change pending the final release version of the specification.

4. This parameter is guaranteed by characterization. Not tested in production.

Table 23: Jitter Specifications ^{1,2,3}

(VDDx = 3.3V+5% or 2.5V+5%, TA = -40°C to +85°C)

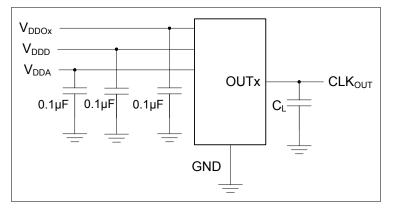
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
GbE Random Jitter (12 kHz–20 MHz) ⁴	J_{GbE}	Crystal in = 25 MHz, All CLKn at 125 MHz⁵	-	0.79	0.95	ps
GbE Random Jitter (1.875–20 MHz)	R_{JGbE}	Crystal in = 25 MHz, All CLKn at 125 MHz⁵	-	0.32	0.5	ps
OC-12 Random Jitter (12 kHz–5 MHz)	J _{OC12}	CLKIN = 19.44 MHz, All CLKn at 155.52 MHz^5	-	0.69	0.95	ps
PCI Express 1.1 Common Clocked		Total Jitter ⁶	-	9.1	12	ps
PCI Express 2.1 Common Clocked		RMS Jitter ⁶ , 10 kHz to 1.5MHz	-	0.1	0.3	ps
T Of Express 2.1 Common Clocked		RMS Jitter ⁶ , 1.5MHz to 50MHz	-	0.9	1.1	ps
PCI Express 3.0 Common Clocked		RMS Jitter ⁶	-	0.2	0.4	ps

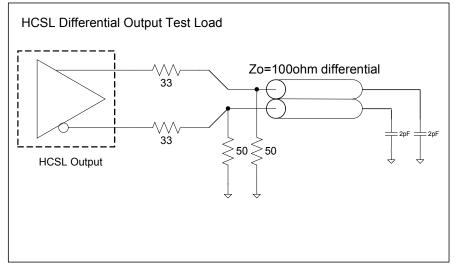
Notes:

¹ All measurements with Spread Spectrum Off.

² For best jitter performance, keep the single ended clock input slew rates at more than 1.0 V/ns and the differential clock input slew rates more than 0.3 V/ns.

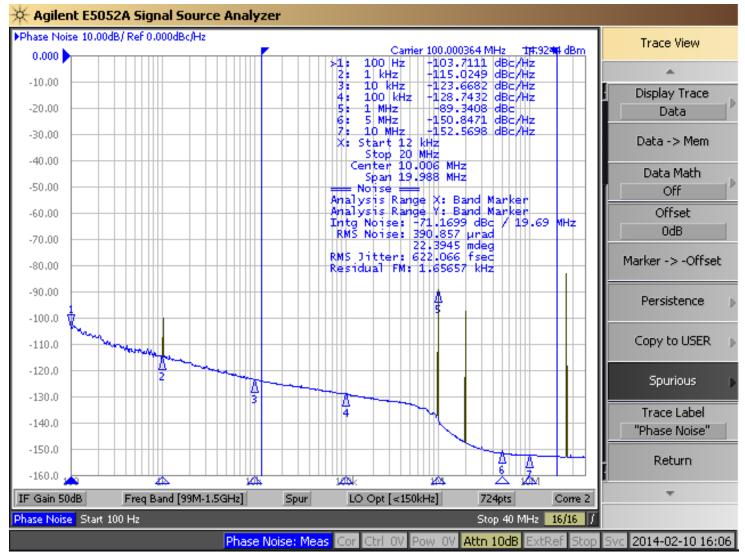
³ All jitter data in this table is based upon all output formats being differential. When single-ended outputs are used, there is the potential that the output jitter may increase due to the nature of single-ended outputs. If your configuration implements any single-ended output and any output is required to have jitter less than 3 ps rms, contact IDT for support to validate your configuration and ensure the best jitter performance. In many configurations, CMOS outputs have little to no effect upon jitter.


 4 DJ for PCI and GbE is < 5 ps pp.


⁵ Output FOD in Integer mode.

⁶ All output clocks 100 MHz HCSL format. Jitter is from the PCIE jitter filter combination that produces the highest jitter. Jitter is measured with the Intel Clock Jitter Tool, Ver. 1.6.6.

Symbol	Parameter	Description		Тур	Мах	Unit
f _{OUT}	Output Frequency	Output Frequency Range	5		300	MHz
f _{MOD}	Mod Frequency	Modulation Frequency		30 to 6	3	kHz
f _{SPREAD}	Spread Value	Amount of Spread Value (programmable) - Center Spread ±0.25% to ±2.5		2.5%	%f _{OUT}	
		Amount of Spread Value (programmable) - Down Spread	-0.	5% to -	5%	


Test Circuits and Loads

Test Circuits and Loads for Outputs

Typical Phase Noise at 100MHz (3.3V, 25°C)

NOTE: All outputs operational at 100MHz, Phase Noise Plot with Spurs On.

5P49V5901 Application Schematic

The following figure shows an example of 5P49V5901 application schematic. Input and output terminations shown are intended as examples only and may not represent the exact user configuration. In this example, the device is operated at V_{DDD} , $V_{DDA} = 3.3V$. The decoupling capacitors should be located as close as possible to the power pin. A 12pF parallel resonant 8MHz to 40MHz crystal is used in this example. Different crystal frequencies may be used. The C1 = C2 = 5pF are recommended for frequency accuracy. If different crystal types are used, please consult IDT for recommendations. For different board layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. 5P49V5901 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

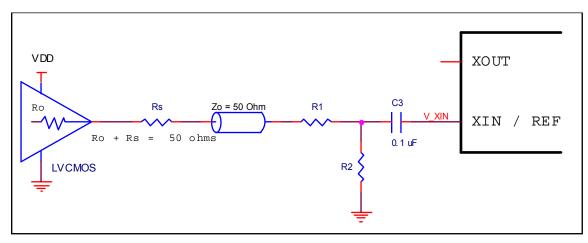
In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uf capacitor in each power pin filter should be placed on the device side. The other components can be on the opposite side of the PCB.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for a wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10 kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.

