

# 30 MHz to 6 GHz RF/IF Gain Block

**Preliminary Technical Data** 

**ADL5611** 

#### **FEATURES**

Fixed gain of 22.1 dB
Broad operation from 30 MHz to 6 GHz
High dynamic range gain block
Input/output internally matched to 50 Ω
Integrated bias control circuit
OIP3 of 38.5 dBm at 900 MHz
P1dB of 21.0 dBm at 900 MHz
Noise figure of 2.1 dB at 900 MHz
Single 5V power supply
Low quiescent current of 90 mA
Wide operating temperature range of -40°C to 105°C
Thermally efficient SOT-89 package
ESD rating of ±1.5 kV (Class 1C)

## **GENERAL DESCRIPTION**

The ADL5611 is a single ended RF/IF gain block amplifier that provides broadband operation from 30 MHz to 6 GHz. The ADL5611 provides a low noise figure of 2 dB with a very high OIP3 of over 38 dBm simultaneously, which delivers a high dynamic range.

The ADL5611 provides a gain of 22 dB, which is stable over frequency, temperature, power supply, and from device to device. The amplifier is offered in the industry standard SOT-89 package, and internally matched to 50  $\Omega$  at the input and output, making the ADL5611 very easy to implement in a wide variety of applications. The only external parts required are the input/output ac coupling capacitors, power supply decoupling capacitors, and bias inductor.

#### **FUNCTIONAL BLOCK DIAGRAM**

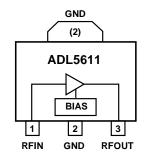



Figure 1. Functional Block Diagram

The ADL5611 has a high ESD rating of  $\pm 1.5$  kV (Class 1C), and is also fully specified for operation across the wide temperature range of  $-40^{\circ}$ C to  $+105^{\circ}$ C.

A fully populated RoHS-compliant evaluation board is available.

# **ADL5611**

# **Preliminary Technical Data**

# **TABLE OF CONTENTS**

| Features 1                |  |
|---------------------------|--|
| Functional Block Diagram1 |  |
| General Description1      |  |
| Specifications            |  |
| Absolute Maximum Ratings4 |  |
| Thormal Posistance        |  |

| ESD Caution                                 | 4 |
|---------------------------------------------|---|
| Pin Configuration and Function Descriptions | 5 |
| Typical Performance Characteristics         | 6 |
| Evaluation Board                            | 7 |
| Outline Dimensions                          | 8 |
| Ordering Guide                              | 8 |

# **SPECIFICATIONS**

 $V_{\text{POS}}$  = 5 V and  $T_{\text{A}}$  = 25°C, unless otherwise noted.

## Table 1.

| Parameter                     | Conditions                                                      | Min  | Тур   | Max  | Unit |
|-------------------------------|-----------------------------------------------------------------|------|-------|------|------|
| OVERALL FUNCTION              |                                                                 |      |       |      |      |
| Frequency Range               |                                                                 | 30   |       | 6000 | MHz  |
| FREQUENCY = 900 MHz           |                                                                 |      |       |      |      |
| Gain                          |                                                                 |      | 22.1  |      | dB   |
| Output 1 dB Compression Point |                                                                 |      | 21.0  |      | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, output power ( $P_{OUT}$ ) = 3 dBm per tone |      | 38.5  |      | dBm  |
| Noise Figure                  |                                                                 |      | 2.1   |      | dB   |
| FREQUENCY = 1900 MHz          |                                                                 |      |       |      |      |
| Gain                          |                                                                 |      | 21.2  |      | dB   |
| Output 1 dB Compression Point |                                                                 |      | 20.5  |      | dBm  |
| Output Third-Order Intercept  | $\Delta f = 1$ MHz, output power ( $P_{OUT}$ ) = 3 dBm per tone |      | 35.8  |      | dBm  |
| Noise Figure                  |                                                                 |      | 2.5   |      | dB   |
| POWER INTERFACE               | V <sub>POS</sub>                                                |      |       |      |      |
| Supply Voltage                |                                                                 | 4.75 | 5     | 5.25 | V    |
| Supply Current                |                                                                 |      | 90.7  |      | mA   |
| vs. Temperature               | -40°C≤T <sub>A</sub> ≤+85°C                                     |      | -7/+5 |      | mA   |
| Power Dissipation             | $V_{POS} = 5V$                                                  |      | 0.45  |      | W    |

## **ABSOLUTE MAXIMUM RATINGS**

Table 2.

| Parameter                                    | Rating                             |
|----------------------------------------------|------------------------------------|
| Supply Voltage, V <sub>POS</sub>             | TBD V                              |
| Input Power (50 $\Omega$ Impedance)          | TBD dBm                            |
| Internal Power Dissipation (Paddle Soldered) | TBD W                              |
| Maximum Junction Temperature                 | 150°C                              |
| Operating Temperature Range                  | -40°C to +105°C                    |
| Storage Temperature Range                    | -40°C to +105°C<br>-65°C to +150°C |

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### THERMAL RESISTANCE

Table 3 lists the junction-to-air thermal resistance ( $\theta_{JA}$ ) and the junction-to-paddle thermal resistance ( $\theta_{JC}$ ) for the ADL5611.

Table 3. Thermal Resistance

| Package Type  | $\theta_{JA}^1$ | θ <sub>JC</sub> <sup>2</sup> | Unit |
|---------------|-----------------|------------------------------|------|
| 3-Lead SOT-89 | TBD             | TBD                          | °C/W |

<sup>&</sup>lt;sup>1</sup>Measured on Analog Devices evaluation board. For more information about board layout, see the Soldering Information and Recommended PCB Land Pattern section.

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

<sup>&</sup>lt;sup>2</sup>Based on simulation with JEDEC standard JESD51.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2.Pin Configuration

## **Table 4. Pin Function Descriptions**

| Pin No.           | Mnemonic | Description                                                                                                                                                                 |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                 | RFIN     | RF Input. This pin requires a dc blocking capacitor.                                                                                                                        |
| 2                 | GND      | Ground. Connect this pin to a low impedance ground plane.                                                                                                                   |
| 3                 | RFOUT    | RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the external power supply. RF path requires a dc blocking capacitor. |
| Exposed<br>Paddle |          | Exposed Paddle. Internally connected to GND. Solder to a low impedance ground plane.                                                                                        |

# TYPICAL PERFORMANCE CHARACTERISTICS

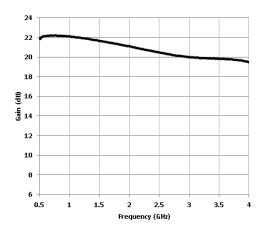



Figure 3. Gain vs. Frequency, 0.5-4.0GHz

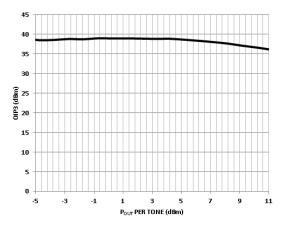



Figure 4. OIP3 vs. Pout, 900MHz

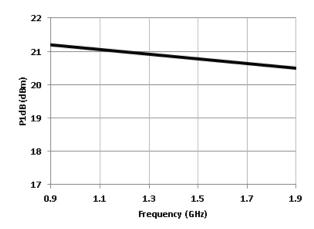



Figure 5. P1dB vs. Frequency, 0.9-1.9GHz

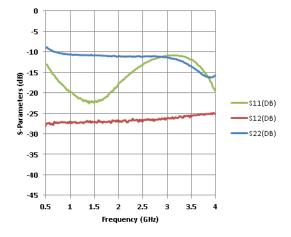



Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, 0.5-4.0GHz

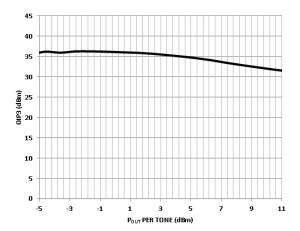



Figure 7. OIP3 vs. Pout, 1900MHz

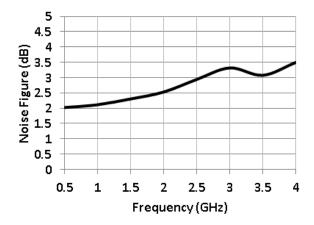



Figure 8. Noise Figure vs. Frequency, 0.5-4.0GHz

# **EVALUATION BOARD**

Figure 9 shows the schematic for the ADL5611 evaluation board. The board is powered by a single 5 V supply. The components used on the board are listed in Table 5. Power can be applied to the board through clip-on leads (VPOS, GND).

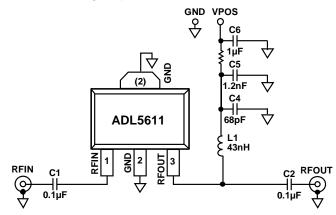



Figure 9. Evaluation Board Schematic

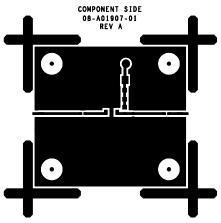



Figure 10. Evaluation Board Layout (Top)

**Table 5. Evaluation Board Configuration Options** 

| Component              | Function                            | Default Value                                                                   |
|------------------------|-------------------------------------|---------------------------------------------------------------------------------|
| C1, C2                 | AC-coupling capacitors.             | 0.1 μF 0402                                                                     |
| L1                     | DC bias inductor.                   | 43 nH 0603 (Coilcraft 0603HP or equivalent)                                     |
| V <sub>POS</sub> , GND | Clip-on terminals for power supply. |                                                                                 |
| C4, C5, C6             | Power supply decoupling capacitors  | $C4 = 68 \text{ pF}, 0603; C5 = 1.2 \text{ nF}, 0603; C6 = 1 \mu\text{F}, 1206$ |

# **OUTLINE DIMENSIONS**

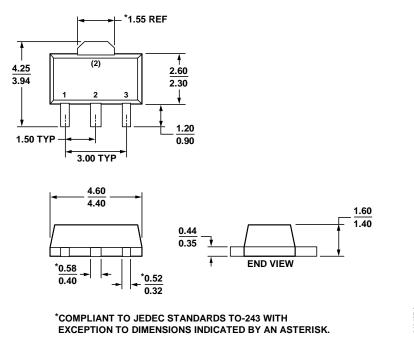



Figure 11. 3 Lead Small Outline Transistor Package {SOT-89} (RK-3) Dimensions shown in Millimeters

### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description             | Package Option |
|--------------------|-------------------|---------------------------------|----------------|
| ADL5611ARKZ-R7     | -40°C to +105°C   | 3-Lead SOT-89, 7" Tape and Reel | RK-3           |
| ADL5611-EVALZ      | -40°C to +105°C   | Evaluation Board                |                |

<sup>&</sup>lt;sup>1</sup> Z = RoHS Compliant Part.