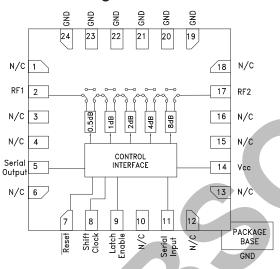


HMC305ALP4 / 305ALP4E

v02.0311

0.5 dB LSB GaAs MMIC 5-BIT SERIAL **CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz**

Typical Applications


The HMC305ALP4(E) is ideal for:

- Cellular/3G Infrastructure
- · Fixed Wireless, WiMax & WiBro
- Test Instrumentation

Features

0.5 dB LSB Steps to 15.5 dB CMOS Compatible Serial Data Interface SPI Compatible Serial Output ±0.3 dB Typical Bit Error 24 Lead 4x4mm QFN Package: 16mm² Included in the HMC-DK004 Designer's Kit

Functional Diagram

General Description

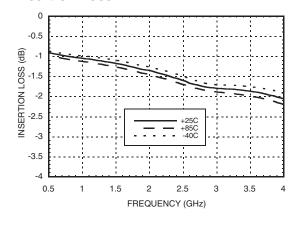
The HMC305ALP4(E) is a broadband 5-bit positive control GaAs IC digital attenuator with CMOS compatible serial-to-parallel driver package in a leadless QFN 4x4 mm SMT package. Covering 0.7 to 3.8 GHz, the insertion loss is typically less than 1.5 to 2 dB. The attenuator bit values are 0.5 (LSB), 1, 2, 4, and 8 dB for a total attenuation of 15.5 dB. Attenuation accuracy is excellent at ±0.25 dB typical with an IIP3 of up to +52 dBm. Five bit serial control words are used to select each attenuation state. A single Vcc bias of +3V to +5V applied through an external 5 kOhm resistor is required.

Electrical Specifications, $T_A = +25^{\circ}$ C, Vcc = +3V to +5V

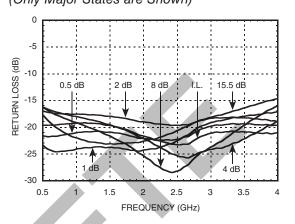
Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.8 GHz		1.2 1.5 1.8 2.0	1.5 2.0 2.3 2.5	dB dB dB dB
Attenuation Range		0.7 - 3.8 GHz		15.5		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.8 GHz		17 18 19 15		dB dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States		0.7 - 0.9 GHz 0.9 - 2.2 GHz 2.2 - 3.8 GHz	± (0.3 +4°	% of Atten. Set % of Atten. Set % of Atten. Set	ting) Max	dB dB dB
Input Power for 0.1 dB Compression	Vcc = 5V Vcc = 3V	0.7 - 3.8 GHz		25 23		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 0 dBm Each Tone)	Vcc = 5V Vcc = 3V	0.7 - 3.8 GHz		52 48		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (Latch Enable to 10/90% RF)		0.7 - 3.8 GHz		750 830		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

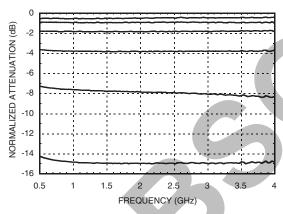

HMC305ALP4 / 305ALP4E

v02.0311

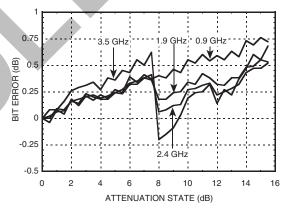


0.5 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Insertion Loss

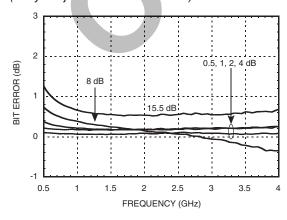


Return Loss RF1, RF2 (Only Major States are Shown)

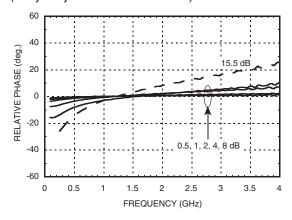


Normalized Attenuation

(Only Major States are Shown)



Bit Error vs. Attenuation State


Bit Error vs. Frequency

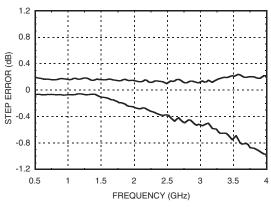
(Only Major States are Shown)

Relative Phase vs. Frequency

(Only Major States are Shown)

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40°C to +85°C).

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

0.5 dB LSB GaAs MMIC 5-BIT SERIAL **CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz**

Worst Case Step Error Between Successive Attenuation States

Digital Control Voltages

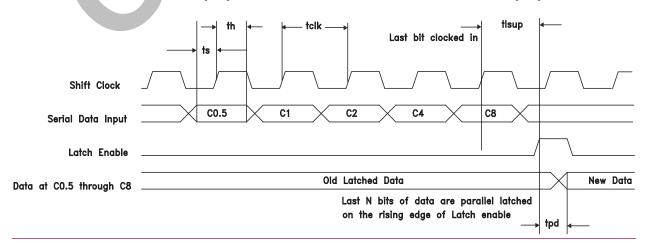
State	Vcc = +5V	Vcc = +3V		
Low	0 to 1.3V	0 to 0.7V		
High	3.5 to 5V	2.3 to 3V		

Serial Input Truth Table

Latch Enable	Shift Clock	Reset	Function
Х	Х	L	Shift register cleared
Х	1	Н	Shift register clocked
↑	х	Н	Contents of shift register transferred to Digital Attenuator

Timing

Parameter	Symbol	Vcc = +5V		Vcc = +3V		Units
- dramotor		Min.	Max.	Min.	Max.	
Serial Input Setup Time	ts	20	-	100		ns
Hold time from Serial Input to Shift Clock	th	0	-	5	-	ns
Setup time from Shift Clock to Latch Enable	tlsup	40		100	•	ns
Propagation delay, Latch Enable to C0.5 through C8	tpd		30		70	ns
Setup time from Reset to Shift Clock	-	20		50	-	ns
Clock Frequency (1/tclk)	fclk		30	-	10	MHz


Truth Table

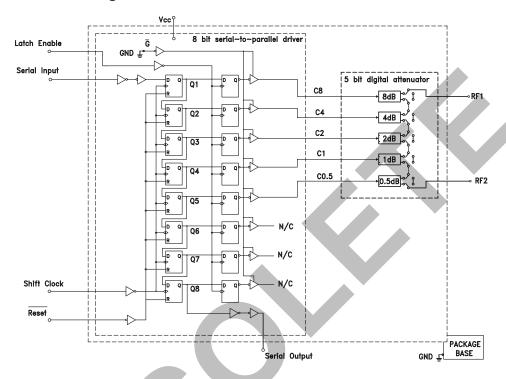
		Seri	Attenuation			
	C 0.5	C 1	C 2	C 4	C 8	Setting RF1 - RF2
	High	High	High	High	High	Reference I.L.
I	Low	High	High	High	High	0.5 dB
	High	Low	High	High	High	1 dB
	High	High	Low	High	High	2 dB
	High	High	High	Low	High	4 dB
	High	High	High	High	Low	8 dB
	Low	Low	Low	Low	Low	15.5 dB Max. Atten.

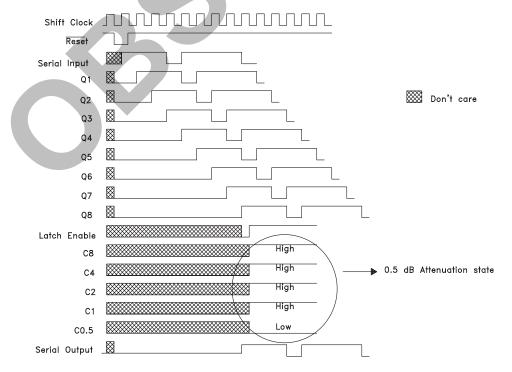
Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Timing Diagram

Serial data is shifted in on the rising edge of the Shift Clock, LSB first, and is latched on the rising edge of Latch Enable.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



0.5 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Logic / Functional Diagram

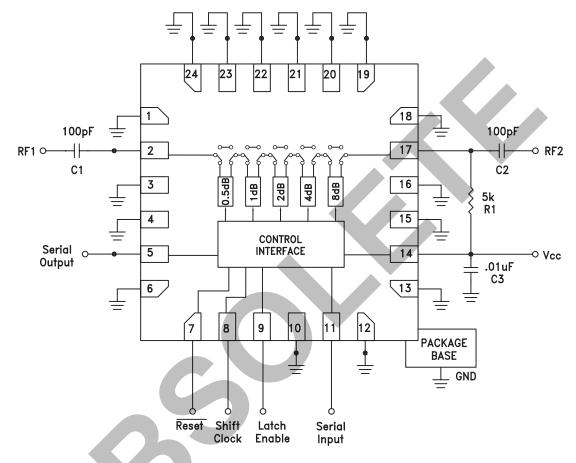
Programming Example to Select 0.5 dB Attenuation State

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

0.5 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Pin Descriptions

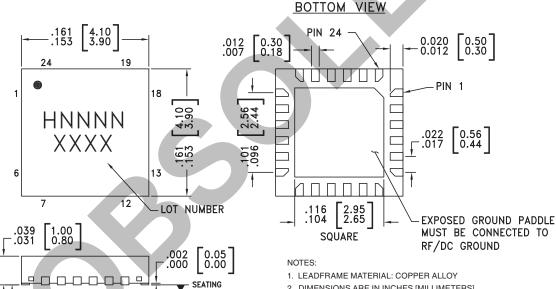

Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6, 10, 12, 13, 15, 16, 18	N/C	These pins are not connected internally. However, all data shown herein was measured with these pins connected to RF/DC Ground.	
2, 17	RF1, RF2	This pin is DC coupled and matched to 50 Ohms Blocking capacitors are required. Select value based on lowest frequency of operation.	RF1, O O
5	Serial Output	Serial data output. Serial input data delayed by 8 clock cycles	Vec Serial Output
7	Reset	See truth table, control voltage table and timing diagram.	20Kn 20Kn 20Kn 20Kn 20Kn 20Kn 20Kn 20Kn
8	Shift Clock		Vec
9	Latch Enable		Shift Clock Latch Enable O Serial Input 20Kn
11	11 Serial Input		
14	Vcc	Supply Voltage.	
19 - 24	GND	Package bottom has an exposed metal paddle that must also be connected to RF/DC Ground.	○ GND =

0.5 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = C2 = $100 \sim 300$ pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5 kOhm is required to supply voltage to the circuit through either PIN 2 or PIN 17.

0.5 dB LSB GaAs MMIC 5-BIT SERIAL **CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz**


Absolute Maximum Ratings

Digital Inputs (Reset, Shift Clock, Latch Enable & Serial Input)	-0.5 to (Vcc + 0.5) V
Digital Outputs (Serial Output)	-0.5 to (Vcc + 0.5) V
DC Current on Serial Output	±35 mA
Bias Voltage (Vcc)	+5.6 V
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 3.8 GHz)	+26 dBm
ESD Sensitivity (HBM)	Class 1A

v02.0311

Outline Drawing

PLANE

-C-

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

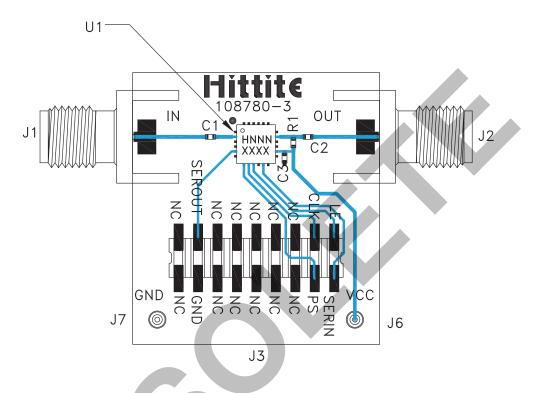
○ .003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC305ALP4	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H305A XXXX
HMC305ALP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H305A XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


HMC305ALP4 / 305ALP4E

v02.0311

0.5 dB LSB GaAs MMIC 5-BIT SERIAL CONTROL DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 108782 [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3	18 Pin DC Connector		
J6, J7	DC Pin		
C1, C2	100 pF Capacitor, 0402 Pkg.		
C3	0.01 μF Capacitor, 0402 Pkg.		
R1	5 kOhm Resistor, 0402 Pkg.		
U1	HMC305ALP4(E) Digital Attenuator		
PCB [2]	108780 Evaluation PCB		

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

^[2] Circuit Board Material: Rogers 4350