() IDT

5P49V5901 Reference Schematic


6^ر ground via with width ground ugh bulk capacitor pad pad then to clock chip RECEIVER RECEIVER RECEIVER the trace Integrated Device Technology San Jose, CA Document Number 5P49V5901_SCH ground pin one S ₽ 4 Q N 3.3V HCSL TERMINATION N N --N OUT R11 50 1. Separate Xout and Xin Traces by 3 x 2. Do not share crystal load capacitor R10 50 Ω. ATION⁶⁰ 100 2 33 Ş TERMINAT Ë 3. Route power from bead through then through 0.1 uF capacitor pad ground vias. One Ş R4 49.9 1% TERMINATION TERMINATION 120 2 R15 1 SEL onday, March 09, R13 813 814 814 814 814 3V LVPECL N R5 49.9 OUT 0 and **OUTR2** LVCMOS 2 33 33 5V LVDS other components. 2. share ć ₽ Z Layout notes: -Vdd pad. 4. Do not V1P8VC BG 2 6H JOK PULL-UP FOR HARDWARE CONFIGURATION CONTROL REMOVE FOR I2C ' .1uF .1uF V1P8VCA via. 5 V1 P8VCA V1P8VC 1 P8VC OUTR4 OUTRB4 20 **P**8VC I P8VC V1 P8VC Current (Ma) 200 300 200 300 300 V1 P8VC SEL V1 P8VCA SH H OUT_0_ 22 15 13 13 1<u>2</u> 12 12 17 18 23 20 19 ഹ 5 L terminations VDDA VDDD VDDO0 OUT0_SEL_I2CB VDD01 OUT1 OUT1B VDDO2 OUT2 OUT2B VDDO3 OUT3 OUT3B VDDO4 OUT4 OUT4B 2 V1P8VC DC res. 0.57 es. 0.1355 0.1355 0.355 3 2.2 C8 .1uF 윊 99. 14 F C COUPLE RIGHT EPAD 33 35 31 5 1 DA93 DA93 1 2 **GA93** 30 56 58 LVCMOS 8년 91 CPAD DA93 LVDS, LVPECL AC TERMINATION ON F U1 5P49V5901 SEL1/SDA SEL0/SCL **GA93** CLKINB XOUT XIN/REF CLKIN 52 52 52 CLKSEL CLKIN SD/OE **EPAD** 2 Z@100MHz 120 220 120 240 120 **EPAD** and V1P8VC C5 .1uF 년 년 년 2 ω**4** publication ø ထတ \sim Щ. Н the LVDS N 5 1 L 2 CLKSEL SD/OE CLKIN C13 -Part Number 2504021217Y0 BLM15BG2212N1 BLM15BB1215N1 MMZ105B215N1 MM2105S241A TB4532153121 C1 10uF SCL ¥, Ъ FOR USE Ш ٩N 5 1 -III FB1 Revision history 0.19/19/2014 first 0.2 3/9/2015 correct C 1 ŀ S 1 BEAD 2 ო PLACE NEAR I2C CONTROLLER IF USED SIGNAL BEAD 25.000MHz CL=8pF GND Ē Кţ 46 Manufacture F Fair-Rite muRata TDK TECSTAR NOTE: FERRITE VCC1P8 3P3 4 80 NO SDA 88 Å 2 ()ш A

Overdriving the XIN/REF Interface

LVCMOS Driver

The XIN/REF input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XOUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.2V and the slew rate should not be less than 0.2V/ns. Figure General Diagram for LVCMOS Driver to XTAL Input Interface shows an example of the interface diagram for a LVCMOS driver. This configuration has three properties; the total output impedance of Ro and Rs matches the 50 ohm transmission line impedance, the Vrx voltage is generated at the CLKIN inputs which maintains the LVCMOS driver voltage level across the transmission line for best S/N and the R1-R2 voltage divider values ensure that the clock level at XIN is less than the maximum value of 1.2V.

General Diagram for LVCMOS Driver to XTAL Input Interface

Table 25 Nominal Voltage Divider Values vs LVCMOS VDD forXIN shows resistor values that ensure the maximum drivelevel for the XIN/REF port is not exceeded for all combinationsof 5% tolerance on the driver VDD, the VersaClock VDDA and5% resistor tolerances. The values of the resistors can be

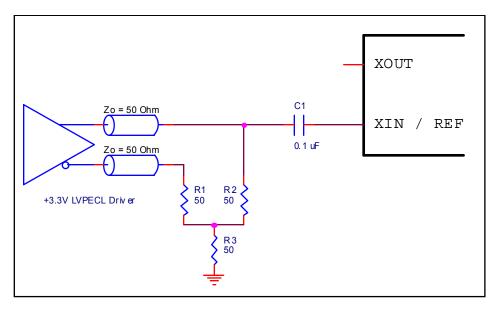
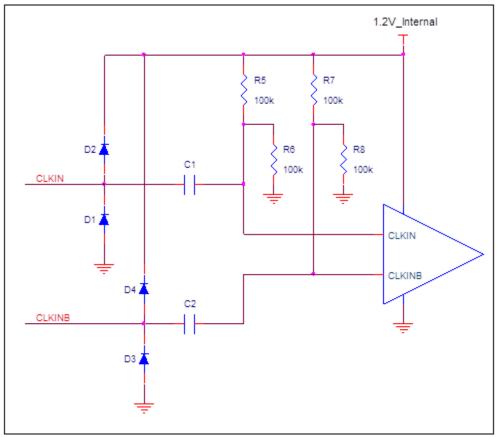

adjusted to reduce the loading for slower and weaker LVCMOS driver by increasing the voltage divider attenuation as long as the minimum drive level is maintained over all tolerances. To assist this assessment, the total load on the driver is included in the table.

Table 25: Nominal Voltage Divider Values vs LVCMOS VDD for XIN

LVCMOS Driver VDD	Ro+Rs	R1	R2	V_XIN (peak)	Ro+Rs+R1+R2
3.3	50.0	130	75	0.97	255
2.5	50.0	100	100	1.00	250
1.8	50.0	62	130	0.97	242

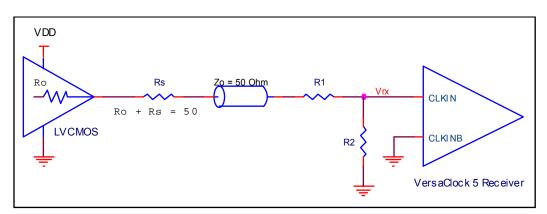
LVPECL Driver

Figure General Diagram for LVPECL Driver to XTAL Input Interface shows an example of the interface diagram for a +3.3V LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XIN/REF input. It is recommended that all components in the schematics be placed in the layout; though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input. If the driver is 2.5V LVPECL, the only change necessary is to use the appropriate value of R3.



CLKIN Equivalent Schematic

Figure *CLKIN Equivalent Schematic* below shows the basis of the requirements on VIH max, VIL min and the 1200 mV p-p single ended Vswing maximum.


- The CLKIN and CLKINB Vih max spec comes from the cathode voltage on the input ESD diodes D2 and D4, which are referenced to the internal 1.2V supply. CLKIN or CLKINB voltages greater than 1.2V + 0.5V =1.7V will be clamped by these diodes. CLKIN and CLKINB input voltages less than -0.3V will be clamped by diodes D1 and D3.
- The 1.2V p-p maximum Vswing input requirement is determined by the internally regulated 1.2V supply for the actual clock receiver. This is the basis of the Vswing spec in Table 13.

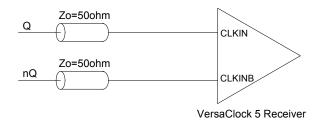
CLKIN Equivalent Schematic

Wiring the Differential Input to Accept Single-Ended Levels

Figure Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels shows how a differential input can be wired to accept single ended levels. This configuration has three properties; the total output impedance of Ro and Rs matches the 50 ohm transmission line impedance, the Vrx voltage is generated at the CLKIN inputs which maintains the LVCMOS driver voltage level across the transmission line for best S/N and the R1-R2 voltage divider values ensure that Vrx p-p at CLKIN is less than the maximum value of 1.2V.

Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Table 26 Nominal Voltage Divider Values vs Driver VDD shows resistor values that ensure the maximum drive level for the CLKIN port is not exceeded for all combinations of 5% tolerance on the driver VDD, the VersaClock Vddo_0 and 5% resistor tolerances. The values of the resistors can be

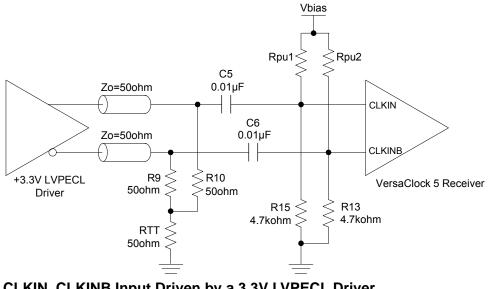

adjusted to reduce the loading for slower and weaker LVCMOS driver by increasing the impedance of the R1-R2 divider. To assist this assessment, the total load on the driver is included in the table.

LVCMOS Driver VDD	Ro+Rs	R1	R2	Vrx (peak)	Ro+Rs+R1+R2
3.3	50.0	130	75	0.97	255
2.5	50.0	100	100	1.00	250
1.8	50.0	62	130	0.97	242

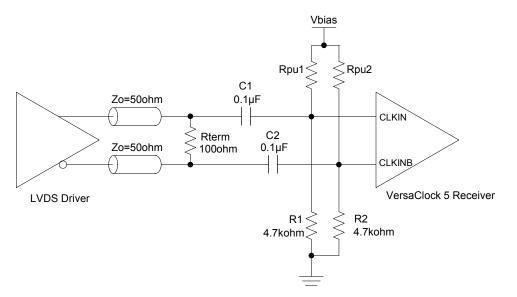
Table 26: Nominal Voltage Divider Values vs Driver VDD

HCSL Differential Clock Input Interface

CLKIN/CLKINB will accept DC coupled HCSL signals.



CLKIN, CLKINB Input Driven by an HCSL Driver


3.3V Differential LVPECL Clock Input Interface

The logic levels of 3.3V LVPECL and LVDS can exceed VIH max for the CLKIN/B pins. Therefore the LVPECL levels must be AC coupled to the VersaClock differential input and the DC bias restored with external voltage dividers. A single table of

bias resistor values is provided below for both for 3.3V LVPECL and LVDS. Vbias can be VDDD, V_{DDOX} or any other available voltage at the VersaClock receiver that is most conveniently accessible in layout.

CLKIN, CLKINB Input Driven by a 3.3V LVPECL Driver

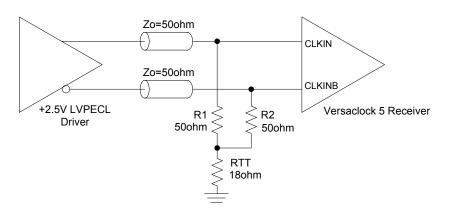
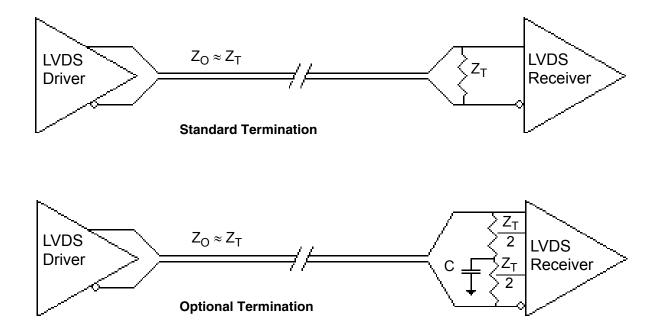

CLKIN, CLKINB Input Driven by an LVDS Driver

Table 27: Bias Resistors for 3.3V LVPECL and LVDS Drive to CLKIN/B

Vbias (V)	Rpu1/2 (kohm)	CLKIN/B Bias Voltage (V)
3.3	22	0.58
2.5	15	0.60
1.8	10	0.58

2.5V Differential LVPECL Clock Input Interface

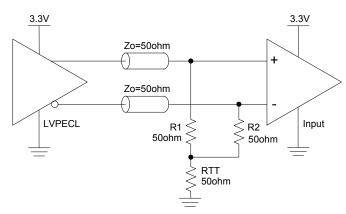
The maximum DC 2.5V LVPECL voltage meets the VIH max CLKIN requirement. Therefore 2.5V LVPECL can be connected directly to the CLKIN terminals without AC coupling

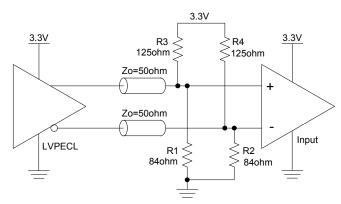


CLKIN, CLKINB Input Driven by a 2.5V LVPECL Driver

LVDS Driver Termination

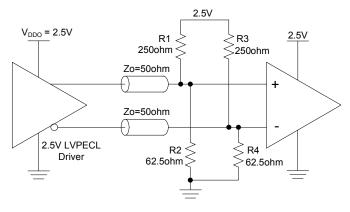
For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90 Ω . and 132 Ω . The actual value should be selected to match the differential impedance (Zo) of your transmission line. A typical point-to-point LVDS design uses a 100 Ω parallel resistor at the receiver and a 100 Ω . differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. The standard termination schematic as shown in figure *Standard Termination* or the termination of figure *Optional Termination* can be used, which uses a center tap capacitance to help filter

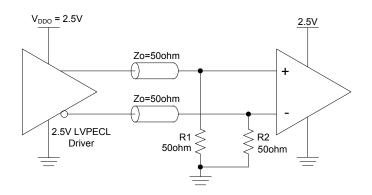

common mode noise. The capacitor value should be approximately 50pF. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the IDT LVDS output. If using a non-standard termination, it is recommended to contact IDT and confirm that the termination will function as intended. For example, the LVDS outputs cannot be AC coupled by placing capacitors between the LVDS outputs and the 100 ohm shunt load. If AC coupling is required, the coupling caps must be placed between the 100 ohm shunt termination and the receiver. In this manner the termination of the LVDS output remains DC coupled.


Termination for 3.3V LVPECL Outputs

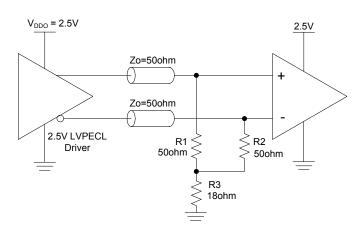
The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. The figure below show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.


3.3V LVPECL Output Termination (1)


3.3V LVPECL Output Termination (2)

Termination for 2.5V LVPECL Outputs


Figures 2.5V LVPECL Driver Termination Example (1) and (2) show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{DDO} - 2V$. For $V_{DDO} = 2.5V$, the $V_{DDO} - 2V$ is very close to ground level. The R3 in Figure 2.5V LVPECL Driver Termination Example (3) can be eliminated and the termination is shown in example (2).

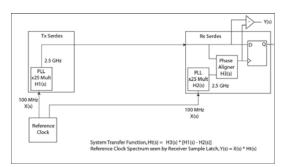
2.5V LVPECL Driver Termination Example (1)

2.5V LVPECL Driver Termination Example (2)

2.5V LVPECL Driver Termination Example (3)

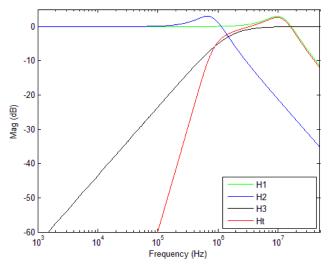
PCI Express Application Note

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used Common Clock Architecture in which a copy of the reference clock is provided to both ends of the PCI Express Link.

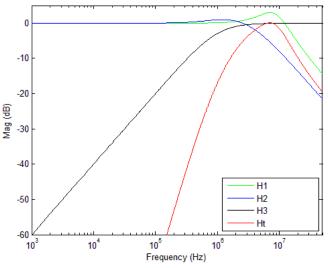

In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called H1, H2, and H3 respectively. The overall system transfer function at the receiver is:

 $Ht(s) = H3(s) \times [H1(s) - H2(s)]$

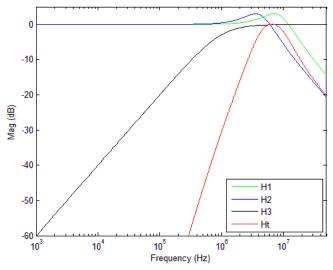
The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum X(s) and is:


 $Y(s) = X(s) \times H3(s) \times [H1(s) - H2(s)]$

In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on X(s)*H3(s) * [H1(s) - H2(s)].

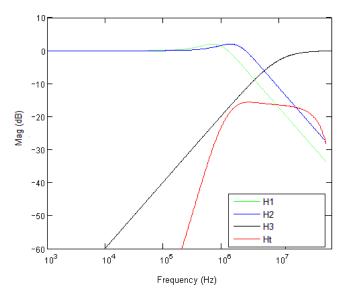

PCI Express Common Clock Architecture

For PCI Express Gen 1, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g for a 100MHz reference clock: 0Hz – 50MHz) and the jitter result is reported in peak-peak.



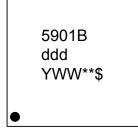
PCIe Gen1 Magnitude of Transfer Function

For PCI Express Gen2, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in RMS. The two evaluation ranges for PCI Express Gen 2 are 10kHz – 1.5MHz (Low Band) and 1.5MHz – Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function Ht.

