NPN Medium Power Silicon Transistor

- Available in JAN, JANTX, JANTXV and JANS per MIL-PRF-19500/366
- TO-39 (TO-205AD) and TO-5 Leaded Packages
- 2N3501 Available In UB package

Parameter

Collector - Emitter Breakdown Voltage

Collector - Base Cutoff Current

Collector - Base Cutoff Current

Emitter - Base Cutoff Current

Emitter - Base Cutoff Current

Ideal for High Voltage Inductive Load Switching Applications

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Collector - Emitter Saturation Voltage $I_{C} = 10 \text{ mA dc}; I_{B} = 1 \text{ mA dc}$ V dc 0.2 V_{CE(SAT)1} I_{C} = 150 mA dc; I_{B} = 15 mA dc Collector - Emitter Saturation Voltage V dc 0.4 V_{CE(SAT)2} (2N3500, 2N3501, 2N3501B only) I_{C} = 300 mA dc; I_{B} = 30 mA dc Collector - Emitter Saturation Voltage V_{CE(SAT)3} V dc 0.6 (2N3498, 2N3499 only) I_{C} = 10 mA dc; I_{B} = 1 mA dc V dc 0.8 Base - Emitter Saturation Voltage V_{BE(SAT)1} $I_{\rm C}$ = 150 mA dc; $I_{\rm B}$ = 15 mA dc V dc Base - Emitter Saturation Voltage 1.2 V_{BE(SAT)2} (2N3500, 2N3501, 2N3501B only) I_{C} = 300 mA dc; I_{B} = 30 mA dc V dc Base - Emitter Saturation Voltage 1.4 V_{BE(SAT)3} (2N3498, 2N3499 only) $T_{A} = +150^{\circ}C$ V_{CB} = 50 V dc 2N3498, 2N3499 Collector - Base Cutoff Current µA dc 50 I_{CBO3} V_{CB} = 75 V dc 2N3500, 2N3501 2N3501UB $T_{A} = -55^{\circ}C$ V_{CE} = 10 V dc; I_{C} = 150 mA dc Forward Current Transfer Ratio h_{FF7} 2N3498, 2N3500 22 2N3499, 2N3501, 2N3501UB 45 VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.vptcomponents.com for additional data sheets and product information.

V3

Max.

10

50

10

25

I _C = 10 mA dc 2N3498, 2N3499 2N3500, 2N3501, 2N3501UB	V _{(BR)CEO}	V dc	
V _{CB} = 100 V dc 2N3498, 2N3499 V _{CB} = 150 V dc 2N3500, 2N3501 2N3501UB	I _{CBO1}	µA dc	

Test Conditions

V_{CB} = 50 V dc 2N3498, 2N3499

V_{CB} = 75 V dc 2N3500, 2N3501

2N3501UB

 V_{EB} = 6.0 V dc

 $V_{EB} = 4.0 V dc$

Features

Min.

100

150

Т	Ν	Е	Ν	0	Ρ	Μ	Ο	С	
Rev									

Symbol Units

nA dc

µA dc

nA dc

I_{CBO2}

I_{EBO1}

I_{EBO2}

1

NPN Medium Power Silicon Transistor

Rev. V3

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
	Г Г				1
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 0.1 mA dc 2N3498, 2N3500 2N3499, 2N3501,2N3501 UB	h _{FE1}	-	20 35	
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 1.0 mA dc 2N3498, 2N3500 2N3499, 2N3501,2N3501 UB	h _{FE2}	-	25 50	
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 10 mA dc 2N3498, 2N3500 2N3499, 2N3501,2N3501 UB	h _{FE3}	-	35 75	
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 150 mA dc 2N3498, 2N3500 2N3499, 2N3501,2N3501 UB	h _{FE4}	-	40 100	120 300
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 300 mA dc 2N3500 2N3501, 2N3501 UB	h _{FE5}	-	15 20	
Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 500 mA dc 2N3498 2N3499	h _{FE6}	-	15 20	

Dynamic Characteristics					
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio	$I_{\rm C}$ = 20 mA dc; $V_{\rm CE}$ = 20 V dc; f = 100 mHz	h _{fe}	-	1.5	8
Small-Signal Short-Circuit Forward Current Transfer Ratio	V _{CE} = 10 V dc; I _C = 10 mA dc; f = 1 kHz 2N3498, 2N3500 2N3499, 2N3501, 2N3501UB	h _{fe}		35 75	300 375
Open Circuit Output Capacitance	V _{CB} = 10 V dc; I _E = 0; 100 kHz <u>≤f<</u> 1 MHz 2N3489,2N3499 2N3500, 2N3501	C _{obo}	pF		10 8
Input Capacitance (Output Open Circuited)	V _{EB} = 0.5 V dc; I _C = 0; 100 kHz <u><f<< u=""> 1 MHz</f<<></u>	C _{ibo}	pF		80
Switching Characteristics					
Turn-On Time	I_{C} = 150 mA dc; I_{B1} = 15 mA dc; V_{EB} = 5 V dc	t _{on}	ns	_	115
Turn-Off Time	$I_{\rm C}$ = 150 mA dc; $I_{\rm B1}$ = $I_{\rm B2}$ = 15 mA dc	t _{off}	ns	_	1150

²

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

Rev. V3

Absolute Maximum Ratings

Ratings	Symbol	Value
Collector - Emitter Voltage 2N3498 2N3499, L, U4 2N3500 2N3501, L, U4, UB	V _{CEO}	100 V dc 150 V dc
Collector - Base Voltage 2N3498 2N3499, L, U4 2N3500 2N3501, L, U4, UB	V _{CBO}	100 V dc 150 V dc
Emitter - Base Voltage	V _{EBO}	6.0 V dc
Collector Current 2N3498 2N3499, L, U4 2N3500 2N3501, L, U4, UB	I _C	500 mA dc 300 mA dc
Total Power Dissipation (a) $T_A = +25^{\circ}C^2$ (b) $T_C = +25^{\circ}C^3$	P _T	1.0 W 6.0 W
Operating & Storage Temperature Range	T_{OP},T_{STG}	-65°C to +200°C

Thermal Characteristics

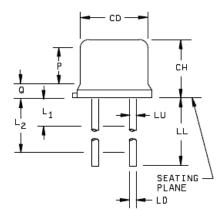
Types	P _T T _A = +25°C (1)	Ρ _T T _C = +25°C (1)	P _T T _{SP} = +25°C (1)	R _{eJA}	R₀ _{JC}	R _{⊎JC} Kovar	R _{®JSP}	V _{CBO}	V _{CEO}	V _{EBO}	I _C	T_J and T_{STG} -65 to +200
	<u>W</u>	<u>W</u>	<u>W</u>	<u>°C/W</u>	<u>°C/W</u>	<u>°C/W</u>	<u>°C/W</u>	<u>V dc</u>	<u>V dc</u>	<u>V dc</u>	<u>mA dc</u>	<u>°C</u>
2N3498,L 2N3498U4	1	5 4	N/A N/A	175 175	30 15	34.9	N/A N/A	100 100	100 100	6 6	500 500	
2N3499,L	1	5	N/A	175	30	34.9	N/A	100	100	6	500	
2N3499U4		4	N/A	175	15		N/A	100	100	6	500	
2N3500,L	1	5	N/A	175	30	34.9	N/A	150	150	6	300	
2N3500U4		4	N/A	175	15		N/A	150	150	6	300	
2N3501,L	1	5	N/A	175	30	34.9	N/A	150	150	6	500	
2N3501U4		4	N/A	175	15		N/A	150	150	6	300	
2N3501UE	3 1	.5	1.5	350	N/A		90	150	150	6	300	

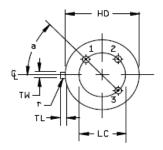
(1) Derating curves 6, 7, 8, 9 and 10 per MIL-PRF-19500/366

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

3

NPN Medium Power Silicon Transistor


Rev. V3


Safe Operating Area		
DC Tests:	T_{C} = +25°C; I Cycle; tr ≥ 10 ns; t	=1s
Test 1:	V_{CE} = 10 V dc; I _C = 500 mA dc V_{CE} = 16.67 V dc; I _C = 300 mA dc V_{CE} = 10 V dc; I _C = 113mA dc	
Test 2:	V_{CE} = 50 V dc; I_{C} = 100 mA dc V_{CE} = 50 V dc; I_{C} = 23 mA dc	2N3498, 2N3499, 2N3500, 2N3501 2N3501UB
Test 3:	$\label{eq:V_CE} \begin{array}{l} V_{CE} = 80 \ V \ dc; \ I_{C} = 40 \ mA \ dc \\ V_{CE} = 80 \ V \ dc; \ I_{C} = 14 \ mA \ dc \end{array}$	2N3498, 2N3499, 2N3500, 2N3501 2N3501UB
Safe operating area (clamped switching)	$T_A = +25^{\circ}C$ $I_B = 85 \text{ mA dc}; I_C = 500 \text{ mA dc}$ $I_B = 50 \text{ mA dc}; I_C = 300 \text{ mA dc}$	2N3498, 2N3499 2N3500, 2N3501, 2N3501UB

Rev. V3

Outline Drawing (TO-5, TO-39)

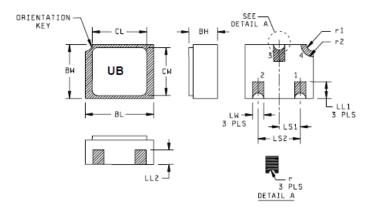
Symbol	Inc	hes	Millim	neters	Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200) TP	5.08	3 TP	6
LD	.016	.016 .021		0.53	7
LL		See no	tes 7, 12	, and 13	
LU	.016	.019	0.41	0.48	7, 13
L1		.050		1.27	13
L ₂	.250		6.35		13
TL	.029	.045	0.74	1.14	3
TW	.028	.034	0.71	0.86	10, 11
P	.100		2.54		5
Q		.050		1.27	4
r		.010		.25	11
α	45°	TP	45°	TP	6

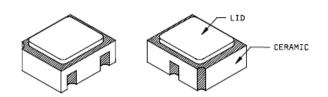
NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- Symbol CD shall not vary more than .010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) -.000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) relative to tab. Device may be measured by direct methods or by gauge.
- 7. Symbol LD applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Lead diameter shall not exceed .042 inch (1.07 mm) within L₁ and beyond LL minimum.
- 8. Lead designation, shall be as follows: 1 emitter, 2 base, 3 collector.
- Lead number three is electrically connected to case.
- 10. Beyond r maximum, TW shall be held for a minimum length of .011 inch (0.28 mm).
- 11. Symbol r applied to both inside corners of tab.
- For transistor types 2N3498, 2N3499, 2N3500, and 2N3501, LL = .50 inch (12.7 mm) minimum and .750 inch (19.1 mm) maximum. For transistor types 2N3498L, 2N3499L, 2N3500L, and 2N3501L, LL = 1.50 inches (38.1 mm) minimum and 1.750 inches (44.5 mm) maximum.
- All three leads.
- In accordance with ASME Y14.5M, diameters are equivalent to \u03c6 x symbology.

FIGURE 1. Physical dimensions (similar to TO-5, TO-39).

5


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.



Rev. V3

Outline Drawing (UB)

Symbol		Note					
	Inc	hes	Millin	Millimeters			
	Min	Max	Min	Max			
BH	.046	.056	1.17	1.42			
BL	.115	.128	2.92	3.25			
BW	.085	085 .108 2.16 2.74		2.74			
CL		.128		3.25			
CW		.108		2.74			
LL1	.022	.038	0.56	0.97			
LL2	.017	.035	0.43	0.89			

Symbol		Note			
	Inc	hes	Millin	neters	
	Min	Max	Min	Max	
LS ₁	.036	.040	0.91	1.02	
LS2	.071	.079	1.80	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
r1		.012		.305	
r2		.022		.559	

NOTES:

- 1. Dimensions are in inches.
- Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Lid material: Kovar.
- 5. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 6. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.

FIGURE 2. Physical dimensions, surface mount (2N3501UB version).

6

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Medium Power Silicon Transistor

7

NOTES:

1. Dimensions are in inches.

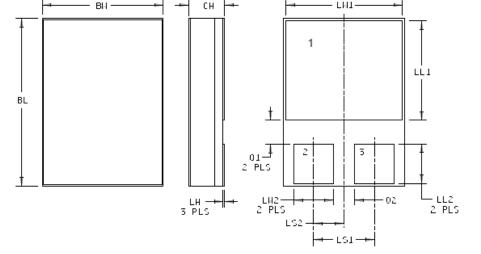

- Millimeters are given for general information only.
- Terminal 1 is collector.
- 4. Terminal 2 is base.
- Terminal 3 is emitter.
- In accordance with ASME Y14.5M, diameters are equivalent to \u03c6 x symbology.

FIGURE 3. Physical dimensions and configuration U4.

Rev. V3

Symbol Dimensions Inches Millimeters Min Max Min Max BL 215 225 5.46 5.72 3.68 3.94 BW 155 145 .049 .075 1.24 1.91 CH 0.51 LH .020 LW1 135 3.43 3.68 145 LW2 .047 057 1.19 1.45 LL1 085 125 2.16 3.18 LL2 .045 .075 1.14 1.91 LS1 .070 .095 1.78 2.41 0.89 1.22 LS2 .035 .048 .030 .070 0.76 1.78 Q1 Q2 .020 .035 0.51 0.89 Collector 1 2 Base 3 Emitter

Outline Drawing (U4)

			7	_		
СО	м	Р	0	÷.		S

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCI-DENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURA-CY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

⁸

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.