

Customer evaluation kit description

PROFET[™]+2 12V

About this document

Scope and purpose

This user manual is intended to give users an overview of the PROFET[™]+2 12V customer evaluation kit and to enable users to integrate the Config Wizard for IPD for the PROFET[™]+2 12V customer evaluation kit. The information given in this document is intended only to be an implementation guide. It is not a description or warranty of a certain functionality, condition or quality of the device.

Intended audience

This document is intended for anyone using the PROFET[™]+2 12V customer evaluation kit with or without the Config Wizard for IPD.

Table of contents

	About this document $\ldots \ldots \ldots 1$
	Table of contents 1
1	Overview
2	Evaluation kit description
2.1	Detailed information on the evaluation kit
2.2	PROFET [™] +2 12V motherboard [MB]6
2.3	PROFET [™] +2 12V daughterboard [DB]
3	Quickstart guide: PROFET [™] +2 12V evaluation kit8
4	Software (optional)
4.1	Infineon Toolbox and Config Wizard9
4.1.1	Installation of the Infineon Toolbox9
4.1.2	Install the Config Wizard for IPD10
4.2	GUI description
4.2.1	μIO-stick
4.2.2	Start-up screen
4.2.3	PROFET [™] +2 12V GUI
5	Appendix
6	Revision history
	Disclaimer

1 Overview

1 Overview

The PROFET[™]+2 12V customer evaluation kit consists of a motherboard [MB] and a daughterboard [DB]. The DB is plugged onto the MB, as seen in *Figure 1* below.

Figure 1

PROFET[™]+2 12V MB [1] and DB [2]

Application

- The MB is designed to handle all devices within the PROFET[™]+2 12V family
 - 1-channel, 2-channel or 4-channel PROFET[™]+2 12V devices (DBs) can be plugged onto the MB
- It is suitable for evaluation of resistive, capacitive and/or inductive loads
- The evaluation can either be done directly or with the Config Wizard for IPD (see Chapter 4)
- The board is not designed for EMC characterization, including ISO pulses
- The board design is not optimized for thermal performance characterization

2 Evaluation kit description

Figure 2 below illustrates the location of the connectors and jumpers. The jumpers' names are printed next to them and will be explained in more detail (see *Chapter 2.1*).

Figure 2

PROFET[™]+2 12V MB - connectors and jumpers

Table 1	PROFET [™] +2 12V MB connectors and jumpers
[1]	PROFET [™] +2 12V MB
[2]	PROFET [™] +2 12V DB
[3]	TVS Diode
[4]	J_RGND
[5]	J_SENSE1, J_SENSE2
[6]	μIO connectors of the PROFET [™] +2 12V MB

2.1 Detailed information on the evaluation kit

The two μ IO connectors of the PROFET^{**}+2 12V MB [6] are used to connect the motherboard with the μ IO-Stick ¹) (for further information see *Chapter 4*). The connector marked as uIO can only be used for 1-channel and 2-channel devices, whereas the connector marked with TB also can be used for 4-channel devices. The yellow circles on the images below mark the position of the *PIN 1* indicator. In order to avoid overvoltages on the MB it is possible to close the solder bridge X2 which connects a TVS diode between VS and GND. *Figure 3* and *Table 2* describe the solder bridge X2, the TVS diode [3] and the two μ IO connectors of the PROFET^{**}+2 12V MB.

Figure 3 TVS diode

Table 2	TVS diode [3]
#	Description
1	Solder bridge X2 (opened by default)
2	TSV diode

Figure 4 and the following tables illustrate the jumpers, their positions and the respective positions of *PIN 1*. The description of the positions is given in *Table 3* (J_RGND [4]) and *Table 4* (J_SENSE1, J_SENSE2 [5]).

Figure 4 Jumper positions

¹ The Infineon µIO-Stick can be ordered at *https://www.ehitex.de/en/*

Table 3 below lists the description of the three jumper positions of J_RGND [4], as well as the position of PIN 1.