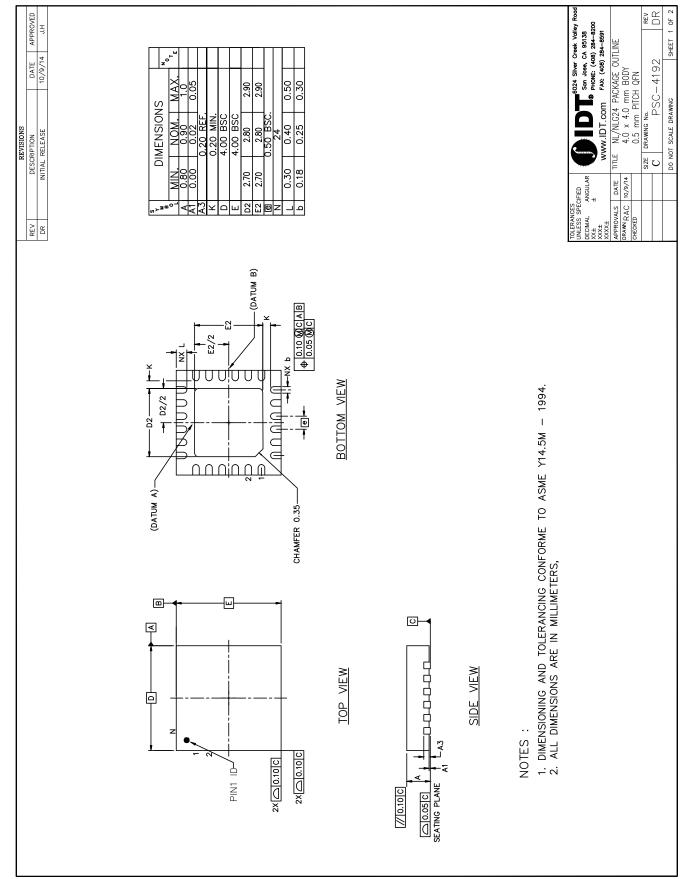


PCIe Gen2A Magnitude of Transfer Function

PCIe Gen2B Magnitude of Transfer Function

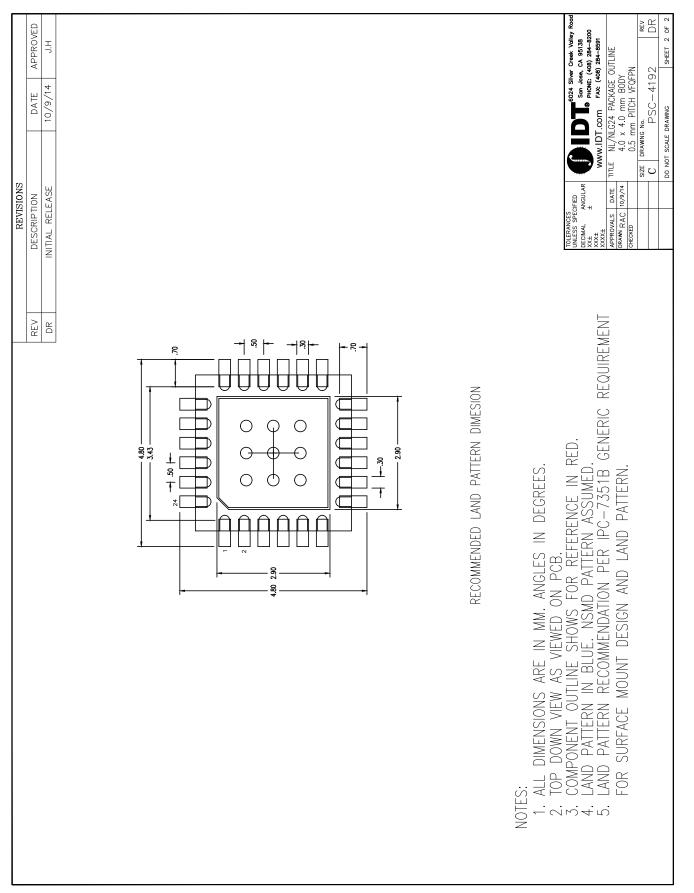

For PCI Express Gen 3, one transfer function is defined and the evaluation is performed over the entire spectrum. The transfer function parameters are different from Gen 1 and the jitter result is reported in RMS.

PCle Gen3 Magnitude of Transfer Function


For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note PCI Express Reference Clock Requirements.

Marking Diagram

- 1. Line 1 is the truncated part number.
- 2. "ddd" denotes dash code.
- 3. "YWW" is the last digit of the year and week that the part was assembled.
- 4. "**" denotes sequential lot number.
- 5. "\$" denotes mark code.


Package Outline and Package Dimensions (24-pin 4mm x 4mm VFQFPN)

() IDT

() IDT.

Package Outline and Package Dimensions (24-pin 4mm x 4mm VFQFPN), cont.

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
5P49V5901BdddNLGI	see page 33	Trays	24-pin VFQFPN	-40° to +85°C
5P49V5901BdddNLGI8		Tape and Reel	24-pin VFQFPN	-40° to +85°C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Date	Originator	Description of Change
А	03/10/14	B. Chandhoke	Initial release.
В	06/04/14	B. Chandhoke	Updated datasheet with latest document template.
С	09/03/14	B. Chandhoke	 Extensive updates to AC/DC tables per latest characterization data. Added new Jitter Specifications table. Update device marking.
С	10/0114	B. Chandhoke	 Updated Package Outline and Dimensions drawings to the latest 24VFQFPN document. Updated "Table 3: Configuration Table" and added associated notes. Added "Input Rise/Fall Time" specs to tables 14, 15, and 16.
D	12/04/14	B. Chandhoke	 Removed 2.45mm Sq. EPAD option for landing pattern. Updated LVPECL IDD limits. Updated text and examples for Output Skew section. Added SD-OE logic diagram. Corrected two minor typos; XIN input frequency from 1MHz to 8MHz min in Table 21; removed text" Low Power" from Table 20.
E	01/21/15	B. Chandhoke	 Updated reference schematic. Updated "Reference Clock Input Pins and Selection" with new text. Updated "Crystal Input (XIN/XREF)" section with all new text and images. Updated Table 10 to split out the XIN and XOUT parameters. Changed values from 0pF typ. and 8pF max. to 9pF typ. and 25pF max.
F	03/10/15	B. Chandhoke	1. Updated reference schematic.
G	07/07/15	B. Chandhoke	 Added conditions text and min/max values for VIH/VIL. Updated 1.8V, 2.5V, and 3.3V VIH/VIL conditions text and min/max values for "Single-ended inputs - CLKSEL, SD/OE" Changed name of parameter "Lock Time" to "Startup Time" Added IDT and Fox crystal references.
Н	10/15/15	B. Chandhoke	Changed device revision from "A" to "B".
J	11/12/15	B. Chandhoke	Updated fVCO, t3, and t4 parameters in AC Characteristics table.
К	09/19/16	Y.Guo	Corrected typo on page 6 [Ci1 to Cs1].
L	10/19/16	Y.Guo	Removed IDT crystal part number
М	11/11/16	Y.Guo	Corrected typo for the order of t4 Slew Rates.

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales Tech Support www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

SP49V5901R000NLGI SP49V5901R000NLGI SP49V5901R000NLGI SP49V5901A654NLGI SP49V5901A025NLGI SP49V5901A629NLGI SP49V5901A071NLGI SP49V5901A071NLGI SP49V5901A071NLGI SP49V5901A071NLGI SP49V5901A071NLGI SP49V5901A071NLGI SP49V5901A073NLGI SP49V5901A773NLGI SP49V5901A773NLGI SP49V5901A773NLGI SP49V5901A773NLGI SP49V5901B764NLGI SP49V5901B764NLGI SP49V5901B764NLGI SP49V5901B771NLGI SP49V5901B764NLGI SP49V5901B774NLGI SP49V5901B754NLGI SP49V5901B774NLGI SP49V5901B754NLGI SP49V5901	
5P49V5901A072NLGI 5P49V5901A768NLGI 5P49V5901A771NLGI 5P49V5901A772NLGI8 5P49V5901B620NLGI8 5P49V5901A755NLGI 5P49V5901A752NLGI8 5P49V5901A752NLGI 5P49V5901A761NLGI 5P49V5901B76NLGI 5P49V5901B762NLGI 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B775NLGI8 5P49V5901B775NLGI8 5P49V5901B771NLGI8 5P49V5901B771NLGI8 5P49V5901B724NLGI 5P49V5901B741NLGI8 5P49V5901B741NLGI8 5P49V5901B743NLGI8 5P49V5901B743NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B753NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B753NLGI8 5P49V5901B621NLGI8 5P49V59	5P49V5901A000NLGI 5P49V5901A000NLGI8 5P49V5901B000NLGI8 5P49V5901B000NLGI
5P49V5901A755NLGI 5P49V5901A752NLGI8 5P49V5901A761NLGI 5P49V5901A773NLGI 5P49V5901A761NLGI 5P49V5901B764NLGI 5P49V5901B774NLGI 5P49V5901B774NLGI 5P49V5901B774NLGI 5P49V5901B774NLGI 5P49V5901B764NLGI8 5P49V5901B662NLGI8 5P49V5901B662NLGI8	<u>5P49V5901A654NLGI8</u> <u>5P49V5901A025NLGI8</u> <u>5P49V5901A629NLGI8</u> <u>5P49V5901A071NLGI</u> <u>5P49V5901A651NLGI</u>
5P49V5901A684NLGI 5P49V5901B759NLGI 5P49V5901B762NLGI 5P49V5901B764NLGI 5P49V5901B764NLGI 5P49V5901B755NLGI 5P49V5901B760NLGI 5P49V5901A744NLGI 5P49V5901B717NLGI 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B755NLGI8 5P49V5901B717NLGI8 5P49V5901B717NLGI8 5P49V5901B724NLGI 5P49V5901B741NLGI8 5P49V5901B771NLGI 5P49V5901B772NLGI8 5P49V5901B749NLGI 5P49V5901B743NLGI8 5P49V5901B743NLGI8 5P49V5901B771NLGI8 5P49V5901B772NLGI8 5P49V5901B753NLGI 5P49V5901B743NLGI8 5P49V5901B743NLGI8 5P49V5901B764NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI8 5P49V5901B756NLGI8 5P49V5901B760NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLGI8 5P49V5901B621NLG	5P49V5901A072NLGI 5P49V5901A768NLGI 5P49V5901A771NLGI 5P49V5901A772NLGI8 5P49V5901B620NLGI8
SP49V5901B766NLGI SP49V5901A744NLGI SP49V5901B742NLGI SP49V5901B755NLGI8 SP49V5901B758NLGI SP49V5901B750NLGI8 SP49V5901B773NLGI8 SP49V5901B717NLGI SP49V5901B724NLGI SP49V5901B741NLGI8 SP49V5901B717NLGI SP49V5901B763NLGI SP49V5901B749NLGI SP49V5901B724NLGI SP49V5901B741NLGI8 SP49V5901B771NLGI8 SP49V5901B772NLGI8 SP49V5901B753NLGI SP49V5901B743NLGI8 SP49V5901B753NLGI8 SP49V5901B764NLGI8 SP49V5901B759NLGI8 SP49V5901B763NLGI SP49V5901B753NLGI8 SP49V5901B753NLGI8 SP49V5901B764NLGI8 SP49V5901B760NLGI8 SP49V5901B763NLGI SP49V5901B750NLGI8 SP49V5901B760NLGI SP49V5901B706NLGI SP49V5901B747NLGI8 SP49V5901B763NLGI8 SP49V5901B769NLGI8 SP49V5901B632NLGI8 SP49V5901B637NLGI8 SP49V5901B752NLGI SP49V5901B662NLGI8 SP49V5901B662NLGI SP49V5901B662NLGI SP49V5901B637NLGI8 SP49V5901B724NLGI SP49V5901B662NLGI8 SP49V5901B662NLGI8 SP49V5901B662NLGI8 SP49V5901B644NLGI8 SP49V5901B74NLGI SP49V5901B62NLGI8 SP49V5901B662NLGI8 SP49V5901B662NLGI8 SP49V5901B644NLGI8 SP49V5901B74NLGI <td>5P49V5901A755NLGI 5P49V5901A752NLGI8 5P49V5901A761NLGI 5P49V5901A773NLGI 5P49V5901A693NLGI</td>	5P49V5901A755NLGI 5P49V5901A752NLGI8 5P49V5901A761NLGI 5P49V5901A773NLGI 5P49V5901A693NLGI
5P49V5901B750NLGI8 5P49V5901B773NLGI8 5P49V5901B717NLGI8 5P49V5901B697NLGI8 5P49V5901B717NLGI 5P49V5901B763NLGI 5P49V5901B749NLGI 5P49V5901B724NLGI 5P49V5901B724NLGI 5P49V5901B771NLGI8 5P49V5901B772NLGI8 5P49V5901B724NLGI 5P49V5901B724NLGI 5P49V5901B746NLGI8 5P49V5901B759NLGI8 5P49V5901B753NLGI 5P49V5901B753NLGI8 5P49V5901B764NLGI8 5P49V5901B766NLGI8 5P49V5901B750NLGI8 5P49V5901B756NLGI8 5P49V5901B071NLGI8 5P49V5901B766NLGI8 5P49V5901B769NLGI8 5P49V5901B769NLGI8 5P49V5901B706NLGI 5P49V5901B760NLGI8 5P49V5901B760NLGI8 5P49V5901B769NLGI8 5P49V5901B706NLGI 5P49V5901B771NLGI8 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B736NLGI8 5P49V5901B760NLGI 5P49V5901B632NLGI8 5P49V5901B662NLGI 5P49V5901B736NLGI8 5P49V5901B67NLGI 5P49V5901B62NLGI 5P49V5901B62NLGI 5P49V5901B63NLGI8 5P49V5901B62NLGI 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B644NLGI8 5P49V5901B62NLGI 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B644NLGI8 5P49V5901B662NLGI8	5P49V5901A684NLGI 5P49V5901B759NLGI 5P49V5901B762NLGI 5P49V5901B764NLGI 5P49V5901B771NLGI
5P49V5901B717NLGI 5P49V5901B763NLGI 5P49V5901B749NLGI 5P49V5901B724NLGI 5P49V5901B724NLGI 5P49V5901B724NLGI 5P49V5901B771NLGI8 5P49V5901B772NLGI8 5P49V5901B753NLGI 5P49V5901B743NLGI8 5P49V5901B746NLGI8 5P49V5901B759NLGI8 5P49V5901B753NLGI 5P49V5901B756NLGI8 5P49V5901B764NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B706NLGI 5P49V5901B747NLGI8 5P49V5901B763NLGI8 5P49V5901B769NLGI8 5P49V5901B622NLGI 5P49V5901B760NLGI 5P49V5901B771NLGI8 5P49V5901B763NLGI8 5P49V5901B622NLGI 5P49V5901B622NLGI 5P49V5901B736NLGI8 5P49V5901B771NLGI8 5P49V5901B632NLGI8 5P49V5901B622NLGI 5P49V5901B622NLGI 5P49V5901B736NLGI8 5P49V5901B72NLGI 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B736NLGI8 5P49V5901B72NLGI 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B62NLGI8 5P49V5901B62NLGI8 5P49V5901B63NLGI8 5P49V5901B644NLGI8 5P49V5901B67NLGI 5P49V5901B62NLGI8 5P49V5901B63NLGI8 5P49V5901B662NLGI8 5P49V5901B662NLGI8	5P49V5901B766NLGI 5P49V5901A744NLGI 5P49V5901B742NLGI 5P49V5901B755NLGI8 5P49V5901B758NLGI
5P49V5901B771NLGI8 5P49V5901B772NLGI8 5P49V5901B690NLGI 5P49V5901B743NLGI8 5P49V5901B746NLGI8 5P49V5901B759NLGI8 5P49V5901B753NLGI 5P49V5901B750NLGI8 5P49V5901B764NLGI8 5P49V5901B766NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI 5P49V5901B071NLGI8 5P49V5901B611NLGI8 5P49V5901B621NLGI 5P49V5901B760NLGI 5P49V5901B706NLGI 5P49V5901B747NLGI8 5P49V5901B760NLGI8 5P49V5901B622NLGI 5P49V5901B637NLGI8 5P49V5901B071NLGI 5P49V5901B632NLGI8 5P49V5901B662NLGI 5P49V5901B736NLGI8 5P49V5901B72NLGI 5P49V5901B632NLGI8 5P49V5901B662NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI 5P49V5901B772NLGI 5P49V5901B62NLGI 5P49V5901B662NLGI8 5P49V5901B662NLGI8 5P49V5901B662NLGI8 5P49V5901B772NLGI 5P49V5901B677NLGI 5P49V5901B662NLGI8 5P49V5901B673NLGI8 5P49V5901B673NLGI8 5P49V5901B673NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B663NLGI8 5P49V5901B673NLGI 5P49V5901B683NLGI8 5P49V5901B689NLGI 5P49V5901B683NLGI8 5P49V5901B680NLGI 5P49V5901B683NLGI8 5P49V5901B683NLGI8	5P49V5901B750NLGI8 5P49V5901B773NLGI8 5P49V5901B717NLGI8 5P49V5901B697NLGI8
5P49V5901B746NLGI8 5P49V5901B759NLGI8 5P49V5901B753NLGI 5P49V5901B753NLGI8 5P49V5901B764NLGI8 5P49V5901B766NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI8 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B621NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B760NLGI 5P49V5901B621NLGI 5P49V5901B622NLGI 5P49V5901B637NLGI8 5P49V5901B747NLGI8 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B682NLGI 5P49V5901B622NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B662NLGI8 5P49V5901B772NLGI 5P49V5901B74NLGI 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B677NLGI 5P49V5901B662NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B648NLGI8 5P49V5901B683NLGI8 5P49V5901B663NLGI 5P49V5901B673NLGI 5P49V5901B683NLGI 5P49V5901B648NLGI8 5P49V5901B683NLGI8 5P49V5901B663NLGI 5P49V5901B663NLGI 5P49V5901B663NLGI	5P49V5901B717NLGI 5P49V5901B763NLGI 5P49V5901B749NLGI 5P49V5901B724NLGI 5P49V5901B741NLGI8
5P49V5901B764NLGi8 5P49V5901B766NLGi8 5P49V5901B740NLGi8 5P49V5901B756NLGi8 5P49V5901B071NLGi8 5P49V5901B611NLGi8 5P49V5901B625NLGi 5P49V5901B621NLGi 5P49V5901B621NLGi 5P49V5901B706NLGi 5P49V5901B747NLGi8 5P49V5901B763NLGi8 5P49V5901B769NLGi8 5P49V5901B632NLGi 5P49V5901B637NLGi8 5P49V5901B071NLGi 5P49V5901B632NLGi 5P49V5901B682NLGi 5P49V5901B682NLGi 5P49V5901B736NLGi8 5P49V5901B752NLGi 5P49V5901B697NLGi 5P49V5901B661NLGi 5P49V5901B662NLGi 5P49V5901B736NLGi8 5P49V5901B752NLGi 5P49V5901B662NLGi8 5P49V5901B661NLGi 5P49V5901B662NLGi8 5P49V5901B772NLGi 5P49V5901B774NLGi 5P49V5901B760NLGi 5P49V5901B625NLGi8 5P49V5901B639NLGi8 5P49V5901B72NLGi 5P49V5901B677NLGi 5P49V5901B651NLGi8 5P49V5901B673NLGi 5P49V5901B724NLGi8 5P49V5901B729NLGi 5P49V5901B683NLGi8 5P49V5901B683NLGi8 5P49V5901B687NLGi 5P49V5901B687NLGi 5P49V5901B648NLGi8 5P49V5901B663NLGi8 5P49V5901B680NLGi 5P49V5901B687NLGi 5P49V5901B687NLGi 5P49V5901B648NLGi8 5P49V5901B663NLGi8 5P49V5901B680NLGi	5P49V5901B771NLGI8 5P49V5901B772NLGI8 5P49V5901B690NLGI 5P49V5901B743NLGI8
5P49V5901B071NLGI8 5P49V5901B611NLGI8 5P49V5901B625NLGI 5P49V5901B621NLGI 5P49V5901B621NLGI 5P49V5901B621NLGI 5P49V5901B632NLGI 5P49V5901B706NLGI 5P49V5901B747NLGI8 5P49V5901B763NLGI8 5P49V5901B632NLGI 5P49V5901B632NLGI 5P49V5901B637NLGI8 5P49V5901B071NLGI 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B682NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI 5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B652NLGI 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B760NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B673NLGI 5P49V5901B683NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B683NLGI 5P49V5901B683NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B683NLGI 5P49V5901B686NLGI 5P49V5901B686NLGI 5P49V5901B686NLGI 5P49V5901B673NLGI8 5P49V5901B683NLGI8 5P49V5901B665NLGI5 5P49V5901B665NLGI8	5P49V5901B746NLGI8 5P49V5901B759NLGI8 5P49V5901B753NLGI 5P49V5901B753NLGI8
5P49V5901B706NLGI 5P49V5901B747NLGI8 5P49V5901B763NLGI8 5P49V5901B769NLGI8 5P49V5901B632NLGI 5P49V5901B637NLGI8 5P49V5901B071NLGI 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B682NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B662NLGI8 5P49V5901B662NLGI8 5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B683NLGI 5P49V5901B687NLGI 5P49V5901B687NLGI 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B683NLGI 5P49V5901B687NLGI 5P49V5901B687NLGI 5P49V5901B689NLGI 5P49V5901B683NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B663NLGI 5P49V5901B665NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B663NLGI 5P49V5901B665NLGI8 5P49V5901B665NLGI8	5P49V5901B764NLGI8 5P49V5901B766NLGI8 5P49V5901B740NLGI8 5P49V5901B756NLGI8
5P49V5901B637NLGI8 5P49V5901B071NLGI 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B692NLGI 5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI 5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B689NLGI 5P49V5901B683NLGI8 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B680NLGI 5P49V5901B689NLGI 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B680NLGI 5P49V5901B665NLGI 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B071NLGI8 5P49V5901B611NLGI8 5P49V5901B625NLGI 5P49V5901B621NLGI 5P49V5901B756NLGI
5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI 5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B760NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B680NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B656NLGI 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B706NLGI 5P49V5901B747NLGI8 5P49V5901B763NLGI8 5P49V5901B769NLGI8 5P49V5901B632NLGI
5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B625NLGI8 5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B760NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B686NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8	5P49V5901B637NLGI8 5P49V5901B071NLGI 5P49V5901B632NLGI8 5P49V5901B682NLGI 5P49V5901B692NLGI
5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B760NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8 5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B680NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B683NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B736NLGI8 5P49V5901B752NLGI 5P49V5901B697NLGI 5P49V5901B661NLGI 5P49V5901B662NLGI
5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8 5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B686NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B656NLGI 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8	5P49V5901B644NLGI8 5P49V5901B643NLGI8 5P49V5901B662NLGI8 5P49V5901B625NLGI8
5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B686NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8 5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B772NLGI 5P49V5901B774NLGI 5P49V5901B760NLGI 5P49V5901B654NLGI8 5P49V5901B639NLGI8
5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8 5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B648NLGI8 5P49V5901B677NLGI 5P49V5901B651NLGI8 5P49V5901B673NLGI 5P49V5901B724NLGI8
5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8	5P49V5901B729NLGI 5P49V5901B683NLGI8 5P49V5901B686NLGI 5P49V5901B687NLGI 5P49V5901B684NLGI8
	5P49V5901B689NLGI 5P49V5901B691NLGI8 5P49V5901B663NLGI 5P49V5901B656NLGI 5P49V5901B665NLGI8
5P49V5901B676NLGI 5P49V5901B672NLGI8	5P49V5901B673NLGI8 5P49V5901B681NLGI8 5P49V5901B683NLGI 5P49V5901B677NLGI8
	5P49V5901B676NLGI 5P49V5901B672NLGI8