

Z8F56253795

Preface

Scope and purpose

This document provides information about the usage of the Demoboards for the voltage tracking regulators TLS115x0EJ (PG-DSO-8-EP package variant) and the TLS115x0LD (PG-TSON-10 package variant) from Infineon Technologies AG. Please also refer to the corresponding Data Sheets [2] and [3].

Intended audience

This document is intended for engineers who develop applications.

Table of contents

	Preface	1
	Table of contents	1
1	Introduction	2
1.1	TLS115x0 features	2
1.2	Block diagram	3
2	Demoboard	4
2.1	Operating conditions	5
2.2	Demoboard configuration	5
2.2.1	Jumpers	5
2.2.2	Signal adaption	7
3	Schematic and layout TLS115x0EJ Demoboard	8
3.1	Schematic TLS115x0EJ Demoboard	8
3.2	Layout TLS115x0EJ Demoboard	9
4	Schematic and layout TLS115x0LD Demoboard	11
4.1	Schematic TLS115x0LD Demoboard	11
4.2	Layout TLS115x0LD Demoboard	12
5	Bill of material	14
6	Restrictions	15
7	References	16
8	Revision history	17
	Trademarks	18

Z8F56253795

Introduction

1 Introduction

Table 1 shows an overview of the feature sets and packages in the TLS115x0 voltage tracking regulator family.

Table 1 Family overview TLS115x0 family

Туре	Package	Output current	Enable	Power Good	Adjustable
TLS115B0EJ	PG-DSO-8-EP	150 mA	✓	_	✓
TLS115D0EJ	PG-DSO-8-EP	150 mA	✓	✓	✓
TLS115B0LD	PG-TSON-10	150 mA	✓	_	✓
TLS115D0LD	PG-TSON-10	150 mA	✓	✓	✓

1.1 TLS115x0 features

- 150 mA current capability
- very high accuracy voltage tracking
- output voltage adjustable down to 2.0 V
- very low dropout voltage
- very low current consumption in OFF mode
- Power Good output indicates overvoltage and undervoltage¹⁾
- internally controlled soft start
- Green product (RoHS compliant)
- AEC Qualified

Additional benefits of the TLS115x0 voltage tracking regulators:

- fast regulation
- very good stability characteristics
- only a small ceramic capacitor of 1 μ F at the output is required
- internal protection features make the devices robust against immediate damage:
 - output current limitation
 - short circuit protected output (to GND and to battery)
 - overtemperature shutdown
 - reverse polarity protected input

These features make the TLS115x0 voltage tracking regulators perfectly suitable as automotive sensor supply and as high precision supply for off-board loads.

infineon

Introduction

1.2 Block diagram

Figure 1 shows the block diagram of TLS115D0, which offers the full feature set.

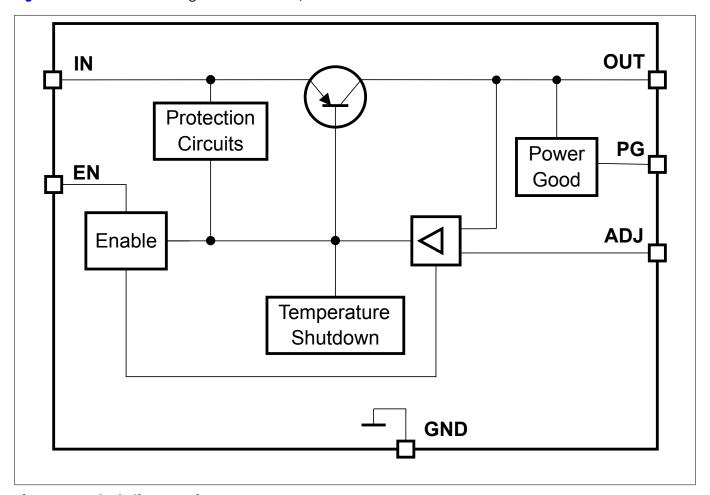


Figure 1 Block diagram of TLS115D0

Demoboard

2 Demoboard

The TLS115x0 Demoboards are available for all devices of the TLS115x0 voltage tracking regulator family in a PG-DSO-8-EP or PG-TSON-10 package (see the device list in *Table 1*).

Figure 2 shows the TLS115x0EJ Demoboard equipped with TLS115D0EJ (PG-DSO-8-EP package).

