MB39C811

Ultra Low Power Buck Power Management IC for Solar/Vibrations Energy Harvesting

Data Sheet (Full Production)

Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Notice On Data Sheet Designations

Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions.

Advance Information

The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content:

"This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice."

Preliminary

The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content:

"This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications."

Combination

Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page.

Full Production (No Designation on Document)

When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category:

"This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur."

Questions regarding these document designations may be directed to your local sales office.

MB39C811

Ultra Low Power Buck Power Management IC for Solar/Vibrations Energy Harvesting

Data Sheet (Full Production)

1. Description

The MB39C811 is the high efficient buck DC/DC converter IC which adopts the all-wave bridge rectifier using the low-dissipation and the comparator system. It achieves the energy harvest solution for the energy source of the high output impedance such as the piezoelectric transducer.

It is possible to select from eight preset output voltages and supply up to 100 mA of the output current.

2. Features

- Quiescent current (No load, Output in regulation) : 1.5µA
- Quiescent current (VIN = 2.5V UVLO) : 550nA
- Integrated Low Loss Full-Wave Bridge Rectifier
- VIN input voltage range : 2.6V to 23V
- Preset output voltage: 1.5V, 1.8V, 2.5V, 3.3V, 3.6V, 4.1V, 4.5V, 5.0V
- Output current : Up to 100mA
- Protection functions
- Shunt for input protection: VIN ≥ 21V, Up to 100mA Pull-down
- Over current limit
- I/O power-good detection signal output

3. Applications

- Light energy harvesting
- Piezoelectric energy harvesting
- Electro-Mechanical energy harvesting
- Wireless HVAC sensor
- Stand-alone nano-power buck regulator

asy DesignSim

Power Supply online Design Simulation Easy DesignSim

This product supports the web-based design simulation tool. It can easily select external components and can display useful information. Please access from the following URL.

http://www.spansion.com/easydesignsim/

Publication Number MB39C811_DS405-00013

Revision 2.0

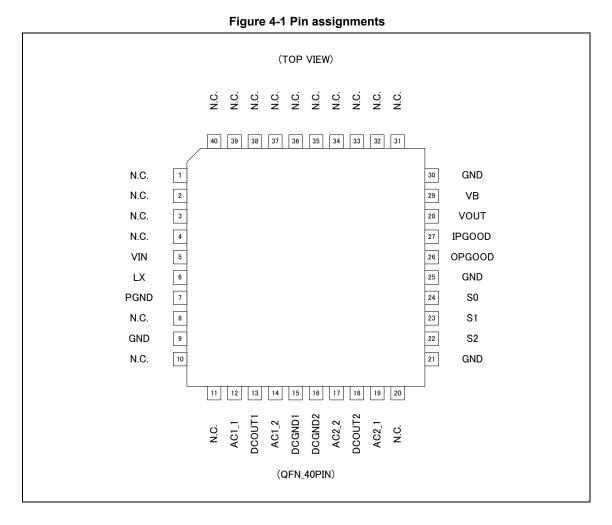
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.

Table of Contents

1.	Descr	iption	3					
2.	Featu	res	3					
3.	Applic	ations	3					
4.	Pin As	signments	6					
5.	Pin De	escriptions	7					
6.	Block	Diagram	8					
7.	Absol	ute Maximum Ratings	9					
8.	Recor	nmended Operating Conditions	10					
9.	Electr	cal Characteristics	11					
	9.1	DC characteristics	11					
	9.2	Characteristics of built-in bridge rectification circuit	12					
	9.3	AC characteristics (Input/output power-good)	12					
10.	Functi	on	13					
	10.1	Operational summary	13					
	10.2	Start-up/shut-down sequences	14					
	10.3	Function desctiptions	15					
11.	Туріса	al Application Circuits	17					
12.	Applic	ation Notes	19					
13.	Туріса	al Characteristics	22					
14.	Layou	t for Printed Circuit Board	27					
15.	Usage	Precaution	28					
16.	Order	ng Information	29					
17.	Markir	ng	29					
18.	Produ	ct Labels	30					
19.	Recor	nmended Mounting Conditions	33					
20.	Packa	ge Dimensions	34					
21.	Major	Major Changes						

Figures

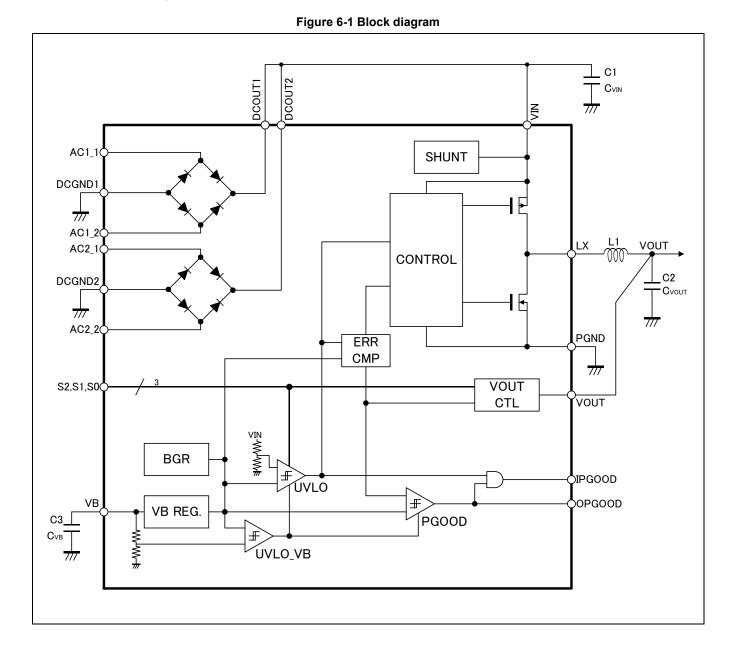
Figure 4-1 Pin assignments	6
Figure 6-1 Block diagram	
Figure 7-1 Power dissipation - Operating ambient temperature	
Figure 9-1 AC characteristics	
Figure 10-1 Timing chart	. 14
Figure 10-2 Input/output power-good signal output	. 16
Figure 11-1 Application circuit for light energy harvester	. 17
Figure 11-2 Application circuit for vibration energy harvester	. 17
Figure 11-3 Voltage doubler rectification circuit for vibration harvester	. 18
Figure 12-1 Application example using the power gating by the OPGOOD signal	. 20
Figure 12-2 Waiting for a period of time after the OPGOOD signal goes high	. 21
Figure 13-1 Typical characteristics of DC/DC conveter (L = 22µH)	. 22
Figure 13-2 Typical characteristics of DC/DC conveter (L = 10µH)	. 24
Figure 13-3 Typical characteristics of bridge rectifier	. 24
Figure 13-4 DC/DC converter sudden load change	. 24
Figure 13-5 Switching waveforms of DC/DC converter (L = 22µH)	. 25
Figure 13-6 Switching waveforms of DC/DC converter (L = 10µH)	. 26
Figure 14-1 Example of a layout design	. 27
Figure 17-1 Marking	. 29
Figure 18-1 Inner box label [Q-Pack label (4 × 8.5inch)]	. 30
Figure 18-2 Al(Aluminum) bag label [2-in-1 label (4 × 8.5inch)]	. 31


Figure 18-3 Reel label [Reel label (4 × 2.5inch)]	32
Figure 18-4 Reel label [Dry pack & Reel label (4 × 2.5inch)]	32
Figure 18-5 Outer box label [Shopping label (4 × 8.5inch)]	32
Figure 19-1 Recommended mounting conditions	33
Figure 20-1 Package dimensions	34

Tables

7
9
10
11
12
12
15
15
15
18
29
29
33
33

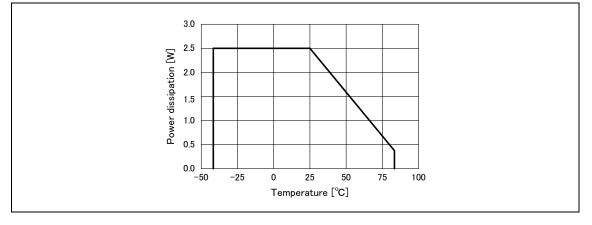
4. Pin Assignments


5. Pin Descriptions

Pin No.	Pin Name	I/O	Description		
1 to 4	N.C.	-	Non connection pin		
5	VIN	-	DC power supply input pin		
6	LX	0	DC power supply input pin		
7	PGND	-	PGND pin		
8	N.C.	-	Non connection pin		
9	GND	_	GND pin		
10,11	N.C.	-	Non connection pin		
10,11	AC1_1	1	Bridge Rectifier1 AC input pin 1		
12	DCOUT1	0	Bridge Rectifier1 DC output pin		
13	AC1_2		Bridge Rectifier1 AC input pin 2		
14	DCGND1	-	Bridge Rectifier1 DC output reference pin		
15 16	DCGND1 DCGND2	-	Bridge Rectifier2 DC output reference pin		
10	AC2 2	-	Bridge Rectifier2 AC input pin 2		
17	DCOUT2	0	Bridge Rectifier2 DC output pin		
18	AC2_1	1	Bridge Rectifier2 AC input pin 1		
19 20	N.C.	-			
		-	Non connection pin		
21	GND	-	GND pin		
22	S2	-	Output voltage select pin 2		
23	S1	1	Output voltage select pin 1		
24	S0	Ι	Output voltage select pin 0		
25	GND	-	GND pin		
26	OPGOOD	0	Output power-good output pin		
27	IPGOOD	0	Input power-good output pin		
28	VOUT	Ι	Output voltage feedback pin		
29	VB	0	Internal circuit power supply pin		
30	GND	-	GND pin		
31 to 40	N.C.	-	Non connection pin		

Table 5-1 Pin descriptions

6. Block Diagram



7. Absolute Maximum Ratings

Devenuenten	Compleal	Condition	Ra	ating	11
Parameter	Symbol	Condition	Min	Max	Unit
VIN pin input voltage	VVINMAX	VIN pin	-0.3	+24	V
VIN pin input slew rate	SRMAX	VIN pin (VIN ≥ 7V)	-	0.25	V/ms
VIN pin input current	IINMAX	VIN pin	-	100	mA
AC pin input voltage VACMAX		AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-0.3	+24	V
AC pin input current IPVMAX		AC1_1 pin, AC1_2 pin, AC2_1 pin, AC2_2 pin	-	50	mA
LX pin input voltage	VLXMAX	LX pin	-0.3	+24	V
Input voltage	VVINPUTMAX	S0 pin, S1 pin, S2 pin	-0.3	VVB + 0.3 (≤ +7.0)	V
		VOUT pin	-0.3	+7.0	V
Power dissipation	PD	Ta ≤ +25°C	-	2500	mW
Storage temperature	TSTG	-	-55	+125	°C
ESD voltage 1	VESDH	Human Body Model (100pF, 5kΩ)	-900	+2000	V
ESD voltage 2	VESDM	Machine Model (200pF, 0Ω)	-150	+150	V
ESD voltage 3	VCDM	Charged Device Model	-1000	+1000	V

Table 7-1 Absolute maximum ratings

Figure 7-1 Power dissipation - Operating ambient temperature

WARNING:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.Do not exceed any of these ratings.

8. Recommended Operating Conditions

Parameter	Symbol	Condition		Unit		
Farameter	Symbol	Condition	Min	Тур	Max	Unit
VIN pin input voltage	VVIN	VIN pin	2.6	-	23	V
	VPV	AC1_1 pin, AC1_2 pin,		-	23	V
AC pin input voltage	VPV	AC2_1 pin, AC2_2 pin	-			v
Input voltage	VSI	S0 pin, S1 pin, S2 pin	0	-	VVB	V
Input voltage	VFB	VOUT pin	0	-	5.5	V
Operating ambient temperature	Та	-	-40	-	+85	°C

Table 8-1 Recommended operating conditions

WARNING:

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- 2. Any use of semiconductor devices will be under their recommended operating condition.
- 3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- 4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

9. Electrical Characteristics

9.1 DC characteristics

Table 9-1 DC characteristics

(Ta=-40°C to +85°C, VVIN=7.0V, L1=22µH, C2=47µF)

D (
Parameter	Symbol	Condition	Min	Тур	Max	Unit
		VVIN = 2.5V (UVLO), Ta = +25°C	-	550	775	nA
Quiescent current	IVIN	VVIN = 4.5V (sleep mode), Ta = +25°C	-	1.5	2.25	μA
		VVIN = 18V (sleep mode), Ta = +25°C	-	1.9	2.85	μA
		S2 = L, S1 = L, S0 = L, IOUT = 1mA	1.457	1.5	1.544	V
		S2 = L, S1 = L, S0 = H, IOUT = 1mA	1.748	1.8	1.852	V
		S2 = L, S1 = H, S0 = L, IOUT = 1mA	2.428	2.5	2.573	V
		S2 = L, S1 = H, S0 = H, IOUT = 1mA	3.214	3.3	3.386	V
Preset output voltage	VVOUT	S2 = H, S1 = L, S0 = L, IOUT = 1mA	3.506	3.6	3.694	V
		S2 = H, S1 = L, S0 = H, IOUT = 1mA	3.993	4.1	4.207	V
		S2 = H, S1 = H, S0 = L, IOUT = 1mA	4.383	4.5	4.617	V
		S2 = H, S1 = H, S0 = H, IOUT = 1mA	4.870	5.0	5.130	V
Peak switching current	IPEAK	-	200	250	400	mA
Maximum Output current	IOUTMAX	Ta = +25°C	100*	-	-	mA
		S2 = L, S1 = L, S0 = L		4.0	4.2	
	voltage)	S2 = L, S1 = L, S0 = H	3.8			V
		S2 = L, S1 = H, S0 = L	-			
UVLO release voltage		S2 = L, S1 = H, S0 = H		5.2	5.46	
(Input power-good detection voltage)		S2 = H, S1 = L, S0 = L	4.94			V
		S2 = H, S1 = L, S0 = H		7.2	7.56	
		S2 = H, S1 = H, S0 = L	6.84			V
		S2 = H, S1 = H, S0 = H				
		S2 = L, S1 = L, S0 = L			3.0	v v v
		S2 = L, S1 = L, S0 = H	2.6	2.8		
		S2 = L, S1 = H, S0 = L				
UVLO detection voltage		S2 = L, S1 = H, S0 = H				
(Input power-good reset voltage)	VUVLOL	S2 = H, S1 = L, S0 = L	3.8	4.0	4.2	
		S2 = H, S1 = L, S0 = H				
		S2 = H, S1 = H, S0 = L	5.7	6.0	6.3	
		S2 = H, S1 = H, S0 = H				
VIN pin shunt voltage	VSHUNT	IVIN = 1mA	19	21	23	V
VIN pin shunt current	ISHUNT	-	100	-	-	mA
Output power-good detection voltage	put power-good detection voltage					
(Rising)	VOPGH	To preset voltage ratio	90	94	98	%
Output power-good reset voltage (Falling)	VOPGL	To preset voltage ratio	65.5	70	74.5	%
Power supply output voltage for internal circuit	VVB	VVIN = 6V to 20V	-	5.0(*1)	-	V

*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.

9.2 Characteristics of built-in bridge rectification circuit

Table 9-2 Characteristics of built-in bridge rectification circuit

(Ta=+25°C)

Parameter	Symbol	Condition	Value			Unit
Farameter	Symbol	Condition	Min	Тур	Max	Unit
Forward bias voltage	VF	IF = 10µA	150	280	450	mV
Forward direction current	IF	-	-	-	50	mA
Reverse bias leak current	IR	VR = 18V	-	-	20	nA
Break down voltage	VBREAK	IR = 1µA	VSHUNT	25	-	V

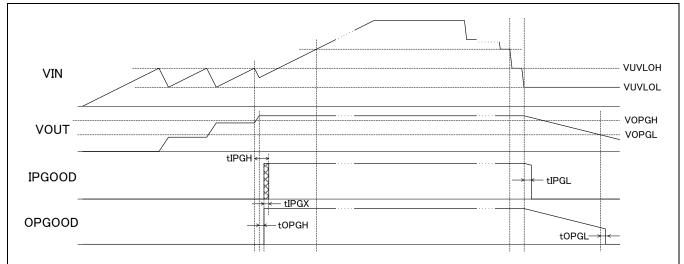

9.3 AC characteristics (Input/output power-good)

Table 9-3 AC characteristics

(Ta=+25°C, VOUT=3.3V)

Parameter	Symphol	Condition		Unit		
Parameter	Symbol	Condition	Min	Тур	Мах	Unit
Input power-good detection delay time (Rising)	tIPGH	SRVIN = 0.1V/ms	-	1	-	ms
Input power-good reset delay time (Falling)	tIPGL	SRVIN = 0.1V/ms	-	1	-	ms
Input power-good undefined time	tIPGX	OPGOOD rising	-	1	3	ms
		IOUT = 0mA,				
Output power-good detection delay time (Rising)	tOPGH	L1 = 22µH,	-	1	-	ms
		C2 = 47µF,				
Output nower good react delay time (Falling)	tOPGL	IOUT = 1mA,		1		
Output power-good reset delay time (Falling)	TOPGL	C2 = 47µF	-	I	-	ms

Figure 9-1 AC characteristics

10. Function

10.1 Operational summary

Bridge rectifier

The A/C voltage which is input to the AC1_1 and AC1_2 pins or the AC2_1 and AC2_2 pins is all-wave rectified at the bridge rectifier of the low-dissipation diode. The bridge rectifier output is output from the DCOUT1 pin and the DCOUT2 pin. By connecting those outputs to the VIN pin, the electric charge is accumulated to the capacitor and it is used as the energy condenser of the buck converter.

Power supply for internal circuit

When the VIN pin voltage is 3.5 V or lower, the power supply is supplied from the VIN pin to the internal circuit directly. If the VIN pin is over 3.5 V, the internal regulator is activated and the power supply is supplied from the internal regulator to the internal circuit. Therefore, the stable output voltage is maintained in the wide input voltage range 2.6 V to 23 V.

DC/DC start-up/shut-down

When the VIN pin voltage is over the release voltage VUVLOH for the under voltage lockout protection circuit (UVLO), the converter circuit is enabled and the electric charge is supplied from the input capacitor to the output capacitor. When the VIN pin voltage is below the UVLO detection voltage VUVLOL, the converter is disabled. The 1.2 V hysteresis between the release voltage and the detection voltage for UVLO prevents the converter from noise or frequent ON/OFF which is caused by the VIN pin voltage-drop during start-up.

Sleep/auto active control

When the feedback voltage VFB for the converter reaches the determinate voltage, the sleep state to stop the switching operation starts and that can reduce the consumption power from the internal circuit. When the VOUT voltage is below the threshold value, the VOUT voltage is maintained to the rated value by making the converter active again.

10.2 Start-up/shut-down sequences

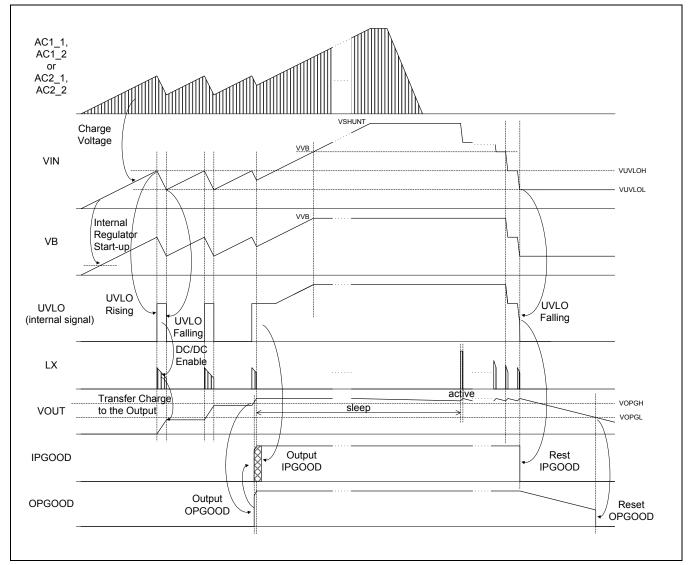


Figure 10-1 Timing chart

10.3 Function desctiptions

Output voltage setting & under voltage lockout protection (UVLO) function

It is possible to select the output voltage from eight kinds of presets using the S2, S1 and S0 pins.

Also, the under voltage lockout protection circuit is provided to prevent IC's malfunction by the transient state or the instant drop during the VIN pin voltage activation, system destroy and deterioration, and it is set as follows according to the preset voltage. When the VIN pin exceeds the release voltage for the UVLO circuit, the system is recovered.

				Under voltage lockout	protection (UVLO) -Typ-
S2	S1	S0	νουτ[ν]	Detection voltage (Falling) VUVLOL [V]	Release voltage (Rising) VUVLOH [V]
L	L	L	1.5		
L	L	Н	1.8	2.8	4.0
L	Н	L	2.5		
L	Н	Н	3.3	4.0	5.2
Н	L	L	3.6	4.0	5.2
Н	L	Н	4.1		
Н	Н	L	4.5	6.0	7.2
Н	Н	Н	5.0		

Table 10-1 Output voltage setting & under voltage lockout protection (UVLO) function

Input/output power-good signal output

When the VIN pin input voltage is equal to the release voltage VUVLOH for UVLO or more, the output for the IPGOOD pin is set to the "H" level as the input power-good. When the VIN pin input voltage is equal to the detection voltage VUVLOL for UVLO or less, the output for the IPGOOD pin is reset to the "L" level. The IPGOOD output is enabled only when the following output power-good signal output OPGOOD is "H" level.

The output power-good signal OPGOOD is set to the "H" level when the feedback voltage VFB for the VOUT pin is equal to the detection voltage VOPGH or more. When the feedback voltage VFB is equal to the reset voltage VOPGL or less, the output for the OPGOOD pin is reset to the "L" level.

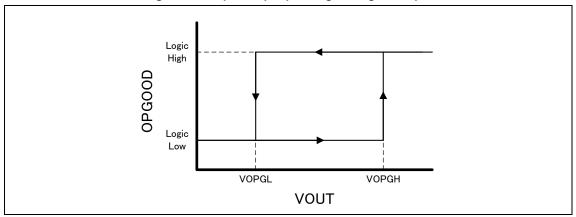

OPGOOD	UVLO	IPGOOD
L	Don't care	L
Н	L	L
Н	Н	н

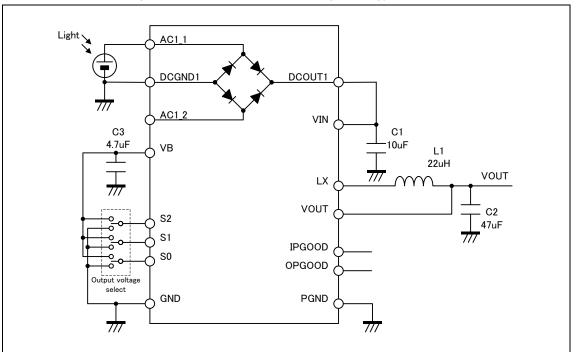
Table 10-2 Input power-good signal output (IPGOOD)

Table 10-3 Output power-good signal output (OPGOOD)

VFB	OPGOOD
≤ VOPGL	L
≥ VOPGH	Н

Figure 10-2 Input/output power-good signal output

Input over voltage protection


If the voltage exceeding VSHUNT (Typ : 21V) is input to the VIN pin, the input level is clamped enabling the over voltage protection circuit. The flowing current is ISHUNT (Min 100mA) during clamp.

Over current protection

If the output current for the LX pin reaches the over current detection level IPEAK, the circuit is protected by controlling the peak value for the inductor current setting the main side FET to the OFF state.

11. Typical Application Circuits

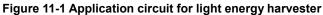
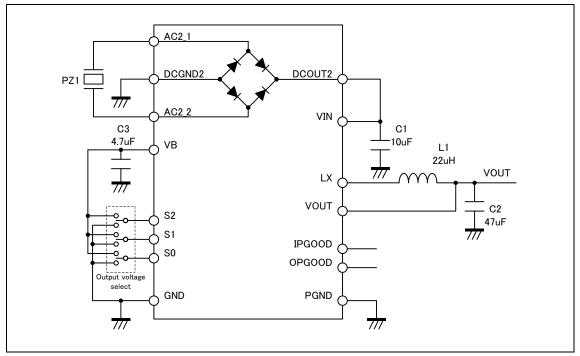
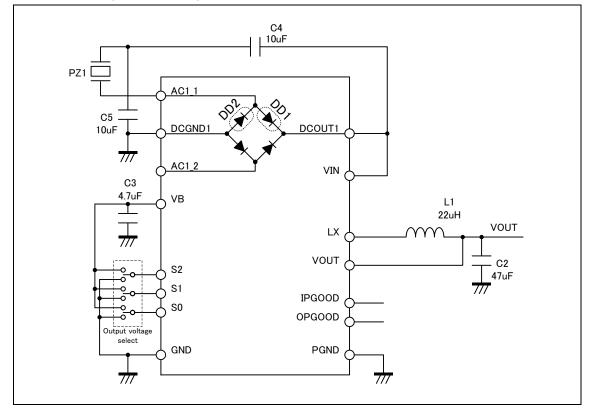




Figure 11-2 Application circuit for vibration energy harvester

Figure 11-3 Voltage doubler rectification circuit for vibration harvester

Operation of the double voltage rectifier circuit rectifying an AC input voltage

When the AC1_1 input voltage is positive, the capacitor C4 charges up through the diode DD1, and when the AC1_1 input voltage is negative, the capacitor C5 charges up through the diode DD2. Each capacitor takes on a charge of the positive peak of the AC input. The output voltage at the VIN pin is the series total of C4+C5.

Part number	Value	Description
C1	10µF(*1)	Capacitor
C2	47µF(*1)	Capacitor
C3	4.7µF	Capacitor
C4	10µF(*1)	Capacitor
C5	10µF(*1)	Capacitor
L1	10µH to 22µH	Inductor

Table 11-1 Parts list

*1: Adjust the values according to the source supply ability and the load power.

12. Application Notes

Inductor

The MB39C811 is optimized to work with an inductor in the range of 10μ H to 22μ H. Also, since the peak switching current is up to 400mA, select an inductor with a DC current rating greater than 400mA.

Harvester (Photovoltaic power generator)

In case of photovoltaic energy harvesting, such as solar or light energy harvesting, use a solar cell with high open-circuit voltage which must be higher than the UVLO release voltage. Electric power obtained from light or solar is increased in proportion to the ambient illuminance. Silicone-based solar cells are single crystal silicon solar cell, polycrystalline silicon solar cell, and amorphous silicon solar cell. Organic-based solar cells are dye-sensitized solar cell (DSC), and organic thin film solar cell. Crystal silicon and polycrystalline silicon solar cells have high energy conversion efficiency. Amorphous silicon solar cells are lightweight, flexible, and produced at low cost. Dye-sensitized solar cells are composed by sensitizing dye and electrolytes, and are low-cost solar cell. Organic thin film solar cells are lightweight, flexible, and electrolytes, and are low-cost solar cell. Organic thin film solar cells are lightweight.

Harvester (Vibration power generator: Piezoelectric generator)

Vibration power generators produce AC power by vibration. For AC to DC rectification, the MB39C811 integrates two bridge rectifiers. Electric power obtained from a vibration power generator depends on frequency of vibration and usage of the generator. Although, piezoelectric generators produce high voltage, the shunt circuit protects from higher voltage than 21V. Piezoelectric generators are made from plastics or ceramics. Plastic-based piezoelectric generators made from polyvinylidene fluoride are lightweight, flexible, excellent impact resistance, waterproof, and easily manufactured. Ceramic-based piezoelectric generators are made from barium titanate or leas zirconate titanate ceramics.

Sizing of input and output capacitors

Energy from harvester should be stored on the Cin and Cout to operate the application block. If the size of these capacitors were too big, it would take too much time to charge energy into these capacitors, and the system cannot be operated frequently. On the other hand, if these capacitors were too small, enough energy cannot be stored on these capacitors for the application block. The sizing of the Cin and Cout is important.

Common capacitors are layered ceramic capacitor, electrolytic capacitor, electric double layered capacitor, and so on. Electrostatic capacitance of layered ceramic capacitors is relatively small. However, layered ceramic capacitors are small and have high voltage resistance characteristic. Electrolytic capacitors have high electrostatic capacitance from μ F order to mF order. The size of capacitor becomes large in proportion to the size of capacitance. Electric double layered capacitors have high electrostatic capacitance around 0.5F to 1F, but have low voltage resistance characteristics around 3V to 5V. Be very careful with a voltage resistance characteristic. Also, leak current, equivalent series resistance (ESR), and temperature characteristic are criteria for selecting,

First of all, apply the following equation and calculate energy consumption for an application from voltage, current, and time during an operation.

 $E_{Appli.}[J] = V_{Appli.} \times I_{Appli.} \times t_{Appli.}$

The energy stored on a capacitor is calculated by the following equation.

$$E_{c}[J] = \frac{1}{2}CV^{2}$$

Since the energy in a capacitor is proportional to the square of the voltage, it is energetically advantageous for the buck DC/DC converter to make the Cin larger.

An example of an application using the power gating by the OPGOOD signal is shown in the Figure 12-1. The Cin and the Cout are sized so as to satisfy the following equation. The η , the efficiency of the MB39C811, is determined from the current of application and the graph shown in Figure 13-1, Efficiency vs IOUT.

 $E_{Appli.} \le dE_{Cin} \times \eta + dE_{Cout}$

 dE_{Cin} and dE_{Cout} are the available energies for the application.

$$dE_{Cin}[J] = \frac{1}{2}Cin(VUVLOH^{2} - VUVLOL^{2})$$
$$dE_{Cout}[J] = \frac{1}{2}Cout(VVOUT^{2} - VOPGL^{2})$$

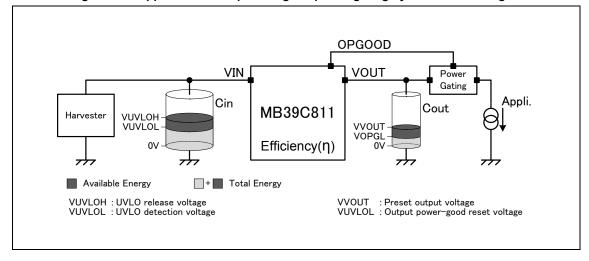


Figure 12-1 Application example using the power gating by the OPGOOD signal

Before calculating the initial charging time ($T_{Initial}[s]$), calculate the total energy (E_{Cin} and E_{Cout}) stored on both Cin and Cout.

$$E_{\text{Cout}}[J] = \frac{1}{2}\text{Cin} \times \text{VUVLOH}^{2}$$
$$E_{\text{Cout}}[J] = \frac{1}{2}\text{Cout} \times \text{VVOUT}^{2}$$

A $P_{Harvester}[W]$ is a power generation capability of a harvester. An initial charging time ($T_{Initial}[s]$) is calculated by the following equation.

$$T_{\mathrm{Initial}} = \frac{E_{\mathrm{Cin}}}{P_{\mathrm{Harvester}}} + \frac{E_{\mathrm{Cout}}}{P_{\mathrm{Harvester}} \times \eta}$$

A repeat charging time $(T_{Repeat}[s])$ is calculated by the following equation. The $T_{Repeat}[s]$ become shorter than the $T_{Initial}[s]$.

 $T_{Repeat} = \frac{dE_{Cin}}{P_{Harvester}} + \frac{dE_{Cout}}{P_{Harvester} \times \eta}$

Additionally, waiting for a period of time after the OPGOOD signal goes high can store more energy on the capacitor Cin (Figure 12-2).

$$dE_{Cout}[J] = \frac{1}{2}Cin(V_{OpenCircuitVoltage}^2 - VUVLOL^2)$$

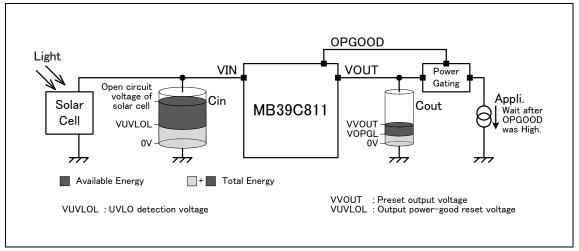
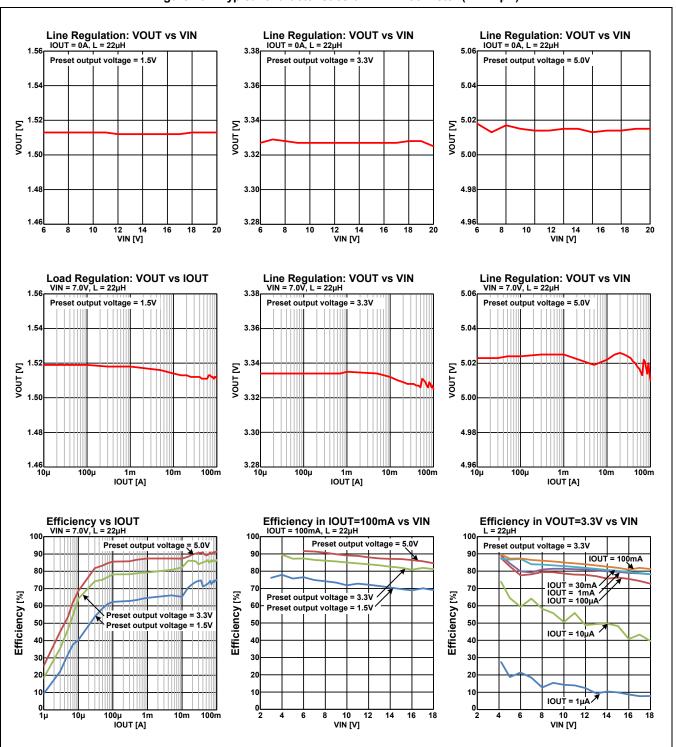
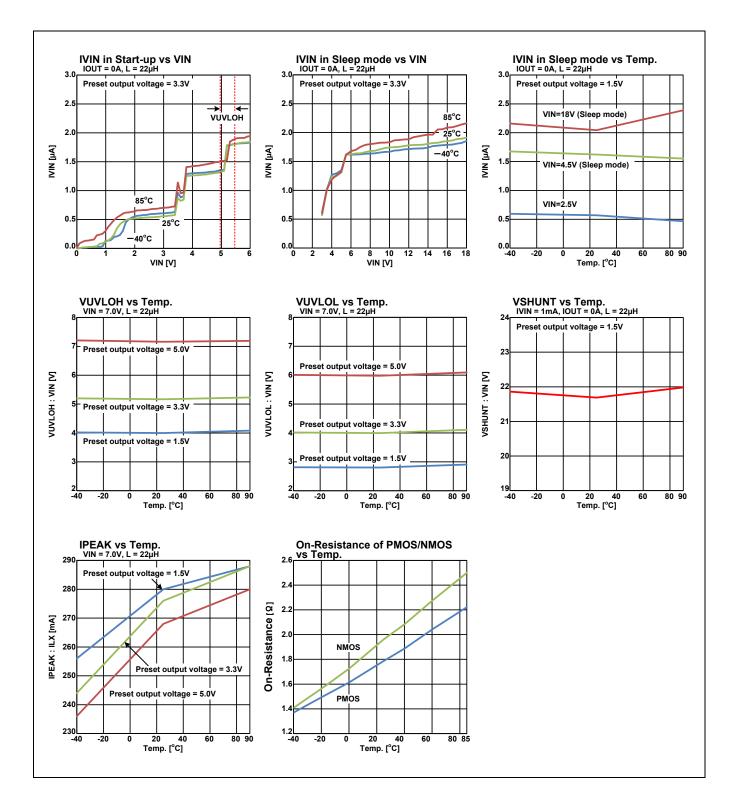
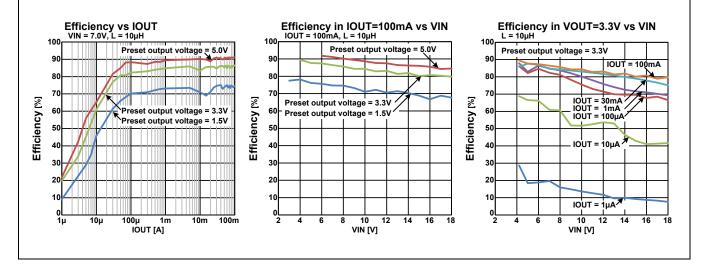
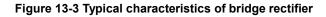
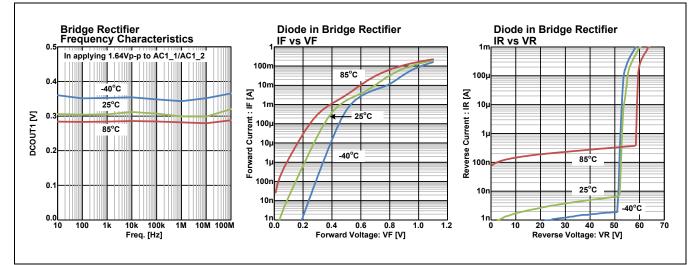



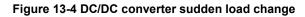
Figure 12-2 Waiting for a period of time after the OPGOOD signal goes high


For more information about the energy calculation, refer to the APPLICATION NOTE, Energy Calculation For Energy Harvesting.


13. Typical Characteristics







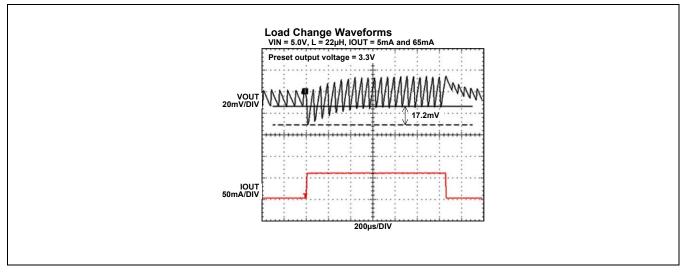
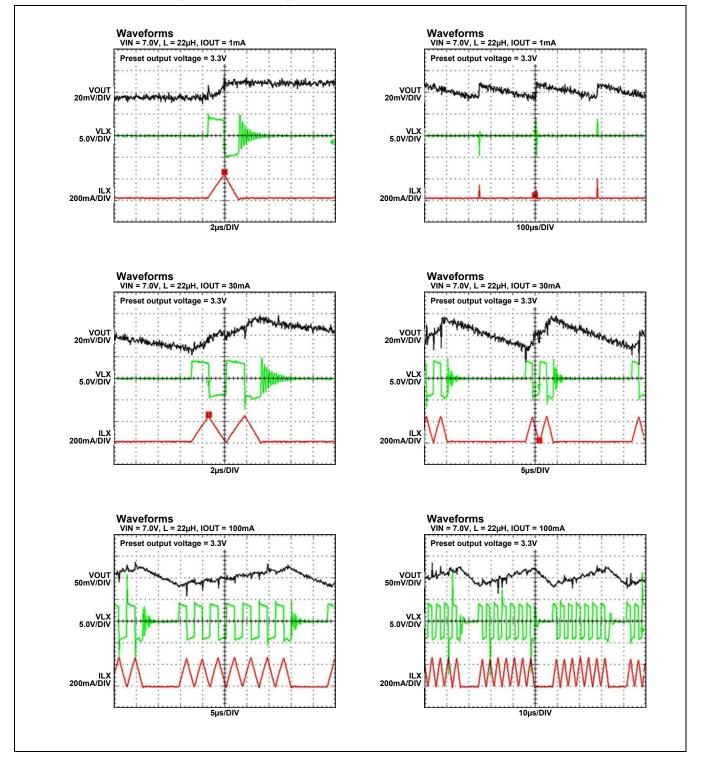


Figure 13-2 Typical characteristics of DC/DC conveter (L = 10µH)



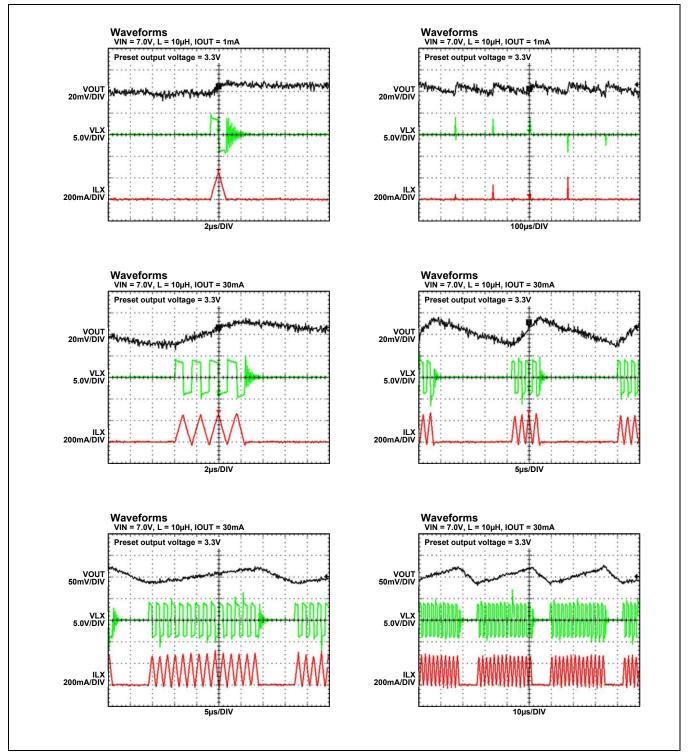
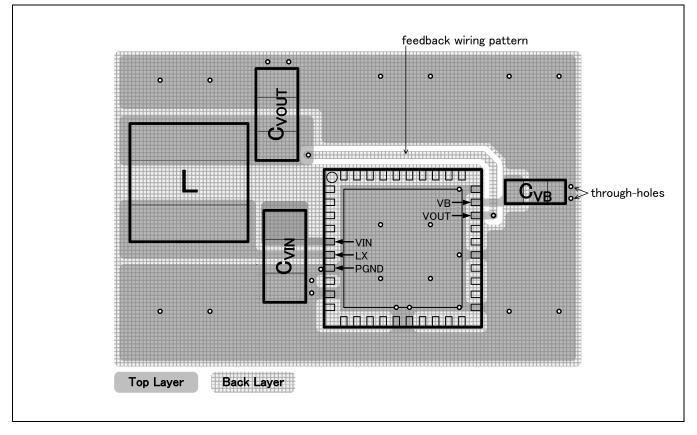


Figure 13-5 Switching waveforms of DC/DC converter (L = 22μ H)

Figure 13-6 Switching waveforms of DC/DC converter (L = 10μ H)



14. Layout for Printed Circuit Board

Note the points listed below in layout design

- Place the switching parts(*1) on top layer, and avoid connecting each other through through-holes.
- Make the through-holes connecting the ground plane close to the GND pins of the switching parts(*1).
- Be very careful about the current loop consisting of the input capacitor CVIN, the VIN pin of IC, and the PGND pin. Place and connect these parts as close as possible to make the current loop small.
- The output capacitor CVOUT and the inductor L are placed adjacent to each other.
- Place the bypass capacitor CVB close to VB pin, and make the through-holes connecting the ground plane close to the GND pin of the bypass capacitor CVB.
- Draw the feedback wiring pattern from the VOUT pin to the output capacitor CVOUT pin. The wiring connected to the VOUT pin is very sensitive to noise so that the wiring should keep away from the switching parts(*1). Especially, be very careful about the leaked magnetic flux from the inductor L, even the back side of the inductor L.

*1: Switching parts: IC (MB39C811), Input capacitor (CVIN), Inductor (L), Output capacitor (CVOUT). Refer to Figure 6-1.

Figure 14-1 Example of a layout design

15. Usage Precaution

Do not configure the IC over the maximum ratings

If the IC is used over the maximum ratings, the LSI may be permanently damaged.

It is preferable for the device to be normally operated within the recommended usage conditions. Usage outside of these conditions can have a bad effect on the reliability of the LSI.

Use the devices within recommended operating conditions

The recommended operating conditions are the recommended values that guarantee the normal operations of LSI.

The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

Printed circuit board ground lines should be set up with consideration for common impedance

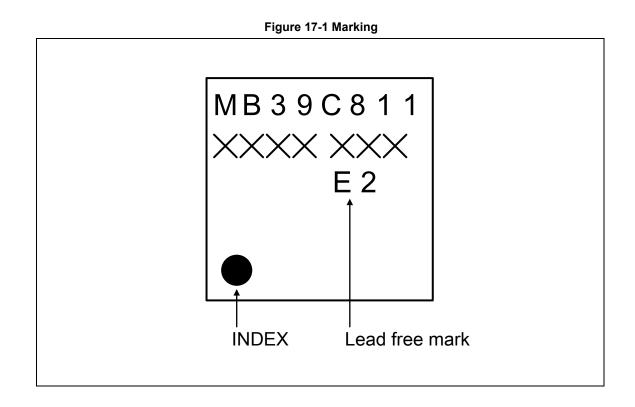
Take appropriate measures against static electricity

- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of 250 kΩ to 1MΩ in series between body and ground.

Do not apply negative voltages

The use of negative voltages below -0.3V may cause the parasitic transistor to be activated on LSI lines, which can cause malfunctions.

16. Ordering Information


Table 16-1 Ordering information

Part number	Package	
MB39C811QN	40-pin plastic QFN	
	(LCC-40P-M63)	

Table 16-2 EVB Ordering information

EVB Part number	EVB Revision
MB39C811-EVB-02	Rev. 1.0

17. Marking

18. Product Labels

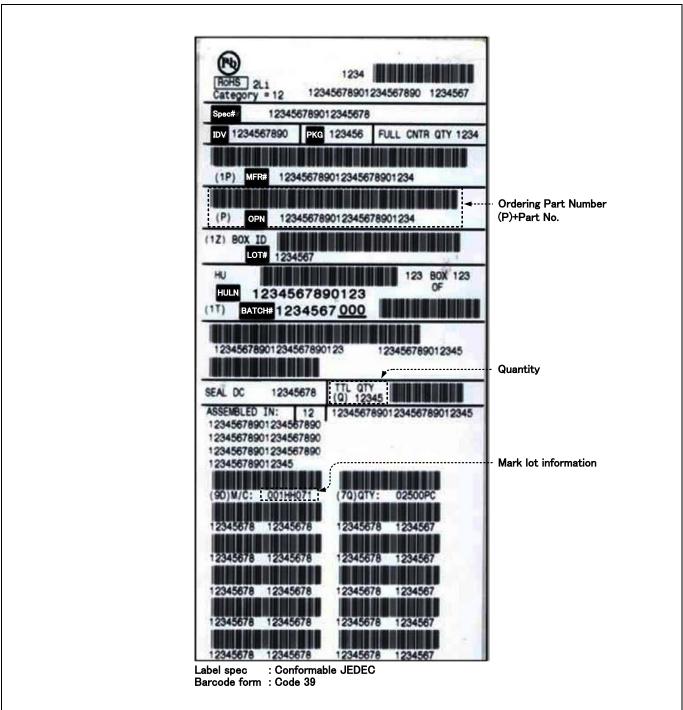


Figure 18-1 Inner box label [Q-Pack label (4 × 8.5inch)]

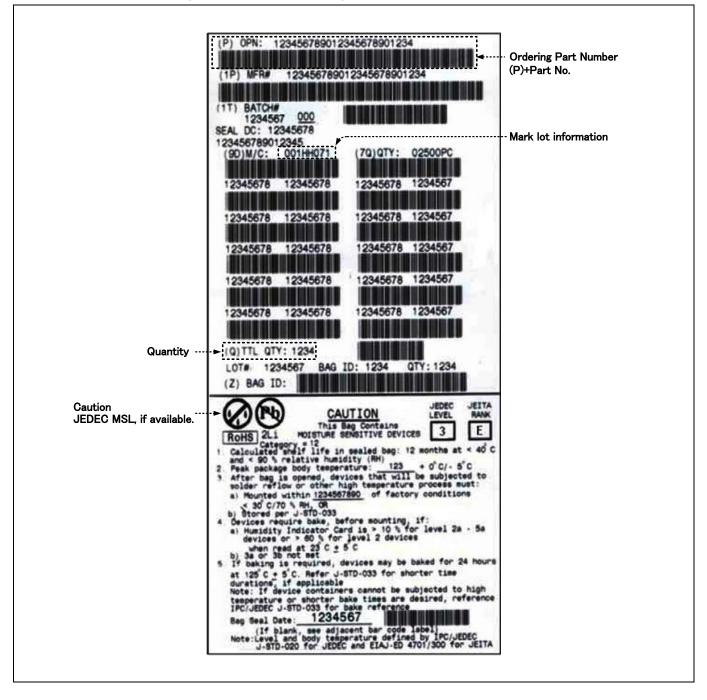


Figure 18-2 Al(Aluminum) bag label [2-in-1 label (4 × 8.5inch)]

DataSheet

Figure 18-3 Reel label [Reel label (4 × 2.5inch)]

	Drdering Part Number P)+Part No.
(1T) BATCH# 1234567 000 123456789012345 (90)#/C: 001H071 (70)0TY: 02500PC (90)#/C: 001HH072 (70)0TY: 02500PC	Mark lot information
12345678 12345678	
Quantity [0] TTL 0TY: 1234 LOT# 1234567	

Figure 18-4 Reel label [Dry pack & Reel label (4 × 2.5inch)]

Figure 18-5 Outer box label [Shopping label (4 × 8.5inch)]

1212345676 (Q) QUANTITY: (12345676	6789012345678901234 9012345678901234 123456789 EA 7890123456789012345678901	SHIP TO:	915 DeGuig SUNNYVALE 12245678901 12245678901 12245678901 12245678901 12245678901 12245678901 12245678901 12245678901	LC and its affiliat ne Drive, P.O. Box (CA 34088-3450 20166789012245678 20166789012245678 20166789012245678 20166789012345678 20166789012345678 20166789012345678 20166789012345678 20166789012345678 20166789012345678 20166789012345678 20166789012345678 12345678 PACKAGE WEIGHT: (12345678 LB PACKAGE COUNT: (123450F 12348) HU NO. (1234567 LB	0450 01204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890 001204567890
	2345678901234567890123		DIFFUSION: 2 12 12 12 12	DEL NO. 80000	599

19. Recommended Mounting Conditions

Table 19-1 Recommended mounting conditions

Items	Contents	
Method	IR(Infrared Reflow) / Convection	
Times	3 times in succession	
	Before unpacking	Please use within 2 years after production.
Floor life	From unpacking to reflow	Within 7 days
FIOOI IIIe	In case over period of floor	Baking with 125°C+/-3°C for 24hrs+2hrs/-0hrs is required. Then
	life(*1)	please use within 7 days. (Please remember baking is up to 2 times)
Floor life	Between 5°C and 30°C and also below 70%RH required.	
condition	(It is preferred lower humidity in the required temp range.)	

*1: Concerning the Tape & Reel product, please transfer product to heatproof tray and so on when you perform baking. Also please prevent lead deforming and ESD damage during baking process.

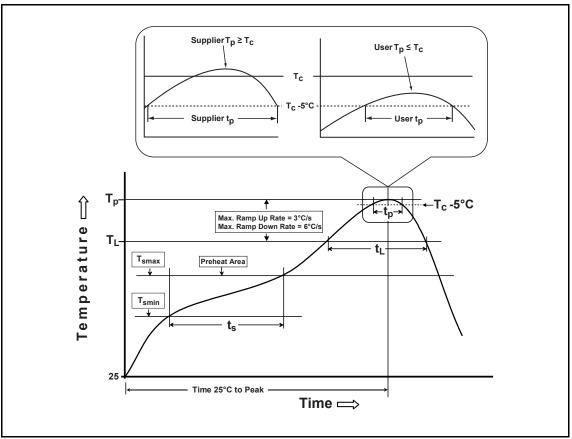
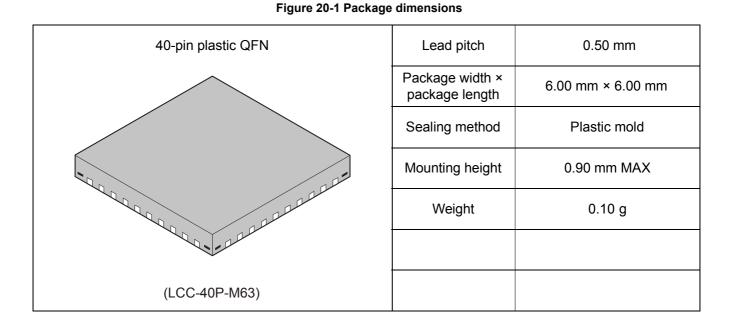
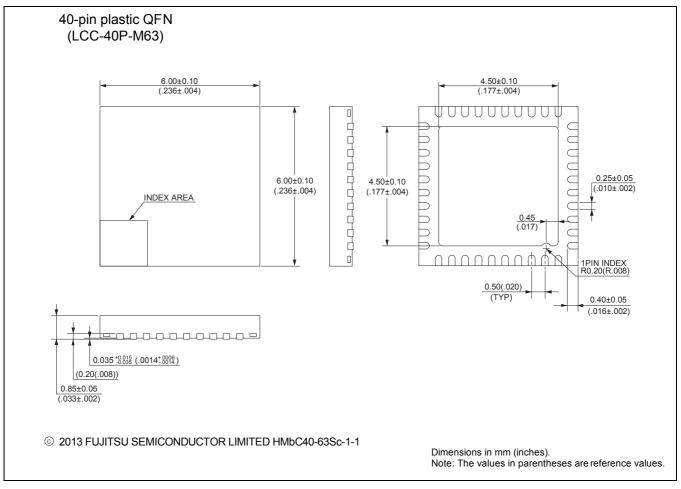


Figure 19-1 Recommended mounting conditions


Table 19-2 Recommended mounting conditions (J-STD-020D)


(Temperature on the top of the package body is measured.)

260°C Max.		
TL to TP: Ramp Up Rate	3°C/s Max.	
TS: Preheat & Soak	150 to 200°C, 60 to 120s	
TP - tP: Peak Temperature	260°C Down, within 30s	
TL – tL: Liquidous Temperature	217°C, 60 to 150s	
TP to TL: Ramp Down Rate	6°C /s Max.	
Time 25°C to Peak	8min Max.	

20. Package Dimensions

Please check the latest package dimension at the following URL.

http://edevice.fujitsu.com/package/jp-search/

21. Major Changes

Page	Section	Change Results				
Preliminary 0.1 [June 14, 2013]						
-	-	Initial release				
Revision 1	Revision 1.0 [November 18, 2013]					
6 4.Pin Assignments		Changed Pin8 PGND to N.C.				
7	5.Pin Descriptions	Changed Pin8 PGND to N.C.				
		Added Max in Power dissipation				
		Added Figure [Power dissipation]				
9	7.Absolute Maximum Rating	Changed VIN pin input slew rate				
		Added VIN pin , Input current				
		Added AC pin input current				
10	8 Decommended Operating Conditions	Deleted Added VIN pin , Input current				
10	8.Recommended Operating Conditions	Deleted AC pin input current				
		Changed values in "Input voltage range"				
	9.1.DC Characteristics	Deleted Input slew rate				
		Added "IOUT=1mA" in "Preset output voltage" and changed values				
11		Changed "over current protection" to "peak switching current" and values				
		Changed "Output current" to "Maximum output current" and values				
		Changed values in "UVLO release voltage"				
		Changed values in "UVLO detection voltage"				
18	11.Example	Added new				
22	14.Ordering Information	Added "Table 14-2 EVB Ordering Information"				
23	15.Marking	Added new				
24	16.Product Label	Added new				
25	17.Recommended Mounting Conditions	Added new				
Revision 2	Revision 2.0					
11	9. Electrical Characteristics	Deleted Input voltage range				
11	Table 9-1 DC characteristics	Deleted input voltage range				
	11. Typical Application Circuits					
18	Figure 11-3 Voltage doubler rectification circuit	Added the explanation of the voltage doubler rectification circuit				
	for vibration harvester					
19 to 21	12. Application Notes	Added the "12. Application Notes"				
22 to 26	13. Typical Characteristics	Updated the "13. Typical Characteristics"				
27	14. Layout for Printed Circuit Board	Added the "14. Layout for Printed Circuit Board"				
30 to 32	18. Product Label	Changed the "18. Product Label"				

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document.

Copyright © 2013 - 2014 Spansion All rights reserved. Spansion[®], the Spansion logo, MirrorBit[®], MirrorBit[®] Eclipse[™], ORNAND[™], Easy DesignSim[™], Traveo[™] and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners.