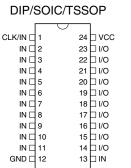
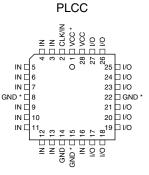

Features

- Advanced, High-speed, Electrically-erasable Programmable Logic Device
 - Superset of 22V10
 - Enhanced Logic Flexibility
 - Backward Compatible with ATV750B/BL and ATV750/L
- Low-power Edge-sensing "L" Option with 1 mA Standby Current
- D- or T-type Flip-flop
- Product Term or Direct Input Pin Clocking
- 7.5 ns Maximum Pin-to-pin Delay with 5V Operation
- Highest Density Programmable Logic Available in 24-pin Package – Advanced Electrically-erasable Technology
- Advanced Electrically-erasable lechno
 - Reprogrammable
 100% Tested
- Increased Logic Flexibility
 - 42 Array Inputs, 20 Sum Terms and 20 Flip-flops
- Enhanced Output Logic Flexibility
 - All 20 Flip-flops Feed Back Internally
 - 10 Flip-flops are also Available as Outputs
- Programmable Pin-keeper Circuits
- Dual-in-line and Surface Mount Package in Standard Pinouts
- Commercial and Industrial Temperature Ranges
- 20-year Data Retention
- 2000V ESD Protection
- 1000 Erase/Write Cycles
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available


Block Diagram



Pin Configurations

Pin	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
GND	Ground
VCC	+5V Supply

Note: For PLCC, pins 1, 8, 15, and 22 can be left unconnected. For superior performance, connect VCC to pin 1 and GND to pins 8, 15, and 22.

High-speed Complex Programmable Logic Device

ATF750C ATF750CL

0776J-PLD-02/06

Description

The ATF750C(L)s are twice as powerful as most other 24-pin programmable logic devices. Increased product terms, sum terms, flip-flops and output logic configurations

translate into more usable gates. High-speed logic and uniform predictable delays guarantee fast in-system performance. The ATF750C(L) is a high-performance CMOS (electrically-erasable) complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable technology.

Each of the ATF750C(L)'s 22 logic pins can be used as an input. Ten of these can be used as inputs, outputs or bi-directional I/O pins. Each flip-flop is individually configurable as either D- or T-type. Each flip-flop output is fed back into the array independently. This allows burying of all the sum terms and flip-flops.

There are 171 total product terms available. There are two sum terms per output, providing added flexibility. A variable format is used to assign between four to eight product terms per sum term. Much more logic can be replaced by this device than by any other 24-pin PLD. With 20 sum terms and flip-flops, complex state machines are easily implemented with logic to spare.

Product terms provide individual clocks and asynchronous resets for each flip-flop. Each flip-flop may also be individually configured to have direct input pin controlled clocking. Each output has its own enable product term. One product term provides a common synchronous preset for all flip-flops. Register preload functions are provided to simplify testing. All registers automatically reset upon power-up.

The ATF750C(L) is a low-power device with speeds as fast as 15 ns. The ATF750C(L) provides the optimum low-power CPLD solution. This device significantly reduces total system power, thereby allowing battery-powered operations.

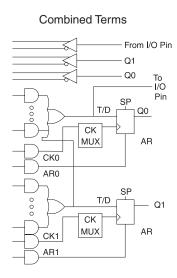
Absolute Maximum Ratings*

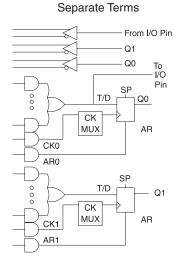
Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V ⁽¹⁾
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾

*NOTIC	E:	Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent dam- age to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Noto	1	Minimum voltago is 0.6V DC which may under

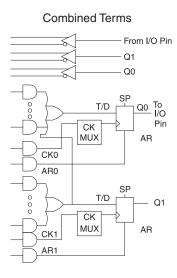
Note: 1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7.0V for pulses of less than 20 ns.

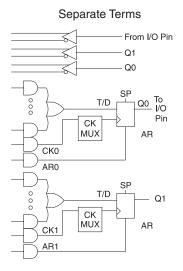
DC and AC Operating Conditions

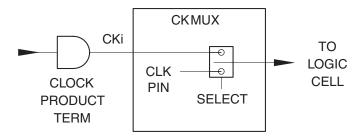

All members of the family are specified to operate in either one of two voltage ranges. Parameters are specified as noted to be either 2.7V to 3.6V, 5V \pm 5% or 5V \pm 10%.


5V Operation	Commercial -7.5, -10, -15	Industrial -10, -15
Operating Temperature (Ambient)	0°C - 70°C	-40°C - +85°C
V _{CC} Power Supply	5V ±5%	5V ±10%

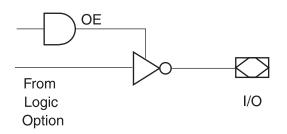
ATF750C/CL

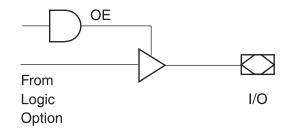

Logic Options


Combinatorial Output



Registered Output



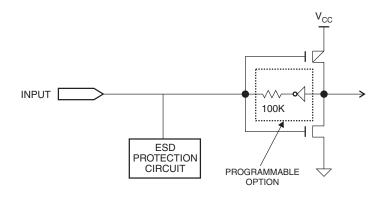


Clock Mux

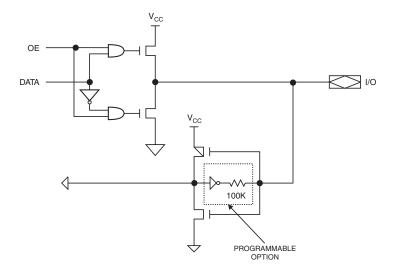
Output Options

Bus-friendly Pin-keeper Input and I/Os

All input and I/O pins on the ATF750C(L) have programmable "pin-keeper" circuits. If activated, when any pin is driven high or low and then subsequently left floating, it will stay at that previous high or low level.


This circuitry prevents unused input and I/O lines from floating to intermediate voltage levels, which causes unnecessary power consumption and system noise. The keeper circuits eliminate the need for external pull-up resistors and eliminate their DC power consumption.

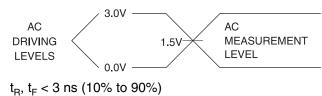
Enabling or disabling of the pin-keeper circuits is controlled by the device type chosen in the logic compiler device selection menu. Please refer to the software compiler table for more details. Once the pin-keeper circuits are disabled, normal termination procedures are required for unused inputs and I/Os.


Table 1. Software Compiler Mode Selection

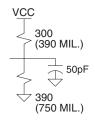
Synario	WINCUPL	Pin-keeper Circuit
ATF750C	V750C	Disabled
ATF750C (PPK)	V750CPPK	Enabled

Input Diagram

I/O Diagram

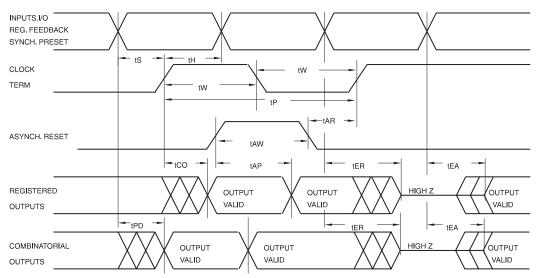

4 **ATF750C/CL**

DC Characteristics

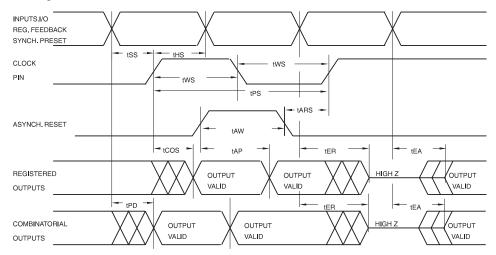

Symbol	Parameter	Condition			Min	Тур	Max	Units
ILI	Input Load Current	$V_{IN} = -0.1V$ to $V_{CC} + 1V$					10	μA
I _{LO}	Output Leakage Current	$V_{OUT} = -0.1 V$ to V_{C}	_C + 0.1V				10	μA
		0.7.10	Com.		125	180	mA	
			C-7, -10	Ind., Mil.		135	190	mA
	Power Supply Current, Standby $V_{CC} = Max$, $V_{IN} = Max$, Outputs OpenC-	0.45	Com.		125	180	mA	
		C-15	Ind., Mil.		135	190	mA	
		01.45	Com.		0.12	1	mA	
			CL-15	Ind., Mil.		0.15	2	mA
I _{OS} ⁽¹⁾	Output Short Circuit Current	V _{OUT} = 0.5V					-120	mA
V _{IL}	Input Low Voltage	$4.5 \leq V_{CC} \leq 5.5 V$	$4.5 \le V_{CC} \le 5.5 V$		-0.6		0.8	V
VIH	Input High Voltage				2.0		V _{CC} + 0.75	V
			I _{OL} = 16 mA	Com., Ind.			0.5	V
V _{OL} Output Low Voltage		I _{OL} = 12 mA	Mil.			0.5	V	
	Vollage		I _{OL} = 24 mA	Com.			0.8	V
V _{OH}	Output High Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = Min$	I _{OH} = -4.0 mA	,	2.4			V

Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

Input Test Waveforms and Measurement Levels


Output Test Load

AC Waveforms, Product Term Clock⁽¹⁾


Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.

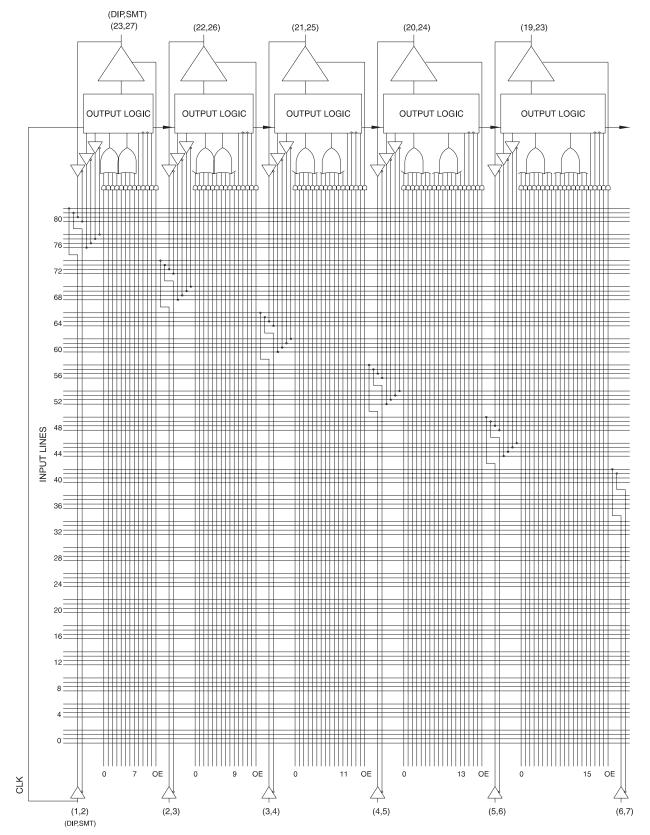
AC Characteristics, Product Term Clock⁽¹⁾

		7	-	10	C/C	L-15	
Parameter	Min	Max	Min	Max	Min	Max	Units
Input or Feedback to Non-registered Output		7.5		10		15	ns
Input to Output Enable		7.5		10		15	ns
Input to Output Disable		7.5		10		15	ns
Clock to Output	3	7.5	4	10	5	12	ns
Clock to Feedback	1	5	4	7.5	5	9	ns
Input Setup Time	3		4		8/12		ns
Feedback Setup Time	3		4		7		ns
Hold Time	1		2		5		ns
Clock Period	7		11		14		ns
Clock Width	3.5		5.5		7		ns
External Feedback 1/(t _S + t _{CO})		95		71		50/41	MHz
Internal Feedback 1/(t _{SF} + t _{CF})		125		86		62	MHz
No Feedback 1/(t _P)		142		90		71	MHz
Asynchronous Reset Width	5		10		15		ns
Asynchronous Reset Recovery Time	3		10		15		ns
Asynchronous Reset to Registered Output Reset		8		12		15	ns
Setup Time, Synchronous Preset	4		7		8		ns
	Input or Feedback to Non-registered OutputInput to Output EnableInput to Output DisableClock to OutputClock to FeedbackInput Setup TimeFeedback Setup TimeHold TimeClock PeriodClock WidthExternal Feedback 1/(t _S + t _{CP})No Feedback 1/(t _P)Asynchronous Reset WidthAsynchronous Reset to Registered Output Reset	Input or Feedback to Non-registered OutputInput to Output EnableInput to Output DisableClock to OutputClock to OutputSetup Time3Feedback Setup Time3Hold Time1Clock Width3.5External Feedback 1/(ts + tcP)No Feedback 1/(ts + tcP)No Feedback 1/(ts + tcP)Asynchronous Reset Width5Asynchronous Reset to Registered Output ResetSetup Time, Synchronous Preset4	Input or Feedback to Non-registered Output7.5Input to Output Enable7.5Input to Output Disable7.5Clock to Output3Clock to Output3Clock to Feedback115Input Setup Time3Feedback Setup Time111Clock Period7Clock Width3.5External Feedback $1/(t_S + t_{CP})$ 95Internal Feedback $1/(t_F)$ 142Asynchronous Reset Width5Asynchronous Reset to Registered Output Reset8Setup Time, Synchronous Preset4	Input or Feedback to Non-registered Output 7.5 Input to Output Enable 7.5 Input to Output Disable 7.5 Clock to Output 3 7.5 Clock to Output 3 7.5 Input Setup Time 3 7.5 Hold Time 3 4 Clock Veriod 7 11 Clock Veriod 7 11 Clock Vidth 3 4 Hold Time 1 2 Clock Vidth 3.5 5.5 External Feedback 1/(t _S + t _{CO}) 95 110 Internal Feedback 1/(t _S + t _{CP}) 142 10 Asynchronous Reset Width 5 10 Asynchronous Reset to Registered Output Reset 8 7	Input or Feedback to Non-registered Output 7.5 10 Input to Output Enable 7.5 10 Input to Output Disable 7.5 10 Clock to Output 3 7.5 4 10 Clock to Output 3 7.5 4 10 Clock to Feedback 1 5 4 7.5 Input Setup Time 3 4 7.5 Feedback Setup Time 3 4 7.5 Hold Time 1 2 11 Clock Veriod 7 11 2 Clock Width 3.5 5.5 11 Internal Feedback 1/(t _S + t _{CO}) 95 71 Internal Feedback 1/(t _{SF} + t _{CF}) 142 90 Asynchronous Reset Width 5 10 Asynchronous Reset to Registered Output Reset 8 12 Setup Time, Synchronous Preset 4 7	Input or Feedback to Non-registered Output 7.5 10 Input to Output Enable 7.5 10 Input to Output Disable 7.5 10 Clock to Output 3 7.5 4 10 Clock to Output 33 7.5 4 10 5 Clock to Feedback 1 5 4 7.5 5 Input Setup Time 3 7.5 4 8/12 Feedback Setup Time 3 4 8/12 Feedback Setup Time 3 4 7 Hold Time 1 2 5 Clock Period 7 11 14 Clock Width 3.5 5.5 7 External Feedback 1/(t _S + t _{CP}) 95 71 11 Internal Feedback 1/(t _S + t _{CP}) 142 90 15 Asynchronous Reset Width 5 10 15 Asynchronous Reset to Registered Output Reset 8 12 15 Asynchronous Reset to Registered Output Reset <td< td=""><td>Input or Feedback to Non-registered Output7.51015Input to Output Enable7.51015Input to Output Disable7.51015Clock to Output37.54105Clock to Feedback1547.559Input Setup Time347.559Feedback Setup Time3471014Clock Veriod11259Input Setup Time3471414Feedback Setup Time3471414Clock Period711141414Clock Width3.55.5750/41Internal Feedback $1/(t_S + t_{CO})$12128662No Feedback $1/(t_S + t_{CF})$14141515Asynchronous Reset Width5101515Asynchronous Reset to Registered Output Reset8101515Setup Time, Synchronous Preset47381215</td></td<>	Input or Feedback to Non-registered Output7.51015Input to Output Enable7.51015Input to Output Disable7.51015Clock to Output37.54105Clock to Feedback1547.559Input Setup Time347.559Feedback Setup Time3471014Clock Veriod11259Input Setup Time3471414Feedback Setup Time3471414Clock Period711141414Clock Width3.55.5750/41Internal Feedback $1/(t_S + t_{CO})$ 12128662No Feedback $1/(t_S + t_{CF})$ 14141515Asynchronous Reset Width5101515Asynchronous Reset to Registered Output Reset8101515Setup Time, Synchronous Preset47381215

Note: 1. See ordering information for valid part numbers.

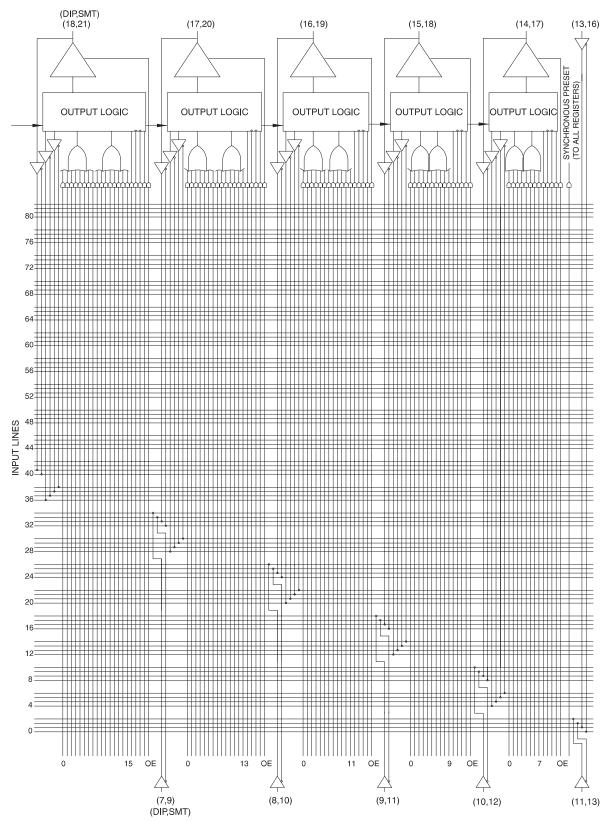
AC Waveforms, Input Pin Clock⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.


AC Characteristics, Input Pin Clock

		-	-7		10	C/C	L-15	
Symbol	Parameter	Min	Мах	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-registered Output		7.5		10		15	ns
t _{EA}	Input to Output Enable		7.5		10		15	ns
t _{ER}	Input to Output Disable		7.5		10		15	ns
t _{cos}	Clock to Output	0	6.5	0	7	0	10	ns
t _{CFS}	Clock to Feedback	0	3.5	0	5	0	5.5	ns
t _{SS}	Input Setup Time	4		5		8/12.5		ns
t _{SFS}	Feedback Setup Time	4		5		7		ns
t _{HS}	Hold Time	0		0		0		ns
t _{PS}	Clock Period	7		10		12		ns
t _{ws}	Clock Width	3.5		5		6		ns
	External Feedback 1/(t _{SS} + t _{COS})		95		83		55/44	MHz
f _{MAXS}	Internal Feedback 1/(t _{SFS} + t _{CFS})		133		100		80	MHz
	No Feedback 1/(t _{PS})		142		100		83	MHz
t _{AW}	Asynchronous Reset Width	5		10		15		ns
t _{ARS}	Asynchronous Reset Recovery Time	5		10		15		ns
t _{AP}	Asynchronous Reset to Registered Output Reset		8		10		15	ns
t _{SPS}	Setup Time, Synchronous Preset	5		5/9		11		ns

Functional Logic Diagram ATF750C, Upper Half

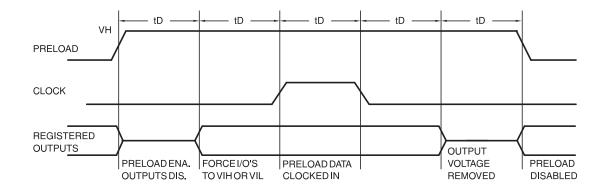


ATF750C/CL

8

ATF750C/CL

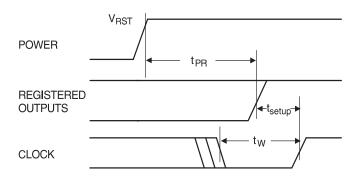
Functional Logic Diagram ATF750C, Lower Half



Preload of Registered Outputs

The ATF750C(L)'s registers are provided with circuitry to allow loading of each register asynchronously with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A V_{IH} level on the I/O pin will force the register high; a V_{IL} will force it low, independent of the output polarity. The PRELOAD state is entered by placing a 10.25V to 10.75V signal on pin 8 on DIPs, and lead 10 on SMDs. When the clock term is pulsed high, the data on the I/O pins is placed into the register chosen by the select pin.

Level Forced on Registered Output Pin during Preload Cycle	Select Pin State	Register #0 State after Cycle	Register #1 State after Cycle
V _{IH}	Low	High	Х
V _{IL}	Low	Low	Х
V _{IH}	High	Х	High
V _{IL}	High	Х	Low


10 **ATF750C/CL**

Power-up Reset

The registers in the ATF750C(L)s are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing V_{RST} , all registers will be reset to the low state. The output state will depend on the polarity of the output buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

- 1. The V_{CC} rise must be monotonic,
- 2. After reset occurs, all input and feedback setup times must be met before driving the clock terms or pin high, and
- 3. The clock pin, or signals from which clock terms are derived, must remain stable during t_{PB}.

Parameter	Description	Тур	Max	Units
t _{PR}	Power-up Reset Time	600	1000	ns
V _{RST}	Power-up Reset Voltage	3.8	4.5	V

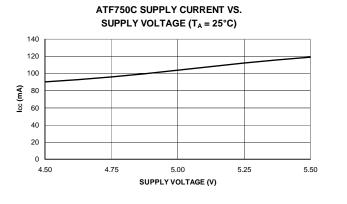
Pin Capacitance

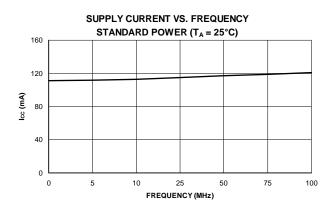
 $f = 1 \text{ MHz}, T = 25^{\circ}C^{(1)}$

	Тур	Мах	Units	Conditions
C _{IN}	5	8	pF	$V_{IN} = 0V$
C _{OUT}	6	8	pF	V _{OUT} = 0V

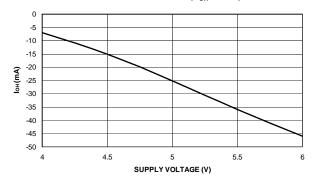
Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Using the ATF750C's Many Advanced Features


The ATF750C(L)'s advanced flexibility packs more usable gates into 24 pins than any other logic device. The ATF750C(L)s start with the popular 22V10 architecture, and add several enhanced features:


Feeture	
Features	• Selectable D- and T-type Registers Each ATF750C(L) flip-flop can be individually configured as either D- or T-type. Using the T-type configuration, JK and SR flip-flops are also easily created. These options allow more efficient product term usage.
	• Selectable Asynchronous Clocks Each of the ATF750C(L)'s flip-flops may be clocked by its own clock product term or directly from Pin 1 (SMD Lead 2). This removes the constraint that all registers must use the same clock. Buried state machines, counters and registers can all coexist in one device while running on separate clocks. Individual flip-flop clock source selection further allows mixing higher performance pin clocking and flexible product term clocking within one design.
	• A Full Bank of Ten More Registers The ATF750C(L) provides two flip-flops per output logic cell for a total of 20. Each register has its own sum term, its own reset term and its own clock term.
	• Independent I/O Pin and Feedback Paths Each I/O pin on the ATF750C(L) has a dedicated input path. Each of the 20 registers has its own feedback terms into the array as well. This feature, combined with individual product terms for each I/O's output enable, facilitates true bi- directional I/O design.
Synchronous Preset and Asynchronous Reset	One synchronous preset line is provided for all 20 registers in the ATF750C(L). The appropriate input signals to cause the internal clocks to go to a high state must be received during a synchronous preset. Appropriate setup and hold times must be met, as shown in the switching waveform diagram.
	An individual asynchronous reset line is provided for each of the 20 flip-flops. Both mas- ter and slave halves of the flip-flops are reset when the input signals received force the internal resets high.
Security Fuse Usage	A single fuse is provided to prevent unauthorized copying of the ATF750C(L) fuse pat- terns. Once the security fuse is programmed, all fuses will appear programmed during verify.
	The security fuse should be programmed last, as its effect is immediate.

ATF750C/CL


5.25

5.50

ATF750C/CL OUTPUT SOURCE CURRENT VS. SUPPLY VOLTAGE ($V_{OH} = 2.4V$)

SUPPLY CURRENT VS. FREQUENCY LOW-POWER ("L") VERSION ($T_A = 25^{\circ}C$)

5.00 SUPPLY VOLTAGE (V)

ATF750CL SUPPLY CURRENT

VS. SUPPLY VOLTAGE ($T_A = 25^{\circ}C$)

160

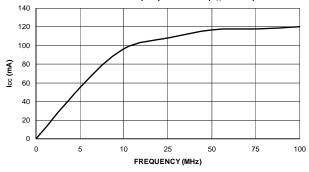
140

120

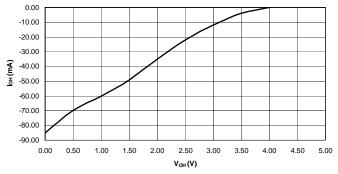
100

60

40


20

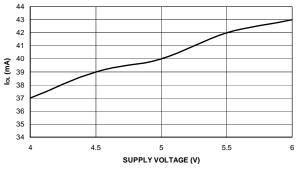
0

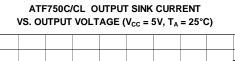

4.50

4.75

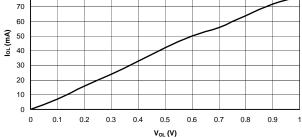
lcc (ILA)

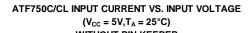
ATF750C/CL OUTPUT SOURCE CURRENT VS. OUTPUT VOLTAGE ($V_{CC} = 5V$, $T_A = 25^{\circ}$ C)

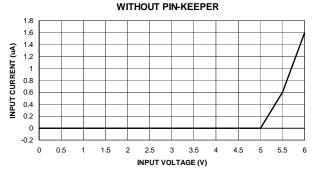




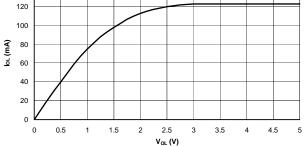
140

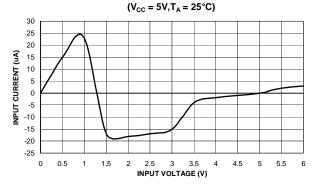

ATF750C/CL OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE ($V_{OL} = 0.5V$)

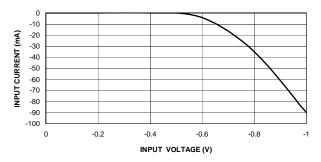




90


80




ATF750C/CL OUTPUT SINK CURRENT VS. OUTPUT VOLTAGE (V_{CC} = 5V, T_A = 25°C)

ATF750C/CL INPUT CURRENT VS. INPUT VOLTAGE

ATF750C/CL INPUT CLAMP CURRENT VS. INPUT VOLTAGE ($V_{cc} = 5V$, $T_A = 35^{\circ}$ C)

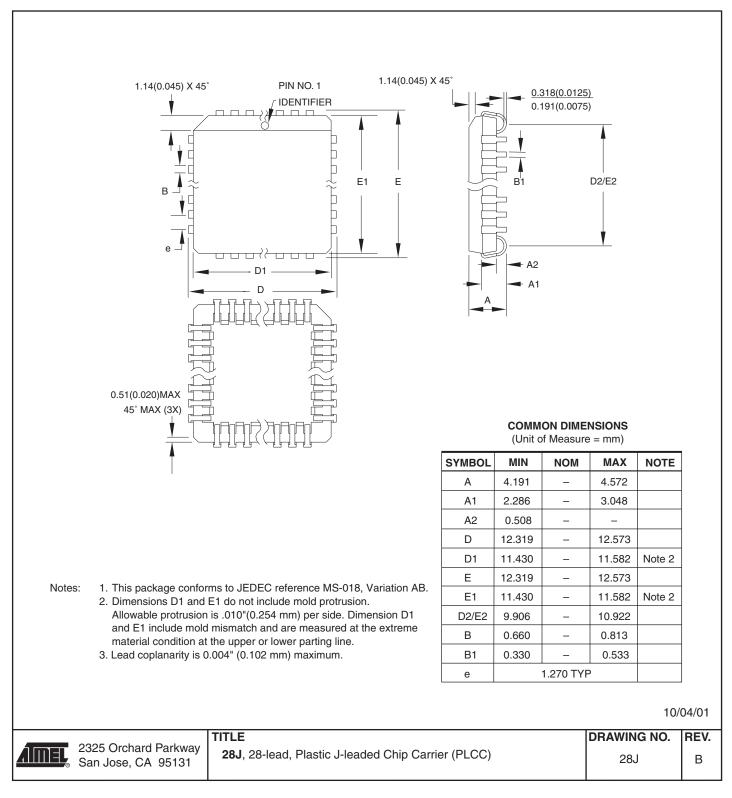
ATF750C(L) Ordering Information

t _{PD} (ns)	t _{cos} (ns)	Ext. f _{MAXS} (MHz)	Ordering Code	Package	Operation Range
7.5	6.5	95	ATF750C-7JC	28J	
			ATF750C-7PC	24P3	Commercial
			ATF750C-7SC	24S	(0°C to 70°C)
			ATF750C-7XC ⁽¹⁾	24X ⁽¹⁾	
	7	83	ATF750C-10JC	28J	
			ATF750C-10PC	24P3	Commercial
			ATF750C-10SC	24S	(0°C to 70°C)
10			ATF750C-10XC ⁽¹⁾	24X ⁽¹⁾	
			ATF750C-10JI	28J	Industrial
			ATF750C-10PI	24P3	Industrial
			ATF750C-10SI	24S	(-40°C to 85°C)
	10	55	ATF750C-15JC	28J	
			ATF750C-15PC	24P3	Commercial
			ATF750C-15SC	24S	(0°C to 70°C)
15			ATF750C-15XC ⁽¹⁾	24X ⁽¹⁾	
			ATF750C-15JI	28J	Industrial (-40°C to 85°C)
			ATF750C-15PI	24P3	
			ATF750C-15SI	24S	
	10	44	ATF750CL-15JC	28J	
			ATF750CL-15PC	24P3	Commercial
			ATF750CL-15SC	24S	(0°C to 70°C)
15			ATF750CL-15XC ⁽¹⁾	24X ⁽¹⁾	
			ATF750CL-15JI	28J	Industrial
			ATF750CL-15PI	24P3	Industrial
			ATF750CL-15SI	24S	(-40°C to 85°C)

Note: 1. Special order only: TSSOP package requires special thermal management.

ATF750C(L) Green Package Options (Pb/Halide-free/RoHS Compliant)

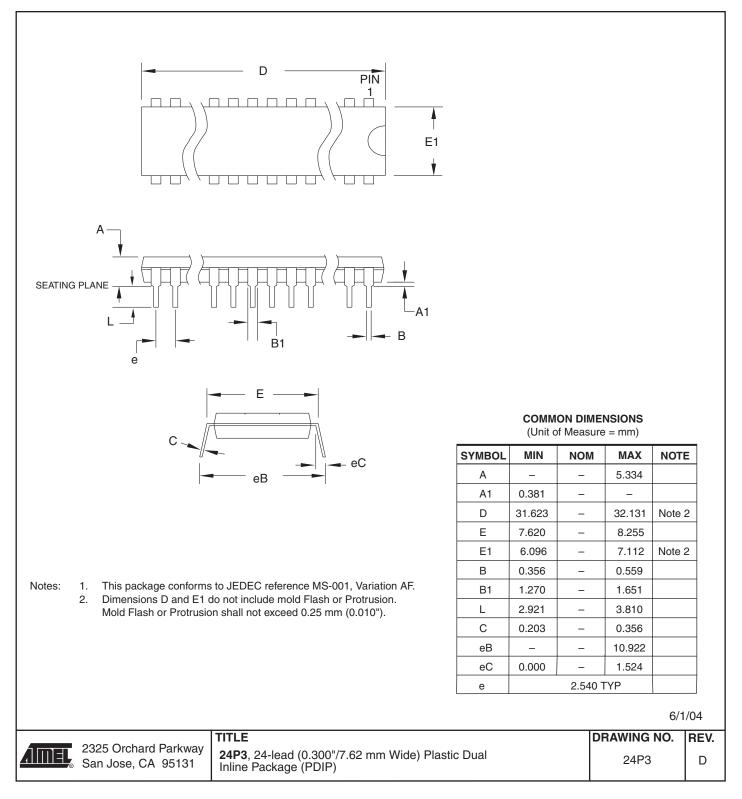
t _{PD} (ns)	t _{cos} (ns)	Ext. f _{MAXS} (MHz)	Ordering Code	Package	Operation Range
	7	83	ATF750C-10JU	28J	
10			ATF750C-10PU	24P3	Industrial
			ATF750C-10SU	24S	(-40°C to 85°C)
			ATF750C-10XU	24X	
	10	44	ATF750CL-15JU	28J	
15			ATF750CL-15PU	24P3	Industrial
			ATF750CL-15SU	24S	(-40°C to 85°C)
			ATF750CL-15XU	24X	

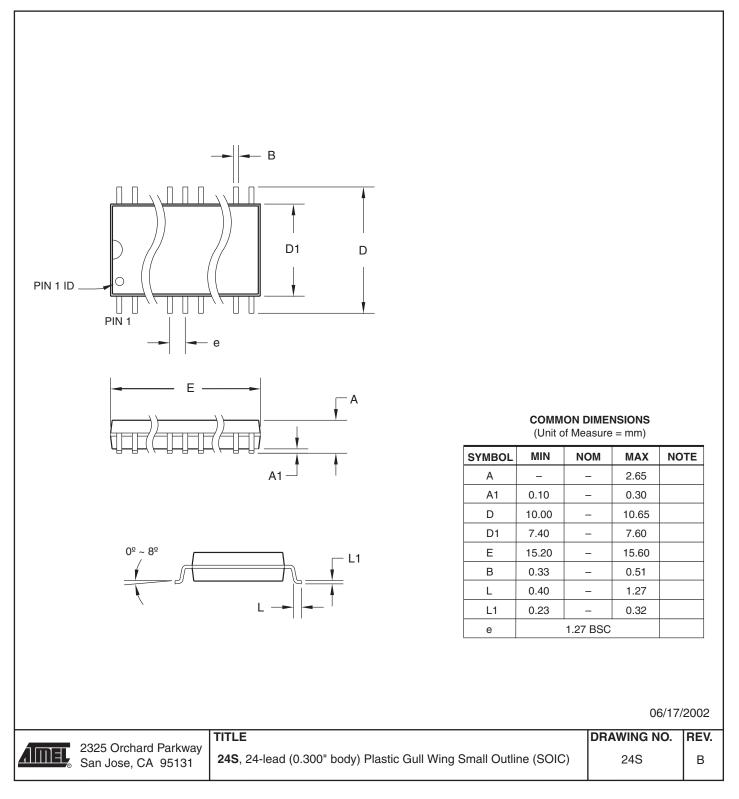

Using "C" Product for Industrial

To use commercial product for industrial ranges, down-grade one speed grade from the "I" to the "C" device (7 ns "C" = 10 ns "I") and de-rate power by 30%.

Package Type					
28J	28-lead, Plastic J-leaded Chip Carrier (PLCC)				
24P3	24-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
24S	24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)				
24X ⁽¹⁾	24-lead, 0.173" Wide, Thin Shrink Small Outline (TSSOP)				

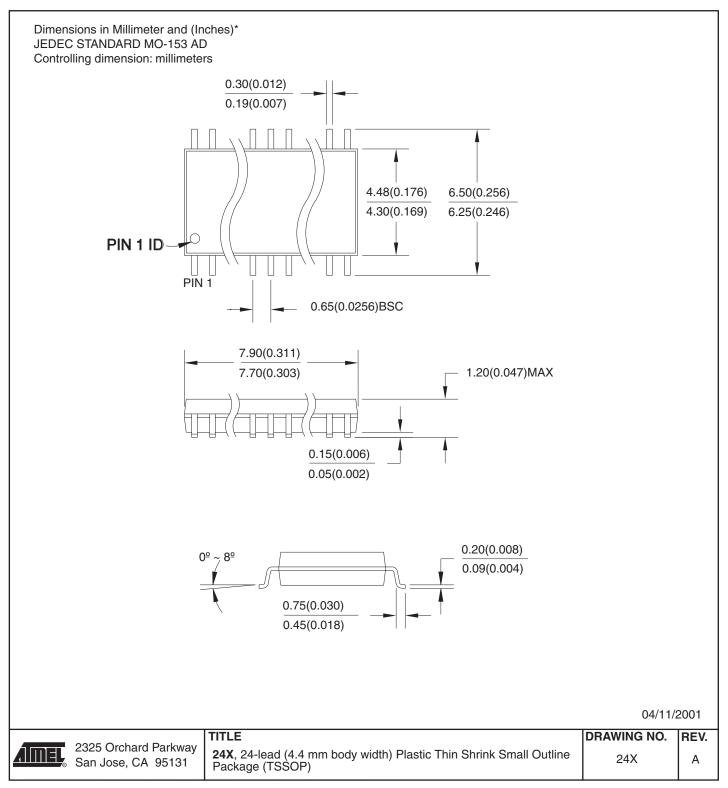
Packaging Information


28J – PLCC



24P3 - PDIP

ATF750C/CL


24S - SOIC

24X - TSSOP

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High-Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