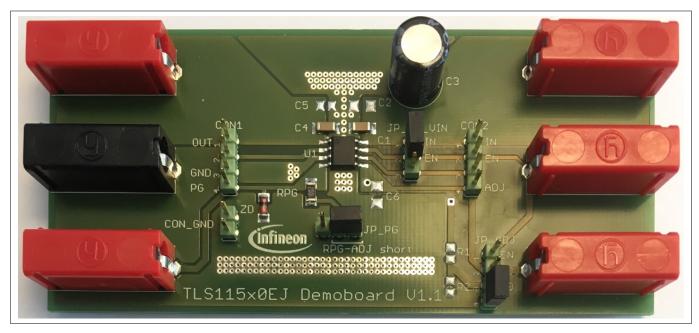


Figure 2 TLS115x0EJ Demoboard

Figure 3 shows the TLS115x0LD Demoboard equipped with TLS115D0LD (PG-TSON-10 package).



Figure 3 TLS115x0LD Demoboard

Z8F56253795

Demoboard

2.1 **Operating conditions**

To avoid electrical damage of the Demoboard, the operating range defined in *Table 2* must be followed.

Limit values for operation 1) Table 2

Parameter	Pin	Maxim	Maximum Ratings		Note	
		Min.	Min. Max.			
Board supply voltage ²⁾	VIN	-16	45	٧	power supply	
Adjust voltage ³⁾	VADJ	-16	45	V	tracked reference voltage	
Regulator output voltage	VOUT	-5	45	V	-	
Enable input signal	EN	-16	45	V	enables or disables the voltage tracking regulator	
Power Good output signal	PG	-0.3	7	V	indicates, whether Power Good conditions are met	
Ground	GND	0	0	٧	system GND	

2.2 **Demoboard configuration**

The jumper pins and solder pads on the Demoboards provide easy to use configuration options.

- jumper connections:
 - EN input pin ↔ supply voltage pin VIN (JP_EN_VIN)
 - ADJ pin \leftrightarrow EN pin or ADJ pin ↔ external voltage divider to adjust the reference voltage depending on voltage at VIN pin (JP_ADJ)
 - ADJ pin ↔ RPG pin as pull-up voltage for the Power Good resistor RPG (JP_PG)
- solder pads for the following components:
 - additional input capacitor C2
 - additional output capacitor C5
 - adjust capacitor C6
 - voltage divider resistor R1
 - voltage divider resistor R2

2.2.1 **Jumpers**

The unlabeled pin of each jumper can take an unused connector to leave the connection open.

Jumper JP_EN_VIN

The JP_EN_VIN jumper can connect the EN input pin to the supply voltage at the VIN pin.

¹ The Demoboard operates at an ambient temperature of 25°C

² Functional input voltage range: 4 V to 45 V

³ Functional ADJ voltage range: 2 V to 14 V

infineon

Demoboard

Table 3 Jumper JP_EN_VIN options for Enable function

JP_EN_VIN	Function
EN input pin ↔ VIN pin	the regulator is enabled while it is supplied from the voltage at the VIN pin
open	the EN input pin is supplied from the EN banana jack connector ⁴⁾

Jumper JP_ADJ

The JP_ADJ jumper can connect the ADJ pin of the device to one of the following:

- the voltage at the EN pin (V_{EN}) , if the ADJ pin is not supplied from an external voltage
- a reference voltage (V_D) adapted by the voltage divider on the demoboard

Table 4 Jumper JP_ADJ options for reference voltage

JP_ADJ	Function
ADJ pin ↔ EN input pin	the ADJ pin is connected to the voltage at the EN pin
$\overline{\text{ADJ pin}} \leftrightarrow V_{\text{D}}$	the ADJ pin is connected to the output voltage of the voltage divider (V_D)
open	the ADJ pin must be supplied from external via ADJ banana jack connector. ⁵⁾

If the ADJ pin is to be supplied from the output voltage of the voltage divider (V_D), then the resistors of the voltage divider must be implemented. The value of the resistors can be easily calculated when neglecting the current flowing into the ADJ pin:

$$V_{\text{ADJ}} = V_D = \frac{R_2}{R_1 + R_2} \times V_{\text{IN}}$$

Equation 1

The current flowing into the ADJ pin can be neglected, if R_2 is less than 2.5 k Ω . To benefit from the high accuracy of the TLS115x0, it is highly recommended to supply the ADJ pin from an external voltage source via the banana jack connector.

PG Jumper

With jumper JP_PG, the voltage at the ADJ pin can be used as pull-up voltage for the Power Good resistor RPG. The Power Good signal, which then corresponds to the voltage at the ADJ pin, can then be measured at the PG connector of the Demoboard. To protect the device from overvoltage, the PG connector is clamped by a Z-diode to typically 6.2 V.

Table 5 Jumper JP_PG options for Power Good function

JP_PG	Function
PG ↔ ADJ pin	The voltage applied at the ADJ pin is used as pull-up voltage for the Power Good resistor RPG. Power Good monitoring is enabled.
open	No pull-up voltage is applied to the Power Good resistor RPG. Power Good monitoring is disabled.

⁴ Without supplying a signal to EN, the regulator is disabled because of the internal pull-down resistor

Without supplying a reference voltage to ADJ, the regulator is disabled

Demoboard

2.2.2 Signal adaption

The connectors CON1, CON2 and CON_GND offer easy signal adaption, for example with probes for an oscilloscope.

Table 6 Signals on connector

Connector	Accessible signal
CON1	OUT (output voltage)
	GND (ground)
	PG (Power Good signal)
CON2	IN (input voltage)
	EN (Enable input signal)
	ADJ (reference voltage)
CON_GND	GND (ground)

Schematic and layout TLS115x0EJ Demoboard

3 Schematic and layout TLS115x0EJ Demoboard

3.1 Schematic TLS115x0EJ Demoboard

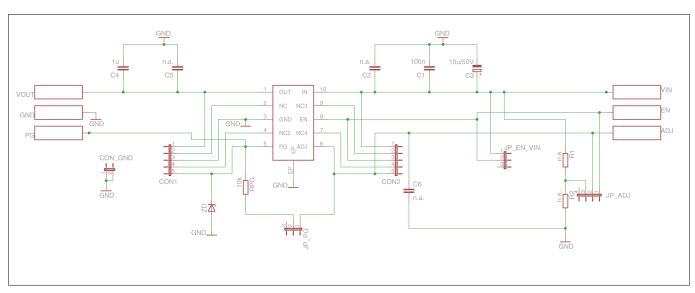


Figure 4 Schematic of TLS115x0EJ Demoboard

Schematic and layout TLS115x0EJ Demoboard

Layout TLS115x0EJ Demoboard 3.2



Figure 5 Top layer of TLS115x0EJ Demoboard

Schematic and layout TLS115x0EJ Demoboard

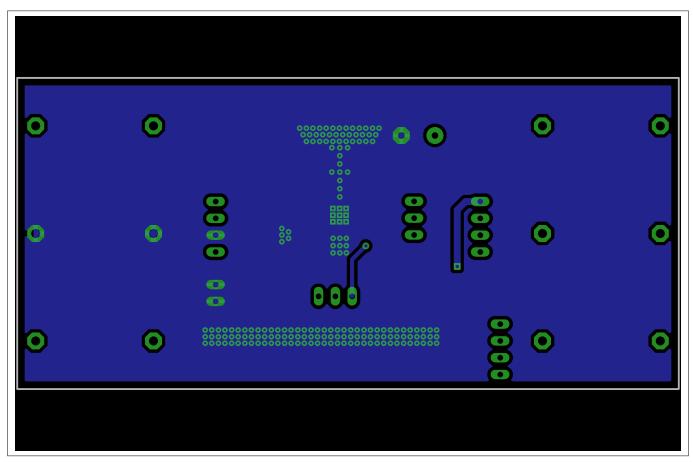


Figure 6 **Bottom layer of TLS115x0EJ Demoboard**

Schematic and layout TLS115x0LD Demoboard

4 Schematic and layout TLS115x0LD Demoboard

4.1 Schematic TLS115x0LD Demoboard

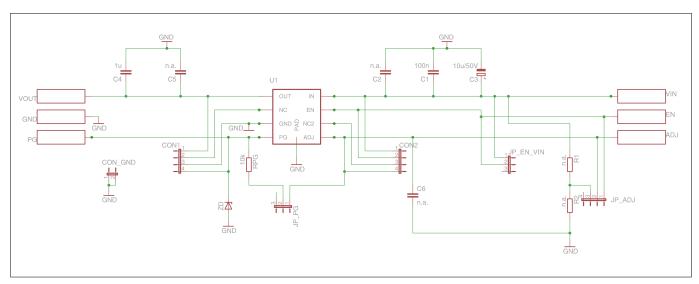


Figure 7 Schematic of TLS115x0LD Demoboard

İnfineon

Schematic and layout TLS115x0LD Demoboard

Layout TLS115x0LD Demoboard 4.2

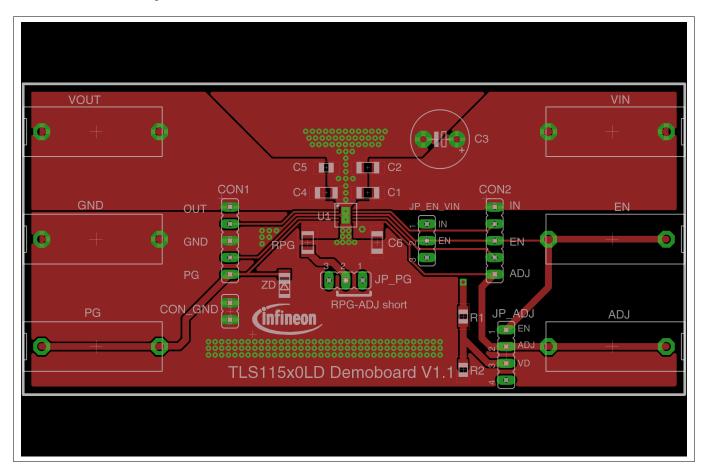


Figure 8 Top layer of TLS115x0LD Demoboard

Schematic and layout TLS115x0LD Demoboard

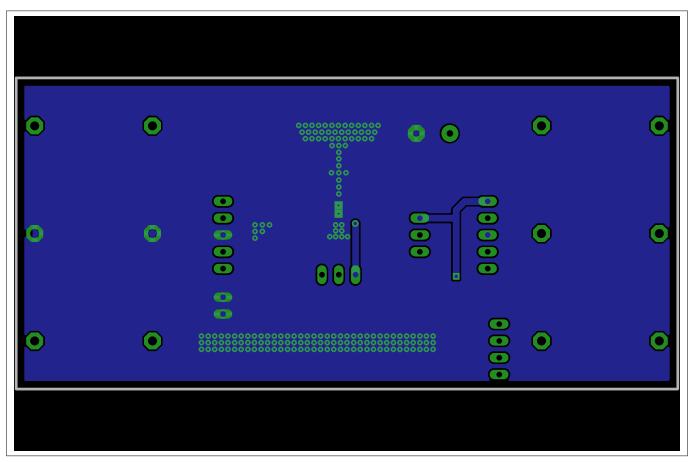


Figure 9 **Bottom layer of TLS115x0LD Demoboard**

Bill of material

5 Bill of material

Table 7 Bill of Material

Part	Value	Package
U1	one of the following:	one of the following:
	TLS115B0EJ or TLS115D0EJ	• PG-DSO-8-EP
	TLS115B0LD or TLS115D0LD	• PG-TSON-10
VIN	banana jack	BABU4MM
VOUT	banana jack	BABU4MM
EN	banana jack	BABU4MM
PG	banana jack	BABU4MM
GND	banana jack	BABU4MM
R1	n.a.	R0805
R2	n.a.	R0805
RPG	10 kΩ	R1206
C1	100 nF / 50 V	C1206
C2	n.a.	C1206
C3	$10~\mu F/50V$	E5-8.5
C4	1 μF / 16 V	C1206
C5	n.a.	C0805
C6	n.a.	C1206
CON1	4 pin connector	-
CON2	4 pin connector	-
CON_GND	2 pin connector	-
JP_EN_VIN	-	jumper
JP_ADJ	-	jumper
JP_PG	-	jumper
ZD	Z-diode ZMM6.2 (6.2 V)	SOD80C

Z8F56253795

Restrictions

Restrictions 6

This Demoboard offers limited features only for evaluation and testing of Infineon products. The Demoboard is not an end product or finished appliance, nor is it intended or authorized by Infineon to be integrated into end products. The Demoboard may not be used in any production system.

For further information please contact www.infineon.com.

Z8F56253795

References

References 7

Table 8

Number	Bibliography
[1]	What The Designer Should Know – Introduction to Automotive Linear Voltage Regulators. Infineon Technologies AG
[2]	TLS115B0 Data Sheet, Infineon Technologies AG
[3]	TLS115D0 Data Sheet, Infineon Technologies AG

Z8F56253795

Revision history

Revision history 8

Revision	Date	Changes
1.0	2017-02-22	Application Note created

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-02-22 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-Z8F56253795

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury