1N5550 1N5553 1N5551 1N5554 1N5552

GLASS PASSIVATED

SILICON RECTIFIERS
3.0 AMP, 200 THRU 1000 VOLT

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 1N5550 series types are silicon rectifiers mounted in a hermetically sealed, glass passivated package designed for general purpose applications where high reliability is required.

MARKING: FULL PART NUMBER

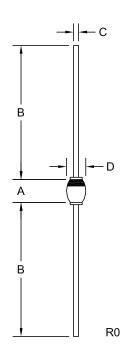
MAXIMUM RATINGS: (T_A=25°C unless otherwise noted)

SYMBOL 1N5550 1N5551 1N5552 1N5553 1N5554 UNITS

SYMBOL	<u>1N5550</u>	<u>1N5551</u>	1N5552	<u>1N5553</u>	<u>1N5554</u>	UNITS
V_{RRM}	200	400	600	800	1000	V
v_R	200	400	600	800	1000	V
V _R (RMS)	140	280	420	560	700	V
lo			3.0			Α
IFSM			100			Α
T _J , T _{stg}		-(65 to +20	0		°C
Θ_{JL}			30			°C/W
	VRRM VR VR(RMS) IO IFSM TJ, Tstg	VRRM 200 VR 200 VR(RMS) 140 IO IFSM TJ, T _{stg}	VRRM 200 400 VR 200 400 VR(RMS) 140 280 IO IFSM TJ, T _{stg}	VRRM 200 400 600 VR 200 400 600 VR(RMS) 140 280 420 IO 3.0 IFSM 100 TJ, Tstg -65 to +20	VRRM 200 400 600 800 VR 200 400 600 800 VR(RMS) 140 280 420 560 IO 3.0 IFSM 100 100 TJ, Tstg -65 to +200	VRRM 200 400 600 800 1000 VR 200 400 600 800 1000 VR(RMS) 140 280 420 560 700 IO 3.0 IFSM 100

SYMBOL I _R	TEST CONDITIONS V _R =Rated V _{RRM}	MÍN	MAX 1.0	UNITS μΑ
I_{R}	V _R =Rated V _{RRM} , T _A =100°C		75	μΑ
VF	I _F =3.0A (200V thru 600V)		1.0	V
V_{F}	I _F =3.0A (800V thru 1000V)		1.1	V
BV_R	I _R =50μA (1N5550)	240		V
BV_R	I _R =50μA (1N5551)	460		V
BV_R	I _R =50μA (1N5552)	660		V
BV_R	I _R =50μA (1N5553)	880		V
BV_R	I _R =50μA (1N5554)	1100		V
t _{rr}	I_F =0.5A, I_R =1.0A, I_{rr} =0.25A (200V thru 600V)		2.0	μs
t _{rr}	I_F =0.5A, I_R =1.0A, I_{rr} =0.25A (800V thru 1000V)		4.0	μs

Notes: (1) At 0.375 inch (9.52mm) lead length from body.


R2 (27-February 2013)

1N5550 1N5553 1N5551 1N5554 1N5552

GLASS PASSIVATED SILICON RECTIFIERS 3.0 AMP, 200 THRU 1000 VOLT

GPR-4AM CASE - MECHANICAL OUTLINE

DIMENSIONS									
	INCHES		MILLIMETERS						
SYMBOL	MIN	MAX	MIN	MAX					
Α	0.165	0.189	4.20	4.80					
В	1.024	-	26.00						
С	0.037	0.042	0.95	1.06					
D	0.130	0.175	3.30	4.45					

GPR-4AM (REV: R0)

R2 (27-February 2013)

www.centralsemi.com

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free quick ship samples (2nd day air)
- · Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- · PbSn plating options
- · Package details
- · Application notes
- · Application and design sample kits
- Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)