Table 3	J_RGND [4] - Jumper positions
#	Description
1	The PROFET ^{**} +2 12V DB ground is connected to MB's module ground via a resistor 150 Ω
2	The PROFET ^{**} +2 12V DB ground is connected to MB's module ground via a resistor 47 Ω
3	The PROFET ^{**} +2 12V DB ground is connected to MB's module ground via a resistor 0 Ω
4	PIN 1 indicator

Table 4 below lists the description of J_SENSE1 and J_SENSE2 jumpers [5], as well as their positions and the position of *PIN 1*.

For converting the IS-current to a voltage J_SENSE2 [3] has to be closed. In case a different sense resistor will be used either replace RIS or use an external resistor. Therefore remove jumper J_SENSE2 [3] and close JSENSE [1]. This enables a direct path from *IS-PIN* of the device to the banana connector.

Table 4 J_SENSE1, J_SENSE2 [5] - Jumper positions

#	Description
1	Connects the <i>IS-PIN</i> of the device directly to the banana connector of the MB and disables the on-board filter of the IS
2	Connects the IS-PIN of the device after the on-board filter to the banana connector of the MB
3	Connects the IS-PIN of the device to the 1.2 k Ω sense resistor (R _{IS}) and to the μ IO connectors
4	PIN 1 indicator

2.2 **PROFET[™]+2 12V motherboard [MB]**

The following block diagram (*Figure 5*) gives an overview of the locations of jumpers and connectors.

Figure 5 Block diagram of the PROFET[™]+2 12V MB

The device can also be controlled via µIO-Stick (see *Chapter 2.1*, *Chapter 4*) The functionalities of the jumpers as well as the purpose of the connectors in the block diagram above are listed in *Table 5* below.

Table 5PROFET [™] +2 12V MB connectors and jumpers		
VS	Connection of the supply voltage	
GND	Connection of the GND module	
OUT0	OUT0 from the PROFET [™] +2 12V	
OUT1	OUT0/1 ²⁾ from the PROFET [™] +2 12V	
OUT2	OUT1/2 ³⁾ from the PROFET [™] +2 12V	
OUT3	OUT1/3 ³⁾ from PROFET [™] +2 12V	
IN0, IN1, IN2, IN3	External input control of the PROFET [™] +2 12V device with serial 4.7 kOhm resistors	

² If a 1- or 2-channel device is used, OUT0 and OUT1 are connected to OUT0 of the device connector

³ If a 2-channel device is used, OUT3 and OUT4 are connected to OUT1 of the device connector

Table 5 PROFET [™] +2 12V MB connectors and jumpers (continued)			
DEN	External control of DEN pin with serial 4.7 kΩ resistor This enables/disables the diagnosis functions of the device.		
DSEL0, DSEL1	External control of DSELx pins with serial 4.7 $k\Omega$ resistor to select a dedicated channel for diagnosis feedback		
IS	Sense output of the PROFET [™] +2 12V (see <i>Chapter 2.1</i> for further information)		
J_GND	J_GND is used to connect the PROFET ^{*+} 2 12V to the motherboards GND network. It is also possible to choose between three ground resistances (150 Ω , 47 Ω , 0 Ω). For further information see Chapter 2.1		
J_SENSE1	This jumper is used to enable/disable the sense filtering. For further information see <i>Chapter 2.1</i>		
J_SENSE2	J_SENSE2 either enables the connection to a 1.2 k Ω onboard-resistor or a direct connection to the IS connector on the motherboard to add an external RSENSE with different values. For further information see <i>Chapter 2.1</i>		
μIO-Connectors	The PROFET [™] +2 12V demoboard can either be used with external sources or with the µIO-stick by means of the Infineon Config Wizard (see <i>Chapter 4</i>). For further information see <i>Chapter 2.1</i>		

2.3 PROFET[™]+2 12V daughterboard [DB]

The PROFET[™]+2 12V DB includes the device (PROFET[™]+2 12V). The DB is plugged onto the MB. *Figure 6* below displays the PROFET[™]+2 12V DB in top- and bottom-view.

Figure 6

Top- and bottom-view of the PROFET[™]+2 12V daughterboard

3 Quickstart guide: PROFET[™]+2 12V evaluation kit

3

Quickstart guide: PROFET[™]+2 12V evaluation kit

- 1. Plug the PROFET[™]+2 12V DB onto the MB
- 2. Connect a power supply to (4.1 V – 28 V)
- Connect digital supply (LOW: 0 V, HIGH: 3.3 V $\leq V_{IN} \leq 5$ V) to DEN 3.
 - and IN0 (1-channel devices) a.
 - b. DSEL0, IN0 and IN1 (2-channel devices)
 - c. DSEL0, DSEL1, IN0, IN1, IN2 and IN3 (4-channel devices)
- Connect loads ($I_{L(NOM)}$ according to datasheet) to: 4.
 - OUT0 (1-channel devices) a.
 - OUT0 and OUT2 (2-channel devices) b.
 - OUT0, OUT1, OUT2 and OUT3 (4-channel devices) c.
- 5. Switch ON the power supply and the digital supply
- 6. For further details consult the datasheet

Figure 7 below illustrates the implementation of the quickstart setup for a PROFET[™]+2 12V device.

Figure 7

Quickstart setup for the PROFET[™]+2 12V evaluation kit

4 Software (optional)

The PROFET[™]+2 12V MB can either be used directly or with the ConfigWizard for IPD. The access to the software is the Infineon Toolbox, which can be downloaded at *infineon-toolbox*.

4.1 Infineon Toolbox and Config Wizard

By following the link in the previous *Chapter 4*, the installation site of the Infineon Toolbox is reached. Note that *Java 8 32bit* must be installed on the system, otherwise the Toolbox will not start. Install the Toolbox by clicking the *Installer (<version>)* button, which is highlighted.

After the Installer is downloaded run the file *infineon-toolbox-launcher-setup-win-x86-<version>.exe* and follow the instructions given by the Installation Wizard as described in **Chapter 4.1.1**.

4.1.1 Installation of the Infineon Toolbox

The license agreement will be the first step of the installation. Read the information carefully.

In the next step it is possible to allow the Installation Wizard to create a desktop shortcut: it is recommended to tick the checkbox.

The last step is the actual installation. Click on the button *Install* to install the Toolbox.

Once the installation process is complete, also the setup has to be finished and therefore click the *Finish* button. Note that it is possible to tick a checkbox to launch the Toolbox directly.

Launch the Toolbox and start installing the needed tools. *Figure 8* displays the start-up screen and the location of the help plug-in of the Toolbox.

Infineon Toolbox – start-up screen & location of help plug-in

Install the Config Wizard for IPD 4.1.2

Launch the Infineon Toolbox and go to the Manage tools tab and type Config Wizard for IPD into the search bar. The Toolbox will find one application (see *Figure 9*).

Config Wizard for IPD	Version: 2.1.23.201812141033	Install
Config Wizard for IPD allows easy configuration of Automotive IPD products.	Tags: ATV, IPD, Config Wizard	Details

Figure 9 Infineon Toolbox - Config Wizard for IPD

Click the Install button and accept the license agreement (after reading it carefully). Once the installation is completed, the Infineon Toolbox must be restarted. After the restart, the Config Wizard installation will be placed in the *My tools* tab (see *Figure 10*).

Start the ConfigWizard by sliding over the icon and clicking *Start* (see *Figure 10*).

incher		
Infineon Toolbox	con	¢ 🤉 🖂 🎄 [
My tools Manage tools	器 Scan QR code	
Start		
Config Wizard for IPD	li	
Details	\square	

Infineon Toolbox - start the Config Wizard for IPD in My tools

4.2 GUI description

The Infineon Config Wizard is designed to configure Infineon devices easily. The GUIs are product–specific and not for detailed evaluation use.

4.2.1 μlO-stick

The tool which is needed to connect the Config Wizard to the device is the Infineon μ IO-Stick. The μ IO-Stick is delivered with a 16-pin ribbon cable to connect the μ IO-Stick to the MB (see *Figure 11*).

Figure 11 Infineon µIO-Stick with ribbon cable

To connect the MB with the µIO-Stick please refer to **µIO connecter uIO** and **µIO connector TB**. *Figure 12* below illustrates the µIO-Stick which is connected to the PROFET[™]+2 12V MB.

Infineon µIO-Stick connected to the PROFET[™]+2 12V MB

4.2.2 Start-up screen

The start-up screen of the Config Wizard for IPD consists of button-tiles which are named after the product families as seen in *Figure 13* below.

Figure 13 Config Wizard for IPD - start-up screen

Note: The number of tiles seen may vary due of extensions (new product families and so on).

Clicking onto the tile with the used product family will reorganize the GUI. The next screen seen is the type selection screen for the different product types (1-channel, 2-channel, 4-channel). Also a back-button, which goes backwards one step, is included. The type selection screen for the PROFET[™]+2 12V-family is displayed in *Figure 14*. The screen is organized in tiles as well.

Figure 14

Config Wizard for IPD - PROFET[™]+2 12V Type-Selection Screen

Clicking onto the tile with the used product will again reorganize the GUI. The next screen is the PROFET[™]+2 12V GUI (see *Chapter 4.2.3*).

4.2.3 **PROFET[™]+2 12V GUI**

The GUI for the PROFET^{*+}2 12V consists of buttons, which control the GPIOs of the μ IO-Stick. The GPIOs are connected to the pins of the device (as *INx*, *DEN* and *DSELx*), therefore the buttons control the logic state at the pins of the device. The PROFET^{*+}2 12V device screen is visualized in *Figure 15* below.

0	infineon	
Set INO HIGH PWMs frues: 0 0 1 DCPuese: 0 0 1 PWMs DCPuese: 0 0 1 frues: 0 0 1 frues: 0 0 1 performent: 0 0 1 frues: 0 0 1 performent: 0 1 pe	Hz % Set DEN HIGH O Set DSEL HIGH O % Set DSEL HIGH O Set DSEL HIGH O % Set DSEL HIGH O Set DSEL HIGH O % Yes No	
0 2	4 6 8 10 t[s]	

Figure 15 PROFET[™]+2 12V GUI for a 2-channel device

The names of buttons reflect the actions they perform, such as *Set IN0 HIGH* or, if a button was clicked, *Set IN1 LOW*. Also a lamp-element indicates if a button was clicked (see *Figure 16*). The state of the buttons is visualized via changing icons and lamp-elements. If the lamp-element is green, the corresponding pin is activated.

Set IN0 HIGH	0	PWMo f _{PWMD} : DC _{PWMD} :	0 ÷	Hz %
Set IN1 LOW	•	PWM1 f _{PWM1} : DC _{PWM1} :		Hz %

Figure 16 PROFET[™]+2 12V functional view - GPIO controlling toggle-buttons

As seen in *Figure 16*, also PWM-functionality is given for channels 0 and 1. The functionality is activated by ticking the checkbox next to the button. Frequency and duty-cycle of the PWM can be set via the two spinboxes below the checkbox. The icon of the button will also change and the lamp-element will stay gray (see *Figure 17*).

Customer evaluation kit description PROFET[™]+2 12V

4 Software (optional)

Figure 17

PROFET[™]+2 12V functional view – IN0 as logic input, IN1 as PWM input

The possibility to display the sense current [IS] is also given. The sense current is converted to a measurable voltage over a resistor. This voltage is measured by an ADC [Analogue-Digital-Converter] on the µIO-stick and the digitalized data is read by the GUI and displayed in a plot, as seen in *Figure 17*. The sense current will be displayed automatically if the button *Set DEN HIGH* was clicked (icon will change to *Set DEN LOW* and the lampelement will change its color to green, see *Figure 18*).

Figure 18 PROFET[™]+2 12V functional view – Sense current display for OUT0

It is also possible to switch between the sense and the load current displays. If a device is selected in the display section (see *Figure 19*) the corresponding factor k_{ILIS} is mapped to the GUI and the load current is calculated with the defaults of the PROFET^{*+}2 12V MB. The button next to the device selection is used to switch between sense and load current and is labeled *Switch to I*_L (if clicked the label will be *Switch to I*_S, see *Figure 18*).

Customer evaluation kit description PROFET[™]+2 12V

4 Software (optional)

	Diagnosis Display
Set DEN HIGH	Sense Voltage (V _{IS}): 0.00 mV Sense Current (I _{IS}): 0.00 mA Load Current (I _L): 0.00 mA
Set DSEL HIGH	BTS7010-2EPA Switch to I _S select device BTS7008-2EPA
	BTS7010-2EPA BTS7012-2EPA BTS7020-2EPA BTS7030-2EPA
	BTS7040-2EPA BTS7080-2EPA BTS7120-2EPA BTS7200, 2EPA

Figure 19

PROFET[™]+2 12V functional view – Device selection

Diagnosis Display	Switch to	Diagnosis Display
Sense Voltage (VIS): 0.00 mV	L-display	Sense Voltage (V _{IS}): 0.00 mV
Sense Current (IIS): 0.00 mA	-[p,	Sense Current (I _{IS}): 0.00 mA
Load Current (I _L): 0.00 mA		Load Current (IL): 0.00 mA
select device Switch to I _s		select device Switch to IL
Filter activated?		Filter activated?
Yes		Yes
C No	Switch to I _o -display	C No

Figure 20

PROFET[™]+2 12V functional view – Switching from *I*_S to *I*_L

The small box with title *Filter activated*? (see *Figure 21*), which is included within the diagnosis display section is used to specify whether sense filtering is activated on the MB (see *Chapter 2.1* for further information). This setting is used to display the sense/load current and the sense voltage correctly.

Figure 21

"Filter activated?"- Box in diagnosis display section - meaning of "Yes"/"No"

5 Appendix

5 Appendix

Figure 22

Motherboard schematic

Customer evaluation kit description PROFET[™]+2 12V

5 Appendix

Figure 24 PCB bottom view

Table 6Available Demoboards

Product	ISaR name	Internet link
PROFET [™] +2 12V motherboard	PROFET PLUS2 MOTH BRD 4Ch	https://www.infineon.com/profet-plus2-moth-brd
BTS7008-1EPA	BTS7008-1EPA DAUGH BRD	https://www.infineon.com/bts7008-1epa-daugh-brd
BTS7010-1EPA	BTS7010-1EPA DAUGH BRD	https://www.infineon.com/bts7010-1epa-daugh-brd
BTS7012-1EPA	BTS7012-1EPA DAUGH BRD	https://www.infineon.com/bts7012-1epa-daugh-brd
BTS7040-1EPA	BTS7040-1EPA DAUGH BRD	https://www.infineon.com/bts7040-1epa-daugh-brd
BTS7008-2EPA	BTS7008-2EPA DAUGH BRD	https://www.infineon.com/bts7008-2epa-daugh-brd
BTS7010-2EPA	BTS7010-2EPA DAUGH BRD	https://www.infineon.com/bts7010-2epa-daugh-brd
BTS7012-2EPA	BTS7012-2EPA DAUGH BRD	https://www.infineon.com/bts7012-2epa-daugh-brd
BTS7020-2EPA	BTS7020-2EPA DAUGH BRD	https://www.infineon.com/bts7020-2epa-daugh-brd
BTS7030-2EPA	BTS7030-2EPA DAUGH BRD	https://www.infineon.com/bts7030-2epa-daugh-brd
BTS7040-2EPA	BTS7040-2EPA DAUGH BRD	https://www.infineon.com/bts7040-2epa-daugh-brd
BTS7080-2EPA	BTS7080-2EPA DAUGH BRD	https://www.infineon.com/bts7080-2epa-daugh-brd
BTS7120-2EPA	BTS7120-2EPA DAUGH BRD	https://www.infineon.com/bts7120-2epa-daugh-brd
BTS7200-2EPA	BTS7200-2EPA DAUGH BRD	https://www.infineon.com/bts7200-2epa-daugh-brd
BTS7200-4EPA	BTS7200-4EPA DAUGH BRD	https://www.infineon.com/bts7200-4epa-daugh-brd
BTS7200-2EPC	BTS7200-2EPC DAUGH BRD	https://www.infineon.com/bts7200-2epc-daugh-brd

6 Revision history

6 Revision history

Document version	Date of release	Description of changes
1.01	2019-06-27	updated family name (PROFET [™] +2 → PROFET [™] +2 12V)
1.00	2019-06-11	PROFET [™] +2 customer evaluation kit description available

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-06-27 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-rgj1553757446915

